Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 788
Filter
1.
Bioorg Med Chem ; 110: 117814, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38981217

ABSTRACT

Oligonucleotide therapeutics, particularly antisense oligonucleotides (ASOs), have emerged as promising candidates in drug discovery. However, their effective delivery to the target tissues and cells remains a challenge, necessitating the development of suitable drug delivery technologies for ASOs to enable their practical application. In this study, we synthesized a library of chemically modified dipeptide-ASO conjugates using a recent synthetic method based on the Ugi reaction. We then conducted in vitro screening of this library using luciferase-expressing cell lines to identify ligands capable of enhancing ASO activity. Our findings suggest that N-(4-nitrophenoxycarbonyl)glycine may interact with the thiophosphate moiety of the phosphorothioate-modification in ASO. Through our screening efforts, we identified two ligands that modestly reduced luciferase luminescence in a cell type-selective manner. Furthermore, quantification of luciferase mRNA levels revealed that one of these promising dipeptide-ASO conjugates markedly suppressed luciferase RNA levels through its antisense effect in prostate-derived DU-145 cells compared to the ASOs without ligand modification.

2.
Mol Ther Nucleic Acids ; 35(3): 102237, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38993932

ABSTRACT

Gapmer antisense oligonucleotides (ASOs) hold therapeutic promise for allele-specific silencing, but face challenges in distinguishing between mutant and wild-type transcripts. This study explores new design strategies to enhance ASO specificity, focusing on a common dominant mutation in COL6A3 gene associated with Ullrich congenital muscular dystrophy. Initial gapmer ASO design exhibited high efficiency but poor specificity for the mutant allele. We then adopted a mixmer design, incorporating additional RNA bases based on computational predictions of secondary structures for both mutant and wild-type alleles, aiming to enhance ASO accessibility to mutant transcripts. The mixmer ASO design demonstrated up to a 3-fold increase in specificity compared with the classical gapmer design. Further refinement involved introducing a nucleotide mismatch as a structural modification, resulting in a 10-fold enhancement in specificity compared with the gapmer design and a 3-fold over the mixmer design. Additionally, we identified for the first time a potential role of the RNA-induced silencing complex (RISC), alongside RNase H1, in gapmer-mediated silencing, in contrast with what was observed with mixmer ASOs, where only RNase H1 was involved. In conclusion, this study presents a novel design concept for allele-specific ASOs leveraging mRNA secondary structures and nucleotide mismatching and suggests a potential involvement of RISC in gapmer-mediated silencing.

3.
Drug Discov Today ; : 104074, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950729

ABSTRACT

Pathogenic viruses are a profound threat to global public health, underscoring the urgent need for the development of efficacious antiviral therapeutics. The advent of RNA-targeting antiviral strategies has marked a significant paradigm shift in the management of viral infections, offering a potent means of control and potential cure. In this review, we delve into the cutting-edge progress in RNA-targeting antiviral agents, encompassing antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and small bifunctional molecules. We provide an in-depth examination of their strategic molecular design and elucidate the underlying mechanisms of action that confer their antiviral efficacy. By synthesizing recent findings, we shed light on the innovative potential of RNA-targeting approaches and their pivotal role in advancing the frontiers of antiviral drug discovery.

4.
Mol Ther Nucleic Acids ; 35(2): 102161, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38978695

ABSTRACT

An increasing number of antisense oligonucleotides (ASOs) have been approved for clinical use. However, improvements of both efficacy and safety in the central nervous system (CNS) are crucial for the treatment with CNS diseases. We aimed to overcome the crucial issues by our development of various gapmer ASOs with a novel nucleoside derivative including a 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine (BNAP-AEO). The various gapmer ASOs with BNAP-AEO were evaluated for thermal stability, in vitro and in vivo efficacy, and acute CNS toxicity. Thermal stability analysis of the duplexes with their complementary RNAs showed that ASOs with BNAP-AEO had a higher binding affinity than those without BNAP-AEO. In vitro assays, when transfected into neuroblastoma cell lines, demonstrated that ASOs with BNAP-AEO, had a more efficient gene silencing effect than those without BNAP-AEO. In vivo assays, involving intracerebroventricular injections into mice, revealed ASOs with BNAP-AEO potently suppressed gene expression in the brain. Surprisingly, the acute CNS toxicity in mice, as assessed through open field tests and scoring systems, was significantly lower for ASOs with BNAP-AEO than for those without BNAP-AEO. This study underscores the efficient gene-silencing effect and low acute CNS toxicity of ASOs incorporating BNAP-AEO, indicating the potential for future therapeutic applications.

5.
J Neural Transm (Vienna) ; 131(6): 597-607, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864935

ABSTRACT

For a special issue, we review studies on the pathogenesis of nigral cell death and the treatment of sporadic Parkinson's disease (sPD) over the past few decades, with a focus on the studies performed by Prof. Mizuno and our group. Prof. Mizuno proposed the initial concept that mitochondrial function may be impaired in sPD. When working at Jichi Medical School, he found a decrease in complex I of the mitochondrial electron transfer complex in the substantia nigra of patients with Parkinson's disease (PD) and MPTP models. After moving to Juntendo University as a professor and chairman, he continued to study the mechanisms of cell death in the substantia nigra of patients with sPD. Under his supervision, I studied the relationships between PD and apoptosis, PD and iron involvement, mitochondrial dysfunction and apoptosis, and PD and neuroinflammation. Moving to Kitasato University, we focused on PD and the cytotoxicity of alpha synuclein (αSyn) as well as brain neuropathology. Eventually, I moved to Osaka University, where I continued working on PD and αSyn projects to promote therapeutic research. In this paper, we present the details of these studies in the following order: past, present, and future.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/pathology , Parkinson Disease/metabolism , Animals , Substantia Nigra/pathology , Substantia Nigra/metabolism , alpha-Synuclein/metabolism
6.
Neurol Int ; 16(3): 631-642, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921951

ABSTRACT

Spinal muscular atrophy is a neuromuscular genetic condition associated with progressive muscle weakness and atrophy. Nusinersen is an antisense oligonucleotide therapy approved for the treatment of 5q spinal muscular atrophy in pediatric and adult patients. The objective of this clinical case series is to describe the efficacy and safety of nusinersen in treating spinal muscular atrophy in 20 pediatric and 18 adult patients across six treatment centers in Kuwait. Functional motor assessments (Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders, Hammersmith Functional Motor Scale Expanded, and Revised Upper Limb Module) were used to assess changes in motor function following nusinersen treatment. The safety assessment involved clinical monitoring of adverse events. The results demonstrate clinically meaningful or considerable improvement in motor performance for nearly all patients, lasting over 4 years in some cases. A total of 70% of patients in the pediatric cohort and 72% of patients in the adult cohort achieved a clinically meaningful improvement in motor function following nusinersen treatment. Additionally, nusinersen was well-tolerated in both cohorts. These findings add to the growing body of evidence relating to the clinical efficacy and safety of nusinersen.

7.
Int J Pharm ; 661: 124390, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936443

ABSTRACT

In vivo studies investigating the inhalative efficacy of biotherapeutics, such as nucleic acids, usually do not perform an aerosolization step, rather the solution is directly administered into the lungs e.g. intratracheally. In addition, there is currently very little information on the behavior of nucleic acid solutions when subjected to the physical stress of the nebulization process. In this study, the aim was to assess the technical suitability of Locked Nucleic Acids (LNAs), as a model antisense oligonucleotide, towards nebulization using two commercially available nebulizers. A jet nebulizer (Pari LC Plus) and a vibrating mesh nebulizer (Aerogen Solo) were employed and solutions of five different LNAs investigated in terms of their physical and chemical stability to nebulization and the quality of the generated aerosols. The aerosol properties of the Aerogen Solo were mainly influenced by the viscosity of the solutions with the output rate and the droplet size decreasing with increasing viscosity. The Pari LC Plus was less susceptible to viscosity and overall the droplet size was smaller. The LNAs tolerated both nebulization processes and the integrity of the molecules was shown. Chemical stability of the molecules from the Aerogen Solo was confirmed, whereas aerosol generation with the Pari LC Plus jet nebulizer led to a slight increase of phosphodiester groups in a fully phosphorothiolated backbone of the LNAs. Overall, it could be shown that nebulization of different LNAs is possible and inhalation can therefore be considered a potential route of administration.

8.
Heart Fail Clin ; 20(3): 343-352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844305

ABSTRACT

Transthyretin amyloid cardiomyopathy (ATTR-CM) is a relatively prevalent cause of morbidity and mortality. Over the recent years, development of disease-modifying treatments has enabled stabilization of the circulating transthyretin tetramer and suppression of its hepatic production, resulting in a remarkable improvement in survival of patients with ATTR-CM. Second-generation drugs for silencing are currently under investigation in randomized clinical trials. In vivo gene editing of transthyretin has been achieving unanticipated suppression of hepatic production in ATTR-CM. Trials of antibodies inducing the active removal of transthyretin amyloid deposits in the heart are ongoing, and evidence has gathered for exceptional spontaneous regression of ATTR-CM.


Subject(s)
Amyloid Neuropathies, Familial , Benzoxazoles , Cardiomyopathies , Prealbumin , Humans , Amyloid Neuropathies, Familial/drug therapy , Amyloid Neuropathies, Familial/metabolism , Cardiomyopathies/drug therapy , Cardiomyopathies/metabolism , Benzoxazoles/therapeutic use , Prealbumin/metabolism , Prealbumin/genetics
9.
Mol Ther Nucleic Acids ; 35(2): 102186, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38706632

ABSTRACT

Recent studies have highlighted the effectiveness of using antisense oligonucleotides (ASOs) for cellular RNA regulation, including targets that are considered undruggable; however, manually designing optimal ASO sequences can be labor intensive and time consuming, which potentially limits their broader application. To address this challenge, we introduce a platform, the ASOptimizer, a deep-learning-based framework that efficiently designs ASOs at a low cost. This platform not only selects the most efficient mRNA target sites but also optimizes the chemical modifications for enhanced performance. Indoleamine 2,3-dioxygenase 1 (IDO1) promotes cancer survival by depleting tryptophan and producing kynurenine, leading to immunosuppression through the aryl-hydrocarbon receptor (Ahr) pathway within the tumor microenvironment. We used ASOptimizer to identify ASOs that target IDO1 mRNA as potential cancer therapeutics. Our methodology consists of two stages: sequence engineering and chemical engineering. During the sequence-engineering stage, we optimized and predicted ASO sequences that could target IDO1 mRNA efficiently. In the chemical-engineering stage, we further refined these ASOs to enhance their inhibitory activity while reducing their potential cytotoxicity. In conclusion, our research demonstrates the potential of ASOptimizer for identifying ASOs with improved efficacy and safety.

10.
Drug Dev Res ; 85(4): e22187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764172

ABSTRACT

Antisense oligonucleotides (ASOs) are short, synthetic, single-stranded deoxynucleotide sequences composed of phosphate backbone-connected sugar rings. Designing of those strands is based on Watson-Crick hydrogen bonding mechanism. Thanks to rapidly advancing medicine and technology, evolving of the gene therapy area and ASO approaches gain attention. Considering the genetic basis of diseases, it is promising that gene therapy approaches offer more specific and effective options compared to conventional treatments. The objective of this review is to explain the mechanism of ASOs and discuss the characteristics and safety profiles of therapeutic agents in this field. Pharmacovigilance for gene therapy products is complex, requiring accurate assessment of benefit-risk balance and evaluation of adverse effects.


Subject(s)
Genetic Therapy , Oligonucleotides, Antisense , Oligonucleotides, Antisense/chemistry , Humans , Genetic Therapy/methods , Animals , Pharmacovigilance
11.
ACS Appl Mater Interfaces ; 16(22): 28041-28055, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38767982

ABSTRACT

Bacterial infection poses a significant challenge to wound healing and skin regeneration, leading to substantial economic burdens on patients and society. Therefore, it is crucial to promptly explore and develop effective methodologies for bacterial infections. Herein, we propose a novel approach for synthesizing nanostructures based on antisense oligonucleotides (ASOs) through the coordination-driven self-assembly of Zn2+ with ASO molecules. This approach aims to provide effective synergistic therapy for chronic wound infections caused by Staphylococcus aureus (S. aureus). The resulting hybrid nanoparticles successfully preserve the structural integrity and biological functionalities of ASOs, demonstrating excellent ASO encapsulation efficiency and bioaccessibility. In vitro antibacterial experiments reveal that Zn-ASO NPs exhibit antimicrobial properties against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. This antibacterial ability is attributed to the high concentration of metal zinc ions and the generation of high levels of reactive oxygen species. Additionally, the ftsZ-ASO effectively inhibits the expression of the ftsZ gene, further enhancing the antimicrobial effect. In vivo antibacterial assays demonstrate that the Zn-ASO NPs promote optimal skin wound healing and exhibit favorable biocompatibility against S. aureus infections, resulting in a residual infected area of less than 8%. This combined antibacterial strategy, which integrates antisense gene therapy and metal-coordination-directed self-assembly, not only achieves synergistic and augmented antibacterial outcomes but also expands the horizons of ASO coordination chemistry. Moreover, it addresses the gap in the antimicrobial application of metal-coordination ASO self-assembly, thereby advancing the field of ASO-based therapeutic approaches.


Subject(s)
Anti-Bacterial Agents , Oligonucleotides, Antisense , Staphylococcus aureus , Zinc , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Zinc/chemistry , Zinc/pharmacology , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacology , Animals , Mice , Escherichia coli/drug effects , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Bacillus subtilis/drug effects , Humans , Wound Healing/drug effects
12.
Infect Dis Ther ; 13(7): 1515-1530, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796564

ABSTRACT

INTRODUCTION: Bepirovirsen is a novel antisense oligonucleotide in development for chronic hepatitis B virus (HBV) infection therapy. Understanding the impact that clinical characteristics may have on bepirovirsen exposure is important for determining efficacious and well-tolerated dosing regimens. This analysis evaluated demographics and clinical characteristics associated with bepirovirsen exposure using a population pharmacokinetic (PK) analysis. METHODS: Population PK analyses were conducted using pooled data from three phase 1/2 clinical studies (NCT03020745/NCT02981602/NCT04449029) to construct a structural PK model for bepirovirsen that adequately described plasma concentration-time profiles and identify covariates that affect systemic exposure. The final population PK model was used to simulate bepirovirsen exposure measures to inform exposures at different dose levels and within different subpopulations. RESULTS: Bepirovirsen PK data were well-described by a linear, three-compartment model with first-order absorption and absorption delay. Chronic HBV infection status, body weight, and Asian versus non-Asian race were key covariates included in the final model. Visual inspection of correlation scatter plots confirmed general agreement between observed and predicted data from the studies. In simulations, bepirovirsen systemic exposure was dosed proportionally and predicted to be almost completely washed out by 12 weeks following the final 300-mg dose. Differences in body weight, Asian race, or disease status did not result in clinically relevant differences in exposure. CONCLUSIONS: This analysis demonstrated that the linear three-compartmental model accurately described bepirovirsen PK data. The lack of clinically relevant differences seen in exposure indicate that dose adjustments are not recommended for bepirovirsen based on demographics or clinical characteristics.

13.
Acta Neuropathol Commun ; 12(1): 75, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745295

ABSTRACT

In Parkinson's disease and other synucleinopathies, fibrillar forms of α-synuclein (aSyn) are hypothesized to structurally convert and pathologize endogenous aSyn, which then propagates through the neural connections, forming Lewy pathologies and ultimately causing neurodegeneration. Inoculation of mouse-derived aSyn preformed fibrils (PFFs) into the unilateral striatum of wild-type mice causes widespread aSyn pathologies in the brain through the neural network. Here, we used the local injection of antisense oligonucleotides (ASOs) against Snca mRNA to confine the area of endogenous aSyn protein reduction and not to affect the PFFs properties in this model. We then varied the timing and location of ASOs injection to examine their impact on the initiation and propagation of aSyn pathologies in the whole brain and the therapeutic effect using abnormally-phosphorylated aSyn (pSyn) as an indicator. By injecting ASOs before or 0-14 days after the PFFs were inoculated into the same site in the left striatum, the reduction in endogenous aSyn in the striatum leads to the prevention and inhibition of the regional spread of pSyn pathologies to the whole brain including the contralateral right hemisphere. ASO post-injection inhibited extension from neuritic pathologies to somatic ones. Moreover, injection of ASOs into the right striatum prevented the remote regional spread of pSyn pathologies from the left striatum where PFFs were inoculated and no ASO treatment was conducted. This indicated that the reduction in endogenous aSyn protein levels at the propagation destination site can attenuate pSyn pathologies, even if those at the propagation initiation site are not inhibited, which is consistent with the original concept of prion-like propagation that endogenous aSyn is indispensable for this regional spread. Our results demonstrate the importance of recruiting endogenous aSyn in this neural network propagation model and indicate a possible potential for ASO treatment in synucleinopathies.


Subject(s)
Mice, Inbred C57BL , Nerve Net , Oligonucleotides, Antisense , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/administration & dosage , Mice , Nerve Net/metabolism , Nerve Net/drug effects , Nerve Net/pathology , Male , Corpus Striatum/metabolism , Corpus Striatum/pathology , Corpus Striatum/drug effects , Disease Models, Animal , Brain/metabolism , Brain/pathology , Brain/drug effects , RNA, Messenger/metabolism
14.
Expert Rev Neurother ; 24(6): 549-553, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38758193

ABSTRACT

INTRODUCTION: Amyotrophic lateral sclerosis (ALS) is a rapidly progressive motor neuron disorder with a fatal outcome 3-5 years after disease onset due to respiratory complications. Superoxide dismutase 1 (SOD1) mutations are found in about 2% of all patients. Tofersen is a novel oligonucleotide antisense drug specifically developed to treat SOD1-ALS patients. AREAS COVERED: Our review covers and discusses tofersen pharmacological properties and its phase I/II and III clinical trials results. Other available drugs and their limitations are also addressed. EXPERT OPINION: VALOR study failed to meet the primary endpoint (change in the revised Amyotrophic Lateral Sclerosis Functional Rating Scale score from baseline to week 28, tofersen arm vs. placebo), but a significant reduction in plasma neurofilament light chain (NfL) levels was observed in tofersen arm (60% vs. 20%). PrefALS study has proposed plasma NfL has a potential biomarker for presymptomatic treatment, since it increases 6-12 months before phenoconversion. There is probably a delay between plasma NfL reduction and the clinical benefit. ATLAS study will allow more insights regarding tofersen clinical efficacy in disease progression rate, survival, and even disease onset delay in presymptomatic SOD1 carriers.


Subject(s)
Amyotrophic Lateral Sclerosis , Superoxide Dismutase-1 , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Oligonucleotides/therapeutic use , Oligonucleotides, Antisense/therapeutic use , Biomarkers/blood
15.
Front Neurol ; 15: 1394001, 2024.
Article in English | MEDLINE | ID: mdl-38756215

ABSTRACT

Introduction: Biomarkers capable of reflecting disease onset and short- and long-term therapeutic effects in individuals with spinal muscular atrophy (SMA) are still an unmet need and phosphorylated neurofilament heavy chain (pNF-H) holds significant promise. Methods: We conducted a longitudinal prospective study to evaluate pNF-H levels in the cerebrospinal fluid (CSF) and plasma of 29 individuals with childhood-onset SMA treated with Nuinersen (SMA type 1: n = 6, 2: n = 17, 3: n = 6). pNF-H levels before and during treatment were compared with the levels of controls (n = 22), patients with Duchenne muscular dystrophy (n = 17), myotonic dystrophy type 1 (n = 11), untreated SMA individuals with chronic type 3 disease (n = 8), and children with presymptomatic SMA (n = 3). Results: SMA type 1 showed the highest mean CSF pNF-H levels before treatment initiation. All Nusinersen-treated individuals (types 1, 2, and 3) showed significantly elevated mean baseline CSF pNF-H compared to controls, which inversely correlated with age at disease onset, age at first dose, disease duration and the initial CHOP INTEND result (SMA type 1 and 2). During 22 months of treatment, CSF pNF-H levels declined during loading doses, stabilizing at reduced levels from the initial maintenance dose in all individuals. Baseline plasma pNF-H levels in type 1 and 2 SMA were significantly increased compared to other cohorts and decreased notably in type 1 after 2 months of treatment and type 2 after 14 months. Conversely, SMA type 3, characterized by lower baseline pNF-H levels, did not show significant fluctuations in plasma pNF-H levels after 14 months of treatment. Conclusion: Our findings suggest that CSF pNF-H levels in untreated SMA individuals are significantly higher than in controls and that monitoring of CSF pNF-H levels may serve as an indicator of rapid short-term treatment response in childhood-onset SMA individuals, irrespective of the subtype of the disease, while also suggesting its potential for assessing long-term suppression of neurodegeneration. Plasma pNF-H may serve as an appropriate outcome measure for disease progression and/or response to treatment in types 1 and 2 but not in type 3. Presymptomatic infants with SMA may show elevated pNF-H levels, confirming early neuronal degeneration.

16.
Liver Int ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813953

ABSTRACT

Porphyrias are rare, mostly inherited disorders resulting from altered activity of specific enzymes in the haem synthesis pathway that lead to accumulation of pathway intermediates. Photocutaneous symptoms occur when excess amounts of photoreactive porphyrins circulate in the blood to the skin, whereas increases in potentially neurotoxic porphyrin precursors are associated with neurovisceral symptoms. Current therapies are suboptimal and their mechanisms are not well established. As described here, emerging therapies address underlying disease mechanisms by introducing a gene, RNA or other specific molecule with the potential to cure or slow progression of the disease. Recent progress in nanotechnology and nanoscience, particularly regarding particle design and formulation, is expanding disease targets. More secure and efficient drug delivery systems have extended our toolbox for transferring specific molecules, especially into hepatocytes, and led to proof-of-concept studies in animal models. Repurposing existing drugs as molecular chaperones or haem synthesis inhibitors is also promising. This review summarizes key examples of these emerging therapeutic approaches and their application for hepatic and erythropoietic porphyrias.

17.
Nucleic Acid Ther ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716830

ABSTRACT

Aberrant alternative splicing is emerging as a cancer hallmark and a potential therapeutic target. It is the result of dysregulated or mutated splicing factors, or genetic alterations in splicing-regulatory cis-elements. Targeting individual altered splicing events associated with cancer-cell dependencies is a potential therapeutic strategy, but several technical limitations need to be addressed. Patient-derived organoids are a promising platform to recapitulate key aspects of disease states, and to facilitate drug development for precision medicine. Here, we report an efficient antisense-oligonucleotide (ASO) lipofection method to systematically evaluate and screen individual splicing events as therapeutic targets in pancreatic ductal adenocarcinoma organoids. This optimized delivery method allows fast and efficient screening of ASOs, e.g., those that reverse oncogenic alternative splicing. In combination with advances in chemical modifications of oligonucleotides and ASO-delivery strategies, this method has the potential to accelerate the discovery of antitumor ASO drugs that target pathological alternative splicing.

18.
Future Oncol ; : 1-14, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573183

ABSTRACT

Aim: To evaluate a novel antisense oligonucleotide drug targeting human IGF-1R in preclinical and phase I studies of liver cancer. Materials & methods: The tolerability and safety of an investigational new drug were evaluated in a dose-escalation trial involving 17 patients with advanced liver cancer after preclinical assessment of pharmacokinetics and pharmacodynamics. Results: The drug exposure levels in the phase I trial were determined by the in vivo efficacy with pharmacokinetics evaluation in rats and rhesus monkeys. This clinical study showed that the maximum tolerated dose was 3.96 mg/kg, and the dose-limiting toxicity dose was 4.4 mg/kg. Conclusion: The drug was safe and tolerable in patients with advanced liver cancer.Clinical Trial Registration: ChiCTR2100044235 (www.chictr.org.cn).


CT102 is a potential new drug for liver cancer treatment. It belongs to a new form of medicine using gene therapy technology called antisense oligonucleotides. There are some antisense oligonucleotides approved for treating rare diseases. This study evaluated the antitumor effect, metabolism and safety of CT102 in preclinical and clinical trials. The results showed that CT102 could inhibit tumor growth in mice with liver cancer and maintain high levels in the liver. It was found that CT102 was safe and tolerable in patients with advanced liver cancer. This suggests that CT102 has therapeutic potential for liver cancer treatment. The good tolerability and safety of CT102 in patients supports further studies on liver cancer treatment.

19.
Clin Ther ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670885

ABSTRACT

BACKGROUND: Since 2014, several clinical studies focusing on centronuclear myopathies have been conducted, including a prospective natural history study, a gene transfer clinical trial and a clinical trial using an antisense oligonucleotide. Dedicated patient organizations have played an important role in this process. The experience of members of these organizations, either as a study participant, parent or as a patient organization member communicating with the sponsors are potentially very informative for future trial design. METHODS: We investigated the burden of and the lessons learned from the first natural history studies and clinical trials from a patient perspective using a qualitative approach. We arranged 4 focus groups with a total of 37 participants from 3 large international patient organizations: ZNM-ZusammenStark!, the Myotubular Trust, and the MTM-CNM Family Connection. 4 themes, based on a systematic literature search were discussed: Expectations and preparation, Clinical study participation, Communication and Recommendations for future clinical trials. The focus group recordings were transcribed, anonymized, and uploaded to Atlas-ti version 8.1 software. The data were analyzed using a thematic content analysis. RESULTS: Overall, participants were realistic in their expectations, hoping for small improvements of function and quality of life. The realization that trial participation does not equate to a treatment was challenging. Participating in a clinical study had a huge impact on many aspects of daily life, both for patients and their immediate families. First-hand insights into the burden of the design and its possible effect on performance were provided, resulting in numerous compelling recommendations for future clinical studies. Furthermore, participants stressed the importance of clear communication, which was considered to be especially vital in cases of severe adverse events. Finally, while patients were understanding of the importance of adhering to the regulations of good clinical practice, they indicated that they would strongly appreciate a greater understanding and/or acknowledgment of the patient perspective and a reflection of this perspective in future clinical trial design. CONCLUSION: The acknowledgment and inclusion of patients' perspectives and efficient and effective communication is expected to improve patient recruitment and retention in future clinical studies, as well as more accurate assessment of the patient performance related to suitable planning of the study visits.

20.
Biomedicines ; 12(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672266

ABSTRACT

Casimersen (AMONDYS 45TM) is an antisense oligonucleotide of the phosphorodiamidate morpholino oligomer subclass developed by Sarepta therapeutics. It was approved by the Food and Drug Administration (FDA) in February 2021 to treat Duchenne muscular dystrophy (DMD) in patients whose DMD gene mutation is amenable to exon 45 skipping. Administered intravenously, casimersen binds to the pre-mRNA of the DMD gene to skip a mutated region of an exon, thereby producing an internally truncated yet functional dystrophin protein in DMD patients. This is essential in maintaining the structure of a myocyte membrane. While casimersen is currently continuing in phase III of clinical trials in various countries, it was granted approval by the FDA under the accelerated approval program due to its observed increase in dystrophin production. This article discusses the pathophysiology of DMD, summarizes available treatments thus far, and provides a full drug review of casimersen (AMONDYS 45TM).

SELECTION OF CITATIONS
SEARCH DETAIL
...