Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.027
Filter
1.
Pest Manag Sci ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946320

ABSTRACT

BACKGROUND: The Red Imported Fire Ant (RIFA), scientifically known as Solenopsis invicta, is a destructive invasive species causing considerable harm to ecosystems and generating substantial economic costs globally. Traditional methods for RIFA nests detection are labor-intensive and may not be scalable to larger field areas. This study aimed to develop an innovative surveillance system that leverages artificial intelligence (AI) and robotic dogs to automate the detection and geolocation of RIFA nests, thereby improving monitoring and control strategies. RESULTS: The designed surveillance system, through integrating the CyberDog robotic platform with a YOLOX AI model, demonstrated RIFA nest detection precision rates of >90%. The YOLOX model was trained on a dataset containing 1118 images and achieved a final precision rate of 0.95, with an inference time of 20.16 ms per image, indicating real-time operational suitability. Field tests revealed that the CyberDog system identified three times more nests than trained human inspectors, with significantly lower rates of missed detections and false positives. CONCLUSION: The findings underscore the potential of AI-driven robotic systems in advancing pest management. The CyberDog/YOLOX system not only matched human inspectors in speed, but also exceeded them in accuracy and efficiency. This study's results are significant as they highlight how technology can be harnessed to address biological invasions, offering a more effective, ecologically friendly, and scalable solution for RIFA detection. The successful implementation of this system could pave the way for broader applications in environmental monitoring and pest control, ultimately contributing to the preservation of biodiversity and economic stability. © 2024 Society of Chemical Industry.

2.
Mol Ecol ; 33(15): e17454, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39005142

ABSTRACT

The evolution of animals and their gut symbionts is a complex phenomenon, obscured by lability and diversity. In social organisms, transmission of symbionts among relatives may yield systems with more stable associations. Here, we study the history of a social insect symbiosis involving cephalotine ants and their extracellular gut bacteria, which come predominantly from host-specialized lineages. We perform multi-locus phylogenetics for symbionts from nine bacterial orders, and map prior amplicon sequence data to lineage-assigned symbiont genomes, studying distributions of rigorously defined symbionts across 20 host species. Based on monophyly and additional hypothesis testing, we estimate that these specialized gut bacteria belong to 18 distinct lineages, of which 15 have been successfully isolated and cultured. Several symbiont lineages showed evidence for domestication events that occurred later in cephalotine evolutionary history, and only one lineage was ubiquitously detected in all 20 host species and 48 colonies sampled with amplicon 16S rRNA sequencing. We found evidence for phylogenetically constrained distributions in four symbionts, suggesting historical or genetic impacts on community composition. Two lineages showed evidence for frequent intra-lineage co-infections, highlighting the potential for niche divergence after initial domestication. Nearly all symbionts showed evidence for occasional host switching, but four may, more often, co-diversify with their hosts. Through our further assessment of symbiont localization and genomic functional profiles, we demonstrate distinct niches for symbionts with shared evolutionary histories, prompting further questions on the forces underlying the evolution of hosts and their gut microbiomes.


Subject(s)
Ants , Domestication , Phylogeny , RNA, Ribosomal, 16S , Symbiosis , Animals , Symbiosis/genetics , Ants/microbiology , Ants/genetics , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Bacteria/genetics , Bacteria/classification , Biological Evolution
3.
Chromosome Res ; 32(3): 10, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034331

ABSTRACT

The number of chromosomes varies tremendously across species. It is not clear whether having more or fewer chromosomes could be advantageous. The probability of non-disjunction should theoretically decrease with smaller karyotypes, but too long chromosomes should enforce spatial constraint for their segregation during the mitotic anaphase. Here, we propose a new experimental cell system to acquire novel insights into the mechanisms underlying chromosome segregation. We collected the endemic Australian ant Myrmecia croslandi, the only known species with the simplest possible karyotype of a single chromosome in the haploid males (and one pair of chromosomes in the diploid females), since males are typically haploid in hymenopteran insects. Five colonies, each with a queen and a few hundreds of workers, were collected in the Canberra district (Australia), underwent karyotype analysis to confirm the presence of a single pair of chromosomes in worker pupae, and were subsequently maintained in the laboratory in Paris (France). Starting from dissociated male embryos, we successfully conducted primary cell cultures comprised of single-chromosome cells. This could be developed into a unique model that will be of great interest for future genomic and cell biology studies related to mitosis.


Subject(s)
Ants , Chromosomes, Insect , Animals , Ants/genetics , Male , Female , Primary Cell Culture , Karyotyping , Karyotype , Haploidy , Chromosome Segregation
4.
Biodivers Data J ; 12: e123575, 2024.
Article in English | MEDLINE | ID: mdl-38841133

ABSTRACT

Background: Social parasitic ants exploit the colonies of other ant species, either permanently or temporarily. The permanent parasites are amongst the rarest species of ants, although their hosts may be very common. Due to their rarity and often restricted distribution range, most of them are listed as vulnerable. Filling in the gaps in geographical and host ranges will advance our understanding of the social parasitic lifestyle's origin and evolution. New information: This study reports the first records of the slave-makers Myrmoxenusalgerianus (Cagniant, 1968) for Europe (Italy, Sicily) and M.ravouxi (André 1896) for Albania and the inquiline Anergatesatratulus (Schenck, 1852) for Malta (Gozo). We also report new localities of Camponotusuniversitatis Forel, 1890 for Albania and Myrmoxenusgordiagini Ruzsky, 1902, M.kraussei (Emery, 1915) and Anergatesatratulus for Bulgaria. Diversity, type of parasite-host relationships, host range, distribution and conservation of social parasitic ant species in Bulgaria are discussed. Although social parasitic ants are still understudied in Bulgaria, they represent 21% of the regional ant fauna.

5.
PeerJ ; 12: e17375, 2024.
Article in English | MEDLINE | ID: mdl-38915387

ABSTRACT

Elevational gradients constitute excellent systems for understanding the mechanisms that generate and maintain global biodiversity patterns. Climatic gradients associated with elevation show strong influence on species distribution in mountains. The study of mountains covered by the same habitat type is an ideal scenario to compare alternatives to the energy hypotheses. Our aim was to investigate how changes in climatic conditions along the elevational gradient drive α- and ß-diversity of four taxa in a mountain system located within a grassland biome. We sampled ants, spiders, birds and plants, and measured climatic variables at six elevational bands (with 10 sampling sites each) established between 470 and 1,000 masl on a mountain from the Ventania Mountain System, Argentina. Species richness per site and ß-diversity (turnover and nestedness) between the lowest band and upper sites were estimated. For most taxa, species richness declined at high elevations and energy, through temperature, was the major driver of species richness for ants, plants and birds, prevailing over productivity and water availability. The major ß-diversity component was turnover for plants, spiders and birds, and nestedness for ants. The unique environmental conditions of the upper bands could favour the occurrence of specialist and endemic species.


Subject(s)
Altitude , Ants , Biodiversity , Birds , Grassland , Spiders , Animals , Ants/physiology , Ants/classification , Birds/physiology , Argentina , Spiders/physiology , Spiders/classification , Plants/classification , Climate , Ecosystem
6.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38913609

ABSTRACT

With their unique colony structure, competition between ants (Hymenoptera: Formicidae) can be particularly intense, with colonies potentially willing to sacrifice large number of individuals to obtain resources or territory under the right circumstances. In this review, we cover circumstances in which ant competition escalates into combat, battle strategies and tactics, and analysis methods for these battles. The trends for when colonies choose to fight can vary greatly dependent on the species and situation, which we review in detail. Because of their large group sizes, ant conflicts can follow different patterns than many other species, with a variety of specialist adaptations and battle strategies, such as specialized worker classes and the need to rapidly recruit large number of compatriots. These same large group sizes also can make ant fighting amenable to mathematical analysis, particularly in the context of Lanchester's laws that consider how total numbers influence the outcome of a confrontation. Yet, dynamic behavior can often disrupt idealized mathematical predictions in real-world scenarios, even though these can still shed light on the explanations for such behavior. We also systematically cover the literature on battles between groups of ants, presenting several other interesting studies on species with unique colony organization, such as army ants and leafcutter ants.


Subject(s)
Ants , Ants/physiology , Animals , Competitive Behavior , Social Behavior , Behavior, Animal
7.
Environ Sci Technol ; 58(27): 11923-11934, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38918172

ABSTRACT

Chlorinated anthracenes (Cl-Ants), persistent organic pollutants, are widely detected in the environment, posing potential lung toxicity risks due to frequent respiratory exposure. However, direct evidence and a comprehensive understanding of their toxicity mechanisms are lacking. Building on our prior findings of Cl-Ants' immunotoxic risks, this study developed a three-dimensional coculture spheroid model mimicking the lung's immune microenvironment. The objective is to explore the pulmonary immunotoxicity and comprehend its mechanisms, taking into account the heightened immune reactivity and frequent lung exposure of Cl-Ants. The results demonstrated that Cl-Ants exposure led to reduced spheroid size, increased macrophage migration outward, lowered cell viability, elevated 8-OHdG levels, disturbed anti-infection balance, and altered cytokine production. Specifically, the chlorine substituent number correlates with the extent of disruption of spheroid indicators caused by Cl-Ants, with stronger immunotoxic effects observed in dichlorinated Ant compared to those in monochlorinated Ant. Furthermore, we identified critical regulatory genes associated with cell viability (ALDOC and ALDOA), bacterial response (TLR5 and MAP2K6), and GM-CSF production (CEBPB). Overall, this study offers initial in vitro evidence of low-dose Cl-PAHs' pulmonary immunotoxicity, advancing the understanding of Cl-Ants' structure-related toxicity and improving external toxicity assessment methods for environmental pollutants, which holds significance for future monitoring and evaluation.


Subject(s)
Lung , Lung/drug effects , Anthracenes/toxicity , Humans , Coculture Techniques , Cell Survival/drug effects
8.
Zookeys ; 1202: 169-211, 2024.
Article in English | MEDLINE | ID: mdl-38800559

ABSTRACT

Leptogenys is the most diverse genus of the ant subfamily Ponerinae and is widely distributed across the world's tropical and subtropical regions. More than 40 species are known from the Oriental realm displaying a wide range of ecologies, although their life history traits remain poorly understood, and new species are frequently discovered. Here, a faunal review of the genus from Hong Kong SAR, southern China is provided. A total of nine species are recorded, with one new species, Leptogenysgrohli Hamer, Lee & Guénard, sp. nov. described. Ecological and biogeographic information, including new information on reproductive modes for two species are provided with the ergatoids of L.binghamii Forel, 1900 and L.rufidaZhou et al., 2012 described. Additional records for five of these species within the neighbouring province of Guangdong are also provided. Finally, an illustrated key to species known from Hong Kong is presented, as well as notes on each species' distribution, ecology, and behaviour. An updated provincial distributional checklist of the Leptogenys species of Mainland China and Taiwan is also supplied.

9.
Rep Prog Phys ; 87(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38804124

ABSTRACT

This article discusses recent work with fire ants,Solenopisis invicta, to illustrate the use of the framework of active matter as a base to rationalize their complex collective behavior. We review much of the work that physicists have done on the group dynamics of these ants, and compare their behavior to two minimal models of active matter, and to the behavior of the synthetic systems that have served to test and drive these models.

10.
Ecol Evol ; 14(5): e11423, 2024 May.
Article in English | MEDLINE | ID: mdl-38751826

ABSTRACT

Many microorganisms inhabit the aboveground parts of plants (i.e. the phyllosphere), which mainly comprise leaves. Understanding the structure of phyllosphere microbial communities and their drivers is important because they influence host plant fitness and ecosystem functions. Despite the high prevalence of ant-plant associations, few studies have used quantitative community data to investigate the effects of ants on phyllosphere microbial communities. In the present study, we investigated the effects of ants on the phyllosphere fungal communities of Mallotus japonicus using high-throughput sequencing. Mallotus japonicus is a myrmecophilous plants that bears extrafloral nectaries, attracting several ant species, but does not provide specific ant species with nest sites like myrmecophytes do. We experimentally excluded ants with sticky resins from the target plants and collected leaf discs to extract fungal DNA. The ribosomal DNA internal transcribed spacer 1 (ITS1) regions of the phyllosphere fungi were amplified and sequenced to obtain fungal community data. Our results showed that the exclusion of ants changed the phyllosphere fungal community composition; however, the effect of ants on OTU richness was not clear. These results indicate that ants can change the community of phyllosphere fungi, even if the plant is not a myrmecophyte.

11.
Biodivers Data J ; 12: e123502, 2024.
Article in English | MEDLINE | ID: mdl-38812889

ABSTRACT

The number of known alien ant species throughout Europe has been steadily increasing during the last few decades and Italy has been no exception, with four new taxa reported in the last five years. Here, we document new data on the Asian needle ant Brachyponerachinensis (Emery, 1895), an invasive alien species whose first establishment in Europe was detected in the southern Italian city of Naples in 2022 and which has now been found near Lake Como in northern Italy, representing the second European record, about 730 km distant from the first. Furthermore, we report for the first time the presence of Nylanderiavividula (Nylander, 1846) in the country, based on specimens collected both in Rome and near Lake Como. This is at least the second Nylanderia species established in the country after N.jaegerskioeldi, first reported in 2018. Unlike B.chinensis, N.vividula is not considered an ecological and health threat in the invaded range and is already known to occur in several other European countries. While only a few introduced ants in Europe are considered serious ecological, economic or health threats, the increasing circulation of several alien species and the poor ability to swiftly track their movements and detect their establishment can render management very difficult.

12.
Ecol Evol ; 14(4): e11236, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38633523

ABSTRACT

Ants are crucial ecosystem engineers, and their ecological success is facilitated by a division of labour among sterile "workers". In some ant lineages, workers have undergone further morphological differentiation, resulting in differences in body size, shape, or both. Distinguishing between changes in size and shape is not trivial. Traditional approaches based on allometry reduce complex 3D shapes into simple linear, areal, or volume metrics; modern approaches using geometric morphometrics typically rely on landmarks, introducing observer bias and a trade-off between effort and accuracy. Here, we use a landmark-free method based on large deformation diffeomorphic metric mapping (LDDMM) to assess the co-variation of size and 3D shape in the mandibles and head capsules of Atta vollenweideri leaf-cutter ants, a species exhibiting extreme worker size-variation. Body mass varied by more than two orders of magnitude, but a shape atlas created via LDDMM on µ-CT-derived 3D mesh files revealed only two distinct head capsule and mandibles shapes-one for the minims (body mass < 1 mg) and one for all other workers. We discuss the functional significance of the identified 3D shape variation, and its implications for the evolution of extreme polymorphism in Atta.

13.
Insect Sci ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605428

ABSTRACT

Leaf cutting ants of the genus Atta cultivate fungal gardens, carefully modifying environmental conditions to maintain optimal temperature for fungal growth. Antennal nerves from Atta are highly temperature sensitive, but the underlying molecular sensor is unknown. Here, we utilize Atta texana (Texas leaf cutter ant) to investigate the molecular basis of ant temperature sensation and how it might have evolved as the range expanded northeast across Texas from ancestral populations in Mexico. We focus on transient receptor potential (TRP) channel genes, the best characterized temperature sensor proteins in animals. Atta texana antennae express 6 of 13 Hymenopteran TRP channel genes and sequences are under a mix of relaxed and intensified selection. In a behavioral assay, we find A. texana workers prefer 24 °C (range 21-26 °C) for fungal growth. There was no evidence of regulatory evolution across a temperature transect in Texas, but instead Hymenoptera-specific TRPA (HsTRPA) expression highly correlated with ambient temperature. When expressed in vitro, HsTRPA from A. texana is temperature activated with Q10 values exceeding 100 on initial exposure to temperatures above 33 °C. Surprisingly, HsTRPA also appears to be activated by cooling, and therefore to our knowledge, the first non-TRPA1 ortholog to be described with dual heat/cold activation and the first in any invertebrate.

14.
Behav Processes ; 217: 105027, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38615896

ABSTRACT

The primary goal of the binary model in this study was to understand the convergence pattern of the Pheidole latinoda ants. Forager and scout ants on the hunt for food use path integration. When they find a food source, they leave a trail pheromone to alert other nest mates. Every ant starts following that trail and reinforces it on their way back home. To investigate the ant convergence pattern, binary and ternary bridges of varying lengths are used. Each bridge is built in such a way that one end is connected to a food source whilst the other end is connected to the nest. The food source is surrounded by water-filled islands. The Pheidole latinoda ant's convergence pattern has been observed following the successful installation of a bridge near the ants' nest. This species took between 1 and 3 and 3-4 min to find the shortest possible path. Numerous studies looking for optimal solutions, such as those addressing the challenges of travelling salesmen, routing in communication networks, etc., may use this convergence or path optimization as their new starting point.


Subject(s)
Ants , Feeding Behavior , Animals , Ants/physiology , Heuristics , Pheromones
15.
Hear Res ; 446: 108997, 2024 May.
Article in English | MEDLINE | ID: mdl-38564963

ABSTRACT

The use of cochlear implants (CIs) is on the rise for patients with vestibular schwannoma (VS). Besides CI following tumor resection, new scenarios such as implantation in observed and/or irradiated tumors are becoming increasingly common. A significant emerging trend is the need of intraoperative evaluation of the functionality of the cochlear nerve in order to decide if a CI would be placed. The purpose of this paper is to explore the experience of a tertiary center with the application of the Auditory Nerve Test System (ANTS) in various scenarios regarding VS patients. The results are compared to that of the studies that have previously used the ANTS in this condition. Patients with unilateral or bilateral VS (NF2) who were evaluated with the ANTS prior to considering CI in a tertiary center between 2021 and 2023 were analyzed. The presence of a robust wave V was chosen to define a positive electrical auditory brainstem response (EABR). Two patients underwent promontory stimulation (PromStim) EABR previous to ANTS evaluation. Seven patients, 2 NF-2 and 5 with sporadic VS were included. The initial scenario was simultaneous translabyrinthine (TL) tumor resection and CI in 3 cases while a CI placement without tumor resection was planned in 4 cases. The ANTS was positive in 4 cases, negative in 2 cases, and uncertain in one case. Two patients underwent simultaneous TL and CI, 1 patient simultaneous TL and auditory brainstem implant, 3 patients posterior tympanotomy with CI, and 1 patient had no implant placement. In the 5 patients undergoing CI, sound detection was present. There was a good correlation between the PromStim and ANTS EABR. The literature research yielded 35 patients with complete information about EABR response. There was one false negative and one false positive case; that is, the 28 implanted cases with a present wave V following tumor resection had some degree of auditory perception in all but one case. The ANTS is a useful intraoperative tool to asses CI candidacy in VS patients undergoing observation, irradiation or surgery. A positive strongly predicts at least sound detection with the CI.


Subject(s)
Cochlear Implantation , Cochlear Implants , Cochlear Nerve , Evoked Potentials, Auditory, Brain Stem , Hearing , Neuroma, Acoustic , Humans , Neuroma, Acoustic/surgery , Neuroma, Acoustic/physiopathology , Middle Aged , Cochlear Implantation/instrumentation , Cochlear Nerve/physiopathology , Female , Male , Adult , Aged , Predictive Value of Tests , Treatment Outcome , Intraoperative Neurophysiological Monitoring/methods , Retrospective Studies , Clinical Decision-Making , Acoustic Stimulation , Patient Selection
16.
J Biol Rhythms ; 39(3): 295-307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459718

ABSTRACT

The study of chronobiology of foraging behavior in social insects offers valuable models for the investigation of circadian rhythms. We scored hourly nest entries and exits of Oecophylla smaragdina (Asian weaver ant) workers in 9 active non-polydomous nests on days with and without rain and with and without a primarily diurnal predator present. After determining that Oecophylla display a high nest fidelity, we focused exclusively on analyzing nest entry counts: we found a significant decrease in overall entry counts of individual ants on rainy days compared with non-rainy days (p < 0.0001). They usually maintain a typical diurnal pattern of foraging activity; however, that regularity was often distorted during rainy periods but appeared to quickly revert to typical patterns following rain. This lack of compensatory foraging activity following a period of rain supports the hypothesis that these ants have enough food reserves to withstand a pure masking-induced suppression of foraging activity. Predation through bird anting, too, decreased foraging activity but appeared to cause a reversal in foraging activity timing from diurnal to nocturnal foraging. Daily periodicity of foraging was significantly disrupted in most nests during rain; however, daily foraging periodicity was disrupted in only one nest due to presence of predators. Thus, rain and predation both exert significant impacts on the overall foraging activity of Asian weaver ants, but while persistent pressure from rain seemed to primarily cause masking (diminution) of circadian foraging activity, predation restricted to the daytime resulted in phase-inversion to nocturnal foraging activity, with little diminution. This is consistent with different energetic strategies being used in response to different pressures by this species.


Subject(s)
Ants , Circadian Rhythm , Predatory Behavior , Rain , Animals , Ants/physiology , Circadian Rhythm/physiology , Feeding Behavior/physiology , Energy Metabolism , Nesting Behavior
17.
Heliyon ; 10(4): e26105, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38434038

ABSTRACT

Oecophylla smaragdina F., the Asian weaver ant, is one of the oil palm plantation's (Elaeis guineensis) potential predators, for the invasive bagworm species Metisa plana Walker, but this ant is a nuisance species that irritates plantation workers with their sharp bites. Here we assess the foraging activities (FA) of O. smaragdina's major workers, identify its inactive times and the existence of supervision, a novelty for social insects. Between 2018 and 2022, the pattern of trunk foraging activity was used as a mitigation measure. The relationship between trunk FA and air temperature (AT), relative humidity (RH), air pressure (AP), and rainfall interception (RI) was also investigated. Our results showed that, O. smaragdina is a strictly diurnal ant species, has little to no crepuscular activity, and stopped foraging during darkness. Moreover, veteran bigger workers systematically acted as supervisors by monitoring trails, intercepting, and bringing back to nests smaller individuals during heat peaks. In relation to population size relative abundance, all colonies displayed greater intensity during the warmest daily periods with higher mean forager density among the bigger colony, regardless of the dry-rainy intervals corresponded to minimal activity from late scotophase to early photophase and showed a bimodal pattern. Thus, forager activity peaked between 1100-1530 h and 1745-1845 h, and an average two-fold daily sudden decrease in intensity between 1620 and 1650 h as a partial cut-off period (first report). Furthermore, foraging activity, AT, AP showed a significant positive correlation while RH was negative. Finally, we found that from the base palm trunks, defensive territorial layers extended to 5 m on average with different spatial configurations indicating greater foraging density within the first 2 m. Our study shows O. smaragdina daily low activity periods, before 1000 h, being the most suitable to avoid forager attacks to facilitate pruning and harvesting tasks.

18.
Proc Biol Sci ; 291(2018): 20232478, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38471556

ABSTRACT

Defensive chemicals of prey can be sequestered by some coevolved predators, which take advantage of prey toxins for their own defence. The increase in the number of invasive species in the Anthropocene has resulted in new interactions among non-coevolved predator and prey species. While novelty in chemical defence may provide a benefit for invasive prey against non-coevolved predators, resident predators with the right evolutionary pre-adaptations might benefit from sequestering these novel defences. Here, we chose a well-known system of invasive species to test whether non-coevolved predators can sequester and use toxins from exotic prey. Together with the invasive prickly pear plants, cochineal bugs (Dactylopius spp.) are spreading worldwide from their native range in the Americas. These insects produce carminic acid, a defensive anthraquinone that some specialized predators sequester for their own defence. Using this system, we first determined whether coccinellids that prey on cochineal bugs in the Mediterranean region tolerated, sequestered, and released carminic acid in reflex bleeding. Then, we quantified the deterrent effect of carminic acid against antagonistic ants. Our results demonstrate that the Australian coccinellid Cryptolaemus montrouzieri sequestered carminic acid, a substance absent in its coevolved prey, from exotic cochineal bugs. When attacked, the predator released this substance through reflex bleeding at concentrations that were deterrent against antagonistic ants. These findings reveal that non-coevolved predators can sequester and use novel toxins from exotic prey and highlights the surprising outcomes of novel interactions that arise from species invasions.


Subject(s)
Ants , Coleoptera , Animals , Carmine , Predatory Behavior , Australia , Insecta , Introduced Species
19.
Sci Rep ; 14(1): 5727, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459134

ABSTRACT

Few studies have investigated the relative contribution of specific nutrients to momentary and season-long foraging responses by ants. Using western carpenter ants, Camponotus modoc, and European fire ants, Myrmica rubra, as model species, we: (1) tested preferential consumption of various macro- and micro-nutrients; (2) compared consumption of preferred macro-nutrients; (3) investigated seasonal shifts (late May to mid-September) in nutrient preferences; and (4) tested whether nutrient preferences of C. modoc and M. rubra pertain to black garden ants, Lasius niger, and thatching ants, Formica aserva. In laboratory and field experiments, we measured nutrient consumption by weighing Eppendorf tubes containing aqueous nutrient solutions before and after feeding by ants. Laboratory colonies of C. modoc favored nitrogenous urea and essential amino acids (EAAs), whereas M. rubra colonies favored sucrose. Field colonies of C. modoc and M. rubra preferentially consumed EAAs and sucrose, respectively, with no sustained shift in preferred macro-nutrient over the course of the foraging season. The presence of a less preferred macro-nutrient in a nutrient blend did not diminish the blend's 'appeal' to foraging ants. Sucrose and EAAs singly and in combination were equally consumed by L. niger, whereas F. aserva preferred EAAs. Baits containing both sucrose and EAAs were consistently consumed by the ants studied in this project and should be considered for pest ant control.


Subject(s)
Ants , Animals , Seasons , Ants/physiology , Nutrients , Sucrose , Feeding Behavior
20.
AIMS Microbiol ; 10(1): 68-82, 2024.
Article in English | MEDLINE | ID: mdl-38525037

ABSTRACT

Antibiotic resistance is one of the most important global healthcare challenges and is responsible for the mortality of millions of people worldwide every year. It is a crisis attributed to misuse of antibiotics and a lack of new drug development. Actinomycetes constitute a group of Gram-positive bacteria known for their distinctive high guanine-cytosine (G+C) content in their genomic DNA. These microorganisms are widely recognized for their capability to generate a wide range of secondary metabolites with diverse biological activities. These versatile microorganisms are ubiquitous in diverse ecosystems, including soil, freshwater, marine sediments, and within the bodies of insects. A recent study has demonstrated that social insects, such as ants, host a diverse array of these bacteria. In this study, we involved the isolation and characterization of a total of 72 actinomycete strains obtained from 18 distinct ant species collected from various regions across Thailand. Utilizing 16S rRNA gene analysis, these isolated actinomycetes were classified into four distinct genera: Amycolatopsis (2 isolates), Micromonospora (1 isolate), Nocardia (8 isolates), and Streptomyces (61 isolates). Among the Streptomyces strains, 23 isolates exhibited antimicrobial activity against a panel of Gram-positive bacteria, including Bacillus subtilis ATCC 6633, Staphylococcus epidermidis ATCC 12228, Staphylococcus aureus ATCC 25923, Kocuria rhizophila ATCC 9341, and Methicillin-resistant Staphylococcus aureus (MRSA) DMST 20646. Additionally, two isolates displayed antifungal activity against Candida albicans TISTR 5554. Based on 16S rRNA gene sequence similarity studies, these two isolates, ODS25 and ODS28, were demonstrated to be closely related to Streptomyces lusitanus NBRC 13464T (98.07%) and Streptomyces haliclonae DSM 41970T (97.28%), respectively. The level of 16S rRNA gene sequence similarity below 98.65% cutoff indicates its potential as a novel actinomycete species. These findings underscore the potential of actinomycetes sourced from ants as a valuable reservoir of novel antimicrobials.

SELECTION OF CITATIONS
SEARCH DETAIL
...