Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17354, 2024.
Article in English | MEDLINE | ID: mdl-39011374

ABSTRACT

Honeybees display a great range of biological, behavioral, and economic traits, depending on their genetic origin and environmental factors. The high diversity of honeybees is the result of natural selection of specific phenotypes adapted to the local environment. Of particular interest is adaptation of local and non-local bee colonies to environmental conditions. To study the importance of genotype-environment interactions on the viability and productivity of local and non-local bee colonies, we analyzed the long-term dynamics of the main traits in dark forest bees (Apis mellifera mellifera) and hybrid colonies. From 2010 to 2022, a total of 64 colonies living in an apiary in Siberia, Russia, were monitored and tested to assess their biological, behavioral, and economic traits in a temperate continental climate. We detected significant correlations between the studied biological and behavioral indicators of the bee colony such as colony strength, overwintering ability, infection of colonies with diseases, hygienic behavior, and others. No relationships between the biological and economic (honey productivity) traits of bee colonies are shown. The overall result of our study is that local dark forest bee, A.m.mellifera, showed higher values for all analyzed traits than hybrid colonies. Compared to hybrids, dark forest bee colonies showed more gentleness, productivity, and survivorship. The results from our study indicate a specific local adaptation of the A.m.mellifera subspecies in a temperate continental climate. Siberia represents a unique region for the conservation of the dark forest bee. The creation of conservation areas is one way to protect local bee populations, well adapted to local environmental conditions, from uncontrolled importation of bee breeds from different regions.


Subject(s)
Behavior, Animal , Animals , Bees/genetics , Bees/physiology , Siberia , Behavior, Animal/physiology , Phenotype
2.
Fish Shellfish Immunol ; 151: 109713, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914180

ABSTRACT

As an environmentally friendly alternative to antibiotics, bee venom holds promise for aquaculture due to its diverse health advantages, including immune-amplifying and anti-inflammatory features. This study investigated the effects of dietary bee venom (BV) on the growth and physiological performance of Thinlip mullet (Liza ramada) with an initial body weight of 40.04 ± 0.11 g for 60 days. Fish were distributed to five dietary treatments (0, 2, 4, 6, and 8 mg BV/kg diet) with three replicates. Growth traits, gut enzyme ability (lipase, protease, amylase), intestinal and liver histology, blood biochemistry, immune responses [lysozyme activity (LYZ), bactericidal activity (BA), nitroblue tetrazolium (NBT%)], and antioxidant status [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA)] were evaluated. BV supplementation significantly improved growth performance, digestive enzyme activity, histological integrity of organs, immune responses (LYZ, BA), and antioxidant status (SOD, CAT, GPx), while declining MDA levels. Optimal BV levels were identified between 4.2 and 5.8 mg/kg diet for different parameters. Overall, the findings suggest that BV supplementation can enhance growth and physiological performance in Thinlip mullet, highlighting its potential as a beneficial dietary supplement for fish health and aquaculture management.


Subject(s)
Animal Feed , Aquaculture , Bee Venoms , Diet , Dietary Supplements , Smegmamorpha , Animals , Bee Venoms/pharmacology , Bee Venoms/administration & dosage , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Smegmamorpha/immunology , Immunity, Innate/drug effects , Dose-Response Relationship, Drug , Random Allocation
3.
Ecotoxicol Environ Saf ; 269: 115754, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38043416

ABSTRACT

The social division of labor within the honeybee colony is closely related to the age of the bees, and the age structure is essential to the development and survival of the colony. Differences in tolerance to pesticides and other external stresses among worker bees of different ages may be related to their social division of labor and corresponding physiological states. Pyraclostrobin was widely used to control the fungal diseases of nectar and pollen plants, though it was not friend to honey bees and other pollinators. This work aimed to determine the effects of field recommended concentrations of pyraclostrobin on the activities of protective and detoxifying enzymes, on the expression of genes involved in nutrient metabolism, and immune response in worker bees of different ages determined to investigate the physiological and biochemical differences in sensitivity to pyraclostrobin among different age of worker bees. The result demonstrates that the tolerance of adult worker bees to pyraclostrobin was negatively correlated with their age, and the significantly reduced survival rate of forager bees (21 day-old) with continued fungicide exposure. The activities of protective enzymes (CAT and SOD) and detoxifying enzymes (CarE, GSTs and CYP450) in different ages of adult worker bees were significantly altered, indicating the physiological response and the regulatory capacity of worker bees of different ages to fungicide stress was variation. Compared with 1 and 8 day-old worker bees, the expression of nutrient-related genes (ilp1 and ilp2) and immunity-related genes (apidaecin and defensin1) in forager bees (21 day-old) was gradually downregulated with increasing pyraclostrobin concentrations. Moreover, the expression of vitellogenin and hymenoptaecin in forager bees (21 day-old) was also decreased in high concentration treatment groups (250 and 313 mg/L). The present study confirmed the findings of the chronic toxicity of pyraclostrobin on the physiology and biochemistry of worker bees of different ages, especially to forager bees (21 day-old). These results would provide important physiological and biochemical insight for better understanding the potential risks of pyraclostrobin on honeybees and other non-target pollinators.


Subject(s)
Fungicides, Industrial , Pesticides , Bees/genetics , Animals , Fungicides, Industrial/toxicity , Strobilurins , Plant Nectar
4.
Ecotoxicol Environ Saf ; 264: 115499, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37729803

ABSTRACT

This study aimed to investigate the sublethal effects of thiacloprid on microRNA (miRNA) expression in honeybees (Apis mellifera L.) and the role of a specific miRNA, ame-miR-283-5p, in thiacloprid resistance. The high-throughput small RNA-sequencing was used to analyze global miRNA expression profile changes in honeybees orally exposed to sublethal concentrations of thiacloprid (20 mg/L and 4 mg/L) for 72 h. Thiacloprid at 20 mg/L had no observed adverse effects. In addition, bees were fed with miRNA mimics or inhibitors to increase or decrease ame-miR-283-5p expression, and its effects on P450 gene expression (CYP9Q2 and CYP9Q3) were examined. Thiacloprid susceptibility was also detected. The results showed that treatment with thiacloprid at 20 mg/L and 4 mg/L induced 11 and five differentially expressed miRNAs (DEMs), respectively. Bioinformatic analysis suggested that the DEMs are mainly involved in the regulation of growth and development, metabolism, nerve conduction, and behavior. ame-miR-283-5p was downregulated by both concentrations, which was validated using quantitative real-time reverse transcription PCR analysis. Enhancing ame-miR-283-5p expression significantly inhibited CYP9Q2 mRNA and protein expression, and increased thiacloprid toxicity, while reducing ame-miR-283-5p expression significantly promoted CYP9Q2 expression, and decreased thiacloprid susceptibility. Our study revealed a novel role of miRNAs in insecticide resistance in honeybees.


Subject(s)
Insecticides , MicroRNAs , Thiazines , Bees/genetics , Animals , Insecticides/toxicity , Neonicotinoids/toxicity , Thiazines/toxicity , MicroRNAs/genetics
5.
Insects ; 14(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37754710

ABSTRACT

Royal jelly (RJ) is a highly nutritious secretion of the honeybees' hypopharyngeal glands (HPGs). During RJ production, colonies are occasionally subjected to manual interventions, such as sucrose feeding for energy supplementation. This study aimed to assess the impact of sucrose feeding on the composition of RJ. The results indicated that RJ obtained from sucrose-fed colonies exhibited significantly higher levels of fructose, alanine, glycine, tyrosine, valine, and isoleucine compared to the honey-fed group. However, no significant differences were observed in terms of moisture content, crude protein, 10-HDA, glucose, sucrose, minerals, or other amino acids within the RJ samples. Moreover, sucrose feeding did not have a significant effect on midgut sucrase activity, HPGs development, or the expression levels of MRJP1 and MRJP3 in nurse bees. Unsealed stored food samples from sucrose-fed bee colonies demonstrated significantly higher sucrose levels compared to sealed combs and natural honey. Additionally, natural honey exhibited higher moisture and Ca levels, as well as lower levels of Zn and Cu, in comparison to honey collected from bee colonies fed sucrose solutions. Based on these findings, we conclude that sucrose feeding has only a minor impact on the major components of RJ.

6.
Insects ; 14(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37367362

ABSTRACT

Honey bees (Apis mellifera L.) express complex behavioral patterns (aggressiveness) in defensive mechanisms for their survival. Their phenotypic expression of defensive behavior is influenced by internal and external stimuli. Knowledge of this behavior has recently become increasingly important, though beekeepers are still faced with the challenges of selecting defensive and less-defensive bred lines. Field evaluation of defensive behavior among bred lines of honey bees is required to overcome the challenges. Chemical cues (alarm pheromone and isopentyl acetate mixed with paraffin oil) and physical and visual stimuli (dark leather suede, colony marbling, and suede jiggling) were used to evaluate defensiveness and orientation among five bred lines of honeybee colonies. Our results showed that both chemical assays recruited bees, but the time of recruitment was significantly faster for alarm pheromone. Honeybees' response to both assays culminated in stings that differed among bred lines for alarm pheromone and paraffin when colonies were marbled. Honeybee orientation defensiveness varied among bred lines and was higher in more defensive bred lines compared to less-defensive bred lines. Our findings suggest that it is crucial to repeatedly evaluate orientation defensiveness at the colony level and among bred lines when selecting breeding colonies.

7.
Front Microbiol ; 14: 1161926, 2023.
Article in English | MEDLINE | ID: mdl-37152741

ABSTRACT

New Zealand is a remote country in the South Pacific Ocean. The isolation and relatively late arrival of humans into New Zealand has meant there is a recorded history of the introduction of domestic species. Honey bees (Apis mellifera) were introduced to New Zealand in 1839, and the disease American foulbrood was subsequently found in the 1870s. Paenibacillus larvae, the causative agent of American foulbrood, has been genome sequenced in other countries. We sequenced the genomes of P. larvae obtained from 164 New Zealand apiaries where American foulbrood was identified in symptomatic hives during visual inspection. Multi-locus sequencing typing (MLST) revealed the dominant sequence type to be ST18, with this clonal cluster accounting for 90.2% of isolates. Only two other sequence types (with variants) were identified, ST5 and ST23. ST23 was only observed in the Otago area, whereas ST5 was limited to two geographically non-contiguous areas. The sequence types are all from the enterobacterial repetitive intergenic consensus I (ERIC I) genogroup. The ST18 and ST5 from New Zealand and international P. larvae all clustered by sequence type. Based on core genome MLST and SNP analysis, localized regional clusters were observed within New Zealand, but some closely related genomes were also geographically dispersed, presumably due to hive movements by beekeepers.

8.
Front Physiol ; 14: 1114488, 2023.
Article in English | MEDLINE | ID: mdl-37153228

ABSTRACT

The use of agricultural neonicotinoid insecticides has sub-lethal chronic effects on bees that are more prevalent than acute toxicity. Among these insecticides, thiacloprid, a commonly used compound with low toxicity, has attracted significant attention due to its potential impact on the olfactory and learning abilities of honeybees. The effect of sub-lethal larval exposure to thiacloprid on the antennal activity of adult honeybees (Apis mellifera L.) is not yet fully understood. To address this knowledge gap, laboratory-based experiments were conducted in which honeybee larvae were administered thiacloprid (0.5 mg/L and 1.0 mg/L). Using electroantennography (EAG), the impacts of thiacloprid exposure on the antennal selectivity to common floral volatiles were evaluated. Additionally, the effects of sub-lethal exposure on odor-related learning and memory were also assessed. The results of this study reveal, for the first time, that sub-lethal larval exposure to thiacloprid decreased honeybee antenna EAG responses to floral scents, leading to increased olfactory selectivity in the high-dose (1.0 mg/L) group compared to the control group (0 mg/L vs. 1.0 mg/L: p = 0.042). The results also suggest that thiacloprid negatively affected odor-associated paired learning acquisition, as well as medium-term (1 h) (0 mg/L vs. 1.0 mg/L: p = 0.019) and long-term memory (24 h) (0 mg/L vs. 1.0 mg/L: p = 0.037) in adult honeybees. EAG amplitudes were dramatically reduced following R-linalool paired olfactory training (0 mg/L vs. 1.0 mg/L: p = 0.001; 0 mg/L vs. 0.5 mg/L: p = 0.027), while antennal activities only differed significantly in the control between paired and unpaired groups. Our results indicated that exposure to sub-lethal concentrations of thiacloprid may affect olfactory perception and learning and memory behaviors in honeybees. These findings have important implications for the safe use of agrochemicals in the environment.

9.
Microorganisms ; 11(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36985184

ABSTRACT

Honeybees' gut microbiota can provide new valuable access into the pathogenesis-related factors included in infections. Hence, we researched the presence and comparison of gut microbiota groups in control and Nosema spp.-infected honeybee colonies through high-throughput sequencing of the 16S rRNA. As the newest approach in apiary management, we hypothesize that the EM® probiotic for bees could have an important role in therapeutic and immunomodulatory effects on honeybee colonies. The aim of this study was to estimate its impact on the gut microbiota composition of adult honeybees. The major genera were detected, where Lactobacillus was the most abundant genus, followed by Gilliamela, Snodgrassella, and Bifidobacterium. Inoculation with Nosema spp. spores made the relative proportions of Bifidobacterium lower, which was ameliorated by EM® for bees' application. In addition, EM® for bee applied treatments suppressed the increase in the number of Nosema spp. spores. This result points out that continuous EM® for bees treatment shall change bees' gut microbiome composition and mitigate the influence of Nosema spp. infection. Snodgrassella alvi was a major member of the honeybee gut microbiota and may be significantly increased by long-term treatment with EM® for bees. Toward these results, it is possible that EM® for bees treatment will protect honeybees from herbicide glyphosate negative effects in agricultural fields by improving microbiome and immune functions.

10.
Animals (Basel) ; 13(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36978601

ABSTRACT

Lactic acid bacteria (LAB) are widely used probiotics and offer promising prospects for increasing the viability of honeybees. Thus, the probiotic potential of 10 LAB strains was determined, which in our previous studies showed the most potent protective abilities. In the current study, we investigated various properties of probiotic candidates. The tested LAB strains varied in susceptibility to tested antibiotics. Isolates showed high viability in sugar syrups and gastrointestinal conditions. None of the LAB strains exhibited ß-hemolytic activity, mutual antagonism, mucin degradation, hydrogen peroxide production capacity, or bile salt hydrolase (BSH) activity. Additionally, the cytotoxicity of LAB cell-free supernatants (CFS) was assessed, as well as the effect of CFS from P. pentosaceus 14/1 on the cytotoxicity of coumaphos and chlorpyrifos in the Caco-2 cell line. The viability of Caco-2 cells reached up to 89.81% in the presence of the highest concentration of CFS. Furthermore, LAB metabolites decreased the cytotoxicity of insecticides (up to 19.32%) thus demonstrating cytoprotective activity. All tested LAB strains produced lactic, acetic, and malonic acids. This research allowed the selection of the most effective LAB strains, in terms of probiosis, for future in vivo studies aimed at developing an ecologically protective biopreparation for honeybees.

11.
Front Vet Sci ; 10: 1129701, 2023.
Article in English | MEDLINE | ID: mdl-36923051

ABSTRACT

Honeybees are major pollinators for our food crops, but at the same time they face many stressors all over the world. One of the major threats to honeybee health are bacterial diseases, the most severe of which is the American Foulbrood (AFB). Recently a trans-generational vaccination approach against AFB has been proposed, showing strong potential in protecting the colonies from AFB outbreaks. Yet, what remains unstudied is whether the priming of the colony has any undesired side-effects. It is widely accepted that immune function is often a trade-off against other life-history traits, hence immune priming could have an effect on the colony performance. In this experiment we set up 48 hives, half of them with primed queens and half of them as controls. The hives were placed in six apiaries, located as pair of apiaries in three regions. Through a 2-year study we monitored the hives and measured their health and performance. We measured hive weight and frame contents such as brood amount, worker numbers, and honey yield. We studied the prevalence of the most common honeybee pathogens in the hives and expression of relevant immune genes in the offspring at larval stage. No effect of trans-generational immune priming on any of the hive parameters was found. Instead, we did find other factors contributing on various hive performance parameters. Interestingly not only time but also the region, although only 10 km apart from each other, had an effect on the performance and health of the colonies, suggesting that the local environment plays an important role in hive performance. Our results suggest that exploiting the trans-generational priming could serve as a safe tool in fighting the AFB in apiaries.

12.
Front Cell Infect Microbiol ; 13: 1124596, 2023.
Article in English | MEDLINE | ID: mdl-36761901

ABSTRACT

After the nationwide, massive winter losses of honey bees in Korea during the winter of 2021, samplings were conducted from live honey bees in colonies and dead honey bees nearby colonies in the same bee-farms in six regions in Korea. Each sample was subjected to virome analysis using high-throughput sequencing technology. The number of viral reads was the lowest in the live honey bee group sample with 370,503 reads and the highest in the dead honey bee group sample with 42,659,622 reads. Viral contigs were matched with the viral genomes of the black queen cell virus, deformed wing virus, Israeli acute paralysis virus, and sacbrood virus, all of which have been previously reported in Korea. However, Apis rhabdovirus 5, bee macula-like virus, Varroa orthomyxovirus-1, Hubei partiti-like virus 34, Lake Sinai virus 2, 3, and 4, and the Ditton virus, were also discovered in this study, which are the first records in Korea. Plant viral sequences resembling those of Arabidopsis latent virus 1, and a novel viral sequence was also discovered. In the present study 55 complete viral genome sequences were identified. This study is the first virome analysis of domestic honey bees and provides the latest information on the diversity of honey bee viruses in Korea.


Subject(s)
Hymenoptera , Viruses , Bees , Animals , Virome , Viruses/genetics , Republic of Korea
13.
Foods ; 12(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36673387

ABSTRACT

Bee pollen is considered a natural product, relevant for its nutritional and antioxidant properties. Its composition varies widely depending on its botanical and geographical origins. In this study, the botanical characteristics of 31 bee pollen samples from Galicia (Northwest Spain) were analyzed; samples have not been studied until now from this geographical area. The study focused on the evaluation of the influence of plant origin on total phenol and flavonoid contents and antioxidant activity measured by radical scavenging methods. The multivariate statistical treatment showed the contribution of certain pollen types in the extract of bee pollen as to phenols, flavonoids and antioxidant capacity. Specifically, the bee pollen samples with higher presence of Castanea, Erica, Lythrum and Campanula type indicated higher total phenol and flavonoid contents and antioxidant activities according to the principal component analysis. On the contrary, Plantago and Taraxacum officinale type contributed a lower content of these compounds and radical scavenging activity. The cluster analysis classified the bee pollen samples into three groups with significant differences (p > 0.05) for the main pollen types, total phenol and flavonoid contents and antioxidant capacities. These results demonstrate the richness and botanical diversity in the pollen spectrum of bee pollen and enhance the possible beneficial nutraceutical properties of this beekeeping product.

14.
Cells ; 11(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36496999

ABSTRACT

Lactic acid bacteria (LAB) naturally inhabiting the digestive tract of honeybees are known for their ability to detoxify xenobiotics. The effect of chlorpyrifos, coumaphos, and imidacloprid on the growth of LAB strains was tested. All strains showed high resistance to these insecticides. Subsequently, the insecticide binding ability of LAB was investigated. Coumaphos and chlorpyrifos were bound to the greatest extent (up to approx. 64%), and imidacloprid to a much weaker extent (up to approx. 36%). The insecticides were detected in extra- and intracellular extracts of the bacterial cell wall. The ability of selected LAB to reduce the cyto- and genotoxicity of insecticides was tested on two normal (ovarian insect Sf-9 and rat intestinal IEC-6) cell lines and one cancer (human intestinal Caco-2) cell line. All strains exhibited various levels of reduction in the cyto- and genotoxicity of tested insecticides. It seems that coumaphos was detoxified most potently. The detoxification abilities depended on the insecticide, LAB strain, and cell line. The detoxification of insecticides in the organisms of honeybees may reduce the likelihood of the penetration of these toxins into honeybee products consumed by humans and may contribute to the improvement of the condition in apiaries and honeybee health.


Subject(s)
Chlorpyrifos , Insecticides , Lactobacillales , Humans , Bees , Animals , Rats , Insecticides/toxicity , Lactobacillales/metabolism , Caco-2 Cells , Neonicotinoids/toxicity , Coumaphos
15.
PeerJ ; 10: e14430, 2022.
Article in English | MEDLINE | ID: mdl-36518264

ABSTRACT

Nosemosis is the most common disease in honey bee Apis mellifera L., and is a major issue related to bee health worldwide. Therefore, the purpose of this research study was to determine prevalence of microsporidia parasitic infection of the genus Nosema spp. in East Kazakhstan Region (EKR). In the years of 2018 -2021, 394 honey bee samples were collected at 30 apiaries located in four districts of East Kazakhstan Region (Katon-Karagay, Urzhar, Borodulikhinsky, and Shemonaikhinsky). In order to determine the level of infestation, firstly, the presence of Nosema spp. spores was detected using optical microscopy, and then the average amount of spores per bee was counted using a hemocytometer. The degree of nosemosis prevalence was determined in points by means of a semi-quantitative method, and as a percentage from the total of samples and of the amount of positive tests. At the outcome of the study, microsporidia of the genus Nosema spp. were detected in 23.3% of cases (92 samples). Prevalence at its low degree was found in six samples (1.5%), at an average degree in 55 samples (14%), and at a high one in 31 samples (7.9%). This research study proved that microsporidia of the genus Nosema spp. are widely spread at the apiaries of East Kazakhstan Region in different orographic and climatic conditions. Notwithstanding that it was impossible to statistically determine any significant differences between the dependence of nosemosis prevalence and the apiary location, this indicator is actually higher in the mountainous regions than in the steppe. Concurrently, a close inverse correlation was recognized between the amount of spores in one bee and the level of infestation in bee families from the duration of the vegetation season at the apiary location. This gives grounds to assert that the environmental factors have an impact on formation and development of nosemosis. The results of the research presented in the article indicate the need for further research aimed at increasing the number of studied apiaries, and above all the use of molecular biology methods to distinguish the species that cause nosemosis infection (PCR).


Subject(s)
Microsporidiosis , Nosema , Bees , Animals , Kazakhstan/epidemiology , Microsporidiosis/epidemiology , Seasons , Polymerase Chain Reaction
16.
Pathogens ; 11(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36422618

ABSTRACT

Lactic acid bacteria (LAB) are an essential part of the microbiota of the digestive tract of honeybees (Apis mellifera L.). Antagonistic activity of 103 LAB strains (isolates from different environments) against 21 honeybee pathogens/opportunistic pathogens (with agar slab method) was screened. The growth of Paenibacillus genus was inhibited to the most extent. The highest antagonistic activity was demonstrated by Lacticaseibacillus casei 12AN, while the lowest by Apilactobacillus kunkeei DSM 12361, a species naturally inhabiting the honeybee gut. LAB isolated from the honeybee environment demonstrated stronger antagonism against pathogens than collection strains. The antagonistic activity of cell-free supernatants (CFSs) from 24 LAB strains against 7 honeybee pathogens was additionally assessed at physiological pH with the microtitration method. The same was determined for selected CFSs at neutralized pH. CFSs with physiological pH showed significantly stronger antibacterial activity than CFSs with neutralized pH. The results confirmed that the mechanism of antimicrobial activity of LAB is acidification of the environment. The obtained results may, in the future, contribute to a better understanding of the antagonistic properties of LAB and the construction of a probiotic preparation to increase the viability of honeybee colonies.

17.
Toxics ; 10(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36136494

ABSTRACT

Managed honey bees are daily exposed in agricultural settings or wild environments to multiple stressors. Currently, fungicide residues are increasingly present in bees' pollen and nectar and can harm colonies' production and survival. Therefore, our study aimed to evaluate the effects of the fungicide pyraclostrobin on the fat body and pericardial cells of Africanized honey bees. The foragers were divided into three experimental treatment groups and two controls: pyraclostrobin 0.125 ng/µL (FG1), 0.025 ng/µL (FG2), 0.005 ng/µL (FG3), untreated control (CTL), and acetone control (CAC). After five days of oral exposure (ad libitum), the bees were dissected and prepared for histopathological and morphometric analysis. The FG1-treated bees showed extensive cytoarchitecture changes in the fat body and pericardial cells, inducing cell death. Bees from the FG2 group showed disarranged oenocytes, peripheral vacuolization, and pyknotic nuclei of pericardial cells, but the cytoarchitecture was not compromised as observed in FG1. Additionally, immune system cells were observed through the fat body in the FG1 group. Bees exposed to FG3 demonstrated only oenocytes vacuolization. A significant decrease in the oenocyte's surface area for bees exposed to all pyraclostrobin concentrations was observed compared to the CTL and CAC groups. The bees from the FG1 and FG2 treatment groups presented a reduced surface area of pericardial cells compared to the controls and the FG3 group. This study highlighted the harmful effects of fungicide pyraclostrobin concentrations at the individual bee cellular level, potentially harming the colony level on continuous exposure.

18.
J Econ Entomol ; 115(5): 1417-1422, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35980393

ABSTRACT

Resistance to traditional synthetic compounds by Varroa destructor Anderson and Trueman and shortcomings of the organic acid class of acaracides commonly used in varroa management requires continual development of new controls. V. destructor, however, are difficult to obtain for use in control bioassays because they are obligate parasites that cannot be easily reared outside of a honey bee colony. We conducted bioassays using other, more easily obtainable species to find organisms that could be used as surrogates for V. destructor when testing new potential controls. We compared the toxicities of acetic acid, lactic acid, formic acid, and oxalic acid at 0.005%, 0.05%, 0.5%, 5%, and 50% (20% oxalic acid only) concentrations based on natural volatility (nonheated) for the control of two beetle species, Oryzaephilus surinamensis L. and Alphitobius diaperinus Panzer, greater wax moth larvae, Galleria mellonella L., and V. destructor. The assay results were consistent across all species with formic acid and acetic acid showing 100% mortality of all four test species at 50% concentration. The assays also provided insight into the method of application (vaporization or contact) needed to cause mortality. Our results show that other organisms can be used in place of V. destructor for initial testing of acids and possibly other chemicals for control of the ectoparasite.


Subject(s)
Arachnida , Varroidae , Animals , Bees , Biological Assay , Formates/pharmacology , Insecta , Lactic Acid , Oxalic Acid
19.
Pestic Biochem Physiol ; 186: 105168, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35973773

ABSTRACT

Sulfoxaflor is a widely used pesticide in agriculture. However, the molecular effects of sublethal sulfoxaflor on honeybees (Apis mellifera L.) remain elusive. Here, the effects of a sublethal dose of sulfoxaflor (0.05 µg/bee) on the brain and midgut proteome response of the honeybee were investigated. Exposure to sublethal sulfoxaflor doses did not cause significant honeybee death, but it induced significant alterations in the brain and midgut proteomes. After sulfoxaflor challenge, 135 and 28 proteins were differentially regulated in the brain and midgut, respectively. The up-regulated proteins were mainly implicated in energy metabolism, neurotransmitter transport and drug metabolism processes, and included in particular enzymes of the citrate cycle and cellular respiration process, such as ATP citrate synthase, malate dehydrogenase, cytochrome b-c1 complex subunits, and NADH dehydrogenase. These findings suggest that honeybees enhance energy metabolism in the midgut and brain to resist sulfoxaflor challenge. Notably, treatment with sulfoxaflor resulted in a 6.8 times increase in expression levels of the major royal jelly protein 1 (MRJP1) in the brain, and knockdown of MRJP1 mRNA expression using RNA interference significantly decreased the survival rate, indicating that MRJP1 may play an important role in sulfoxaflor tolerance. Our data reveals that sulfoxaflor influences multiple processes related to both metabolism and the nervous system, and provides novel insights into the molecular basis of the honeybee brain and midgut response to sublethal dose of sulfoxaflor.


Subject(s)
Insect Proteins , Proteome , Animals , Bees , Brain , Insect Proteins/metabolism , Proteome/analysis , Proteome/genetics , Proteome/metabolism , Pyridines/pharmacology , Sulfur Compounds
20.
J Insect Physiol ; 141: 104416, 2022.
Article in English | MEDLINE | ID: mdl-35780906

ABSTRACT

Division of labor is central to the ecological success of social insects. Among honeybees foragers, specialization for collecting nectar or pollen correlates with their sensitivity to gustatory stimuli (e.g. sugars). We hypothesize that pollen and nectar foragers also differ in their sensitivity to odors, and therefore in their likelihood to show odor-mediated responses. To assess foragers sensitivity to natural odors, we quantified the conditioning of the proboscis extension reflex (PER) to increasing concentrations (0.001; 0.01; 0.1; 1 M) of linalool or nonanal. Furthermore, we compared electroantennogram (EAG) recordings to correlate bees' conditioned responses with the electrophysiological responses of their antennae. To further explore differences of the antennal response of foragers in relation to task-related odors, we registered EAG signals for two behaviorally ''meaningful'' odors that mediate pollen collection: fresh pollen odors and the brood pheromone (E)-ß-ocimene. Pollen foragers performed better than nectar foragers in PER conditioning trials when linalool and nonanal were presented at low concentrations (0.001, 0.01 M). Consistently, their antennae showed stronger EAG signals (higher amplitudes) to these odors, suggesting that differences in sensitivity can be explained at the periphery of the olfactory system. Pollen and nectar foragers detect pollen odors differently, but not (E)-ß-ocimene. Pollen volatiles evoked EAG signals with hyper and depolarization components. In pollen foragers, the contribution of the hyperpolarization component was higher than in nectar foragers. We discuss our findings in terms of adaptive advantages to learn subtle olfactory cues that influence the ability to better identify/discriminate food sources.


Subject(s)
Odorants , Plant Nectar , Animals , Bees , Pheromones , Pollen , Smell
SELECTION OF CITATIONS
SEARCH DETAIL
...