Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Planta ; 259(5): 115, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589536

ABSTRACT

MAIN CONCLUSION: A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.


Subject(s)
Arabidopsis , Oryza , Glycosyltransferases/analysis , Oryza/metabolism , Xylans/metabolism , Arabidopsis/metabolism , Molecular Docking Simulation , UDP Xylose-Protein Xylosyltransferase , Poaceae/metabolism , Cell Wall/metabolism
2.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139423

ABSTRACT

To explore the key genes involved in cell wall synthesis and understand the molecular mechanism of cell wall assembly in the model alga-Chlamydomonas reinhardtii, transcriptome sequencing was used to discover the differentially expressed genes in the cell wall defective strain. In the glucose metabolism, lipid metabolism, and amino acid metabolism pathways, the gene expressions involved in the synthesis of cell wall functional components were analyzed. The results showed that in the cell wall defective strain, arabinosyltransferase gene (XEG113, RRA) related to synthesis of plant extensin and some cell wall structural protein genes (hyp, PHC19, PHC15, PHC4, PHC3) were up-regulated, 1,3-ß-glucan synthase gene (Gls2) and endoglucanase gene (EG2) about synthesis and degradation of glycoskeleton were both mainly up-regulated. Then, ethambutol dihydrochloride, an arabinosyltransferase inhibitor, was found to affect the permeability of the cell wall of the normal strain, while the cell wall deficient strain was not affected. To further research the function of arabinosyltransferase, the RRA gene was inactivated by knockout in the normal cell wall algal strain. Through a combination of microscope observation and physiological index detection, it was found that the cell wall of the mutant strains showed reduced structure levels, suggesting that the structure and function of the cell wall glycoprotein were weakened. Therefore, arabinosyltransferase may affect the glycosylation modification of cell wall glycoprotein, further affecting the structure assembly of cell wall glycoprotein.


Subject(s)
Chlamydomonas reinhardtii , Transcriptome , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Glycosylation , Glycoproteins/genetics , Glycoproteins/metabolism , Cell Wall/metabolism
3.
Proc Natl Acad Sci U S A ; 120(23): e2302858120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252995

ABSTRACT

Arabinogalactan (AG) is an essential cell wall component in mycobacterial species, including the deadly human pathogen Mycobacterium tuberculosis. It plays a pivotal role in forming the rigid mycolyl-AG-peptidoglycan core for in vitro growth. AftA is a membrane-bound arabinosyltransferase and a key enzyme involved in AG biosynthesis which bridges the assembly of the arabinan chain to the galactan chain. It is known that AftA catalyzes the transfer of the first arabinofuranosyl residue from the donor decaprenyl-monophosphoryl-arabinose to the mature galactan chain (i.e., priming); however, the priming mechanism remains elusive. Herein, we report the cryo-EM structure of Mtb AftA. The detergent-embedded AftA assembles as a dimer with an interface maintained by both the transmembrane domain (TMD) and the soluble C-terminal domain (CTD) in the periplasm. The structure shows a conserved glycosyltransferase-C fold and two cavities converging at the active site. A metal ion participates in the interaction of TMD and CTD of each AftA molecule. Structural analyses combined with functional mutagenesis suggests a priming mechanism catalyzed by AftA in Mtb AG biosynthesis. Our data further provide a unique perspective into anti-TB drug discovery.


Subject(s)
Mycobacterium tuberculosis , Humans , Galactans , Pentosyltransferases/genetics
4.
Plant Sci ; 325: 111476, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36174800

ABSTRACT

Xylan is the second most abundant polysaccharide in plant biomass. It is a crucial component of cell wall structure as well as a significant factor contributing to biomass recalcitrance. Xylan consists of a linear chain of ß-1,4-linked xylosyl residues that are often substituted with glycosyl side chains, such as glucuronosyl/methylglucuronosyl and arabinofuranosyl residues, and acetylated at O-2 and/or O-3. Xylan from gymnosperms and dicots contains a unique reducing end tetrasaccharide sequence that is not detected in xylan from grasses, bryophytes and seedless vascular plants. Grass xylan is heavily decorated at O-3 with arabinofuranosyl residues that are frequently esterified with hydroxycinnamates. Genetic and biochemical studies have uncovered a number of genes involved in xylan backbone elongation and acetylation, xylan glycosyl substitutions and their modifications, and the synthesis of the unique xylan reducing end tetrasaccharide sequence, but some outstanding issues on the biosynthesis of xylan still remain unanswered. Here, we provide a brief overview of xylan structure and focus on discussion of the current understanding and open questions on xylan biosynthesis. Further elucidation of the biochemical mechanisms underlying xylan biosynthesis will not only shed new insights into cell wall biology but also provide molecular tools for genetic modification of biomass composition tailored for diverse end uses.


Subject(s)
Cell Wall , Xylans , Xylans/metabolism , Cell Wall/metabolism , Carbohydrate Metabolism , Poaceae , Biomass , Oligosaccharides/metabolism
5.
Planta ; 256(4): 70, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36068444

ABSTRACT

MAIN CONCLUSION: Several pine members of the gymnosperm-specific GT61 clades were demonstrated to be arabinosyltransferases and xylosyltransferases catalyzing the transfer of 2-O-Araf, 3-O-Araf and 2-O-Xyl side chains onto xylooligomer acceptors, indicating their possible involvement in Araf and Xyl substitutions of xylan in pine. Xylan in conifer wood is substituted at O-2 with methylglucuronic acid (MeGlcA) as well as at O-3 with arabinofuranose (Araf), which differs from xylan in dicot wood that is typically decorated with MeGlcA but not Araf. Currently, glycosyltransferases responsible for conifer xylan arabinosylation have not been identified. Here, we investigated the roles of pine glycosyltransferase family 61 (GT61) members in xylan substitutions. Biochemical characterization of four pine wood-associated GT61 members showed that they exhibited three distinct glycosyltransferase activities involved in xylan substitutions. Two of them catalyzed the addition of 2-O-α-Araf or 3-O-α-Araf side chains onto xylooligomer acceptors and thus were named Pinus taeda xylan 2-O-arabinosyltransferase 1 (PtX2AT1) and 3-O-arabinosyltransferase 1 (PtX3AT1), respectively. Two other pine GT61 members were found to be xylan 2-O-xylosyltransferases (PtXYXTs) adding 2-O-ß-Xyl side chains onto xylooligomer acceptors. Furthermore, sequential reactions with PtX3AT1 and the PtGUX1 xylan glucuronyltransferase demonstrated that PtX3AT1 could efficiently arabinosylate glucuronic acid (GlcA)-substituted xylooligomers and likewise, PtGUX1 was able to add GlcA side chains onto 3-O-Araf-substituted xylooligomers. Phylogenetic analysis revealed that PtX2AT1, PtX3AT1 and PtXYXTs resided in three gymnosperm-specific GT61 clades that are separated from the grass-expanded GT61 clade harboring xylan 3-O-arabinosyltransferases and 2-O-xylosyltransferases, suggesting that they might have been recruited independently for xylan substitutions in gymnosperms. Together, our findings have established several pine GT61 members as xylan 2-O- and 3-O-arabinosyltransferases and 2-O-xylosyltransferases and they indicate that pine xylan might also be substituted with 2-O-Araf and 2-O-Xyl side chains.


Subject(s)
Arabidopsis , Tracheophyta , Cycadopsida , Glucuronic Acid , Glycosyltransferases/genetics , Phylogeny , Xylans/chemistry
6.
Plant J ; 109(5): 1152-1167, 2022 03.
Article in English | MEDLINE | ID: mdl-34862679

ABSTRACT

The intricate architecture of cell walls and the complex cross-linking of their components hinders some industrial and agricultural applications of plant biomass. Xylan is a key structural element of grass cell walls, closely interacting with other cell wall components such as cellulose and lignin. The main branching points of grass xylan, 3-linked l-arabinosyl substitutions, can be modified by ferulic acid (a hydroxycinnamic acid), which cross-links xylan to other xylan chains and lignin. XAX1 (Xylosyl arabinosyl substitution of xylan 1), a rice (Oryza sativa) member of the glycosyltransferase family GT61, has been described to add xylosyl residues to arabinosyl substitutions modified by ferulic acid. In this study, we characterize hydroxycinnamic acid-decorated arabinosyl substitutions present on rice xylan and their cross-linking, in order to decipher the role of XAX1 in xylan synthesis. Our results show a general reduction of hydroxycinnamic acid-modified 3-linked arabinosyl substitutions in xax1 mutant rice regardless of their modification with a xylosyl residue. Moreover, structures resembling the direct cross-link between xylan and lignin (ferulated arabinosyl substitutions bound to lignin monomers and dimers), together with diferulates known to cross-link xylan, are strongly reduced in xax1. Interestingly, apart from feruloyl and p-coumaroyl modifications on arabinose, putative caffeoyl and oxalyl modifications were characterized, which were also reduced in xax1. Our results suggest an alternative function of XAX1 in the transfer of hydroxycinnamic acid-modified arabinosyl substitutions to xylan, rather than xylosyl transfer to arabinosyl substitutions. Ultimately, XAX1 plays a fundamental role in cross-linking, providing a potential target for the improvement of use of grass biomass.


Subject(s)
Oryza , Xylans , Cell Wall/metabolism , Coumaric Acids/metabolism , Lignin/metabolism , Oryza/genetics , Oryza/metabolism , Poaceae/metabolism , Xylans/metabolism
7.
Planta ; 254(6): 131, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34821996

ABSTRACT

MAIN CONCLUSION: Multiple rice GT61 members were demonstrated to be xylan arabinosyltransferases (XATs) mediating 3-O-arabinosylation of xylan and the functions of XATs and xylan 2-O-xylosyltransferases were shown to be conserved in grass species. Xylan is the major hemicellulose in the cell walls of grass species and it is typified by having arabinofuranosyl (Araf) substitutions. In this report, we demonstrated that four previously uncharacterized, Golgi-localized glycosyltransferases residing in clade A or B of the rice GT61 family were able to mediate 3-O-arabinosylation of xylan when heterologously expressed in the Arabidopsis gux1/2/3 triple mutant. Biochemical characterization of their recombinant proteins established that they were xylan arabinosyltransferases (XATs) capable of transferring Araf residues onto xylohexaose acceptors, and thus they were named OsXAT4, OsXAT5, OsXAT6 and OsXAT7. OsXAT5 and the previously identified OsXAT2 were shown to be able to arabinosylate xylooligomers with a degree of polymerization of as low as 3. Furthermore, a number of XAT homologs from maize, sorghum, Brachypodium and switchgrass were found to exhibit activities catalyzing Araf transfer onto xylohexaose, indicating that they are XATs involved in xylan arabinosylation in these grass species. Moreover, we revealed that homologs of another GT61 member, xylan 2-O-xylosyltransferase (XYXT1), from these grass species could mediate 2-O-xylosylation of xylan when expressed in the Arabidopsis gux1/2/3 mutant. Together, our findings indicate that multiple OsXATs are involved in 3-O-arabinosylation of xylan and the functions of XATs and XYXTs are conserved in grass species.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Cell Wall , Glycosyltransferases/genetics , Xylans
8.
Plant J ; 106(2): 351-365, 2021 04.
Article in English | MEDLINE | ID: mdl-33486798

ABSTRACT

Lotus plumule, the embryo of the seed of the sacred lotus (Nelumbo nucifera), contains a high accumulation of secondary metabolites including flavonoids and possesses important pharmaceutical value. Flavonoid C-glycosides, which accumulate exclusively in lotus plumule, have attracted considerable attention in recent decades due to their unique chemical structure and special bioactivities. As well as mono-C-glycosides, lotus plumule also accumulates various kinds of di-C-glycosides by mechanisms which are as yet unclear. In this study we identified two C-glycosyltransferase (CGT) genes by mining sacred lotus genome data and provide in vitro and in planta evidence that these two enzymes (NnCGT1 and NnCGT2, also designated as UGT708N1 and UGT708N2, respectively) exhibit CGT activity. Recombinant UGT708N1 and UGT708N2 can C-glycosylate 2-hydroxyflavanones and 2-hydroxynaringenin C-glucoside, forming flavone mono-C-glycosides and di-C-glycosides, respectively, after dehydration. In addition, the above reactions were successfully catalysed by cell-free extracts from tobacco leaves transiently expressing NnCGT1 or NnCGT2. Finally, enzyme assays using cell-free extracts of lotus plumule suggested that flavone di-C-glycosides (vicenin-1, vicenin-3, schaftoside and isoschaftoside) are biosynthesized through sequentially C-glucosylating and C-arabinosylating/C-xylosylating 2-hydroxynaringenin. Taken together, our results provide novel insights into the biosynthesis of flavonoid di-C-glycosides by proposing a new biosynthetic pathway for flavone C-glycosides in N. nucifera and identifying a novel uridine diphosphate-glycosyltransferase (UGT708N2) that specifically catalyses the second glycsosylation, C-arabinosylating and C-xylosylating 2-hydroxynaringenin C-glucoside.


Subject(s)
Flavonoids/metabolism , Glycosides/metabolism , Nelumbo/metabolism , Glycosylation , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Metabolic Networks and Pathways , Nelumbo/enzymology , Nelumbo/genetics , Phylogeny , Plants, Genetically Modified , Nicotiana
9.
Protein Cell ; 11(7): 505-517, 2020 07.
Article in English | MEDLINE | ID: mdl-32363534

ABSTRACT

Inhibition of Mycobacterium tuberculosis (Mtb) cell wall assembly is an established strategy for anti-TB chemotherapy. Arabinosyltransferase EmbB, which catalyzes the transfer of arabinose from the donor decaprenyl-phosphate-arabinose (DPA) to its arabinosyl acceptor is an essential enzyme for Mtb cell wall synthesis. Analysis of drug resistance mutations suggests that EmbB is the main target of the front-line anti-TB drug, ethambutol. Herein, we report the cryo-EM structures of Mycobacterium smegmatis EmbB in its "resting state" and DPA-bound "active state". EmbB is a fifteen-transmembrane-spanning protein, assembled as a dimer. Each protomer has an associated acyl-carrier-protein (AcpM) on their cytoplasmic surface. Conformational changes upon DPA binding indicate an asymmetric movement within the EmbB dimer during catalysis. Functional studies have identified critical residues in substrate recognition and catalysis, and demonstrated that ethambutol inhibits transferase activity of EmbB by competing with DPA. The structures represent the first step directed towards a rational approach for anti-TB drug discovery.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Cryoelectron Microscopy , Mycobacterium smegmatis/enzymology , Pentosyltransferases/chemistry , Pentosyltransferases/ultrastructure , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Ethambutol/pharmacology , Pentosyltransferases/antagonists & inhibitors , Pentosyltransferases/metabolism
10.
Protein & Cell ; (12): 505-517, 2020.
Article in English | WPRIM (Western Pacific) | ID: wpr-828595

ABSTRACT

Inhibition of Mycobacterium tuberculosis (Mtb) cell wall assembly is an established strategy for anti-TB chemotherapy. Arabinosyltransferase EmbB, which catalyzes the transfer of arabinose from the donor decaprenyl-phosphate-arabinose (DPA) to its arabinosyl acceptor is an essential enzyme for Mtb cell wall synthesis. Analysis of drug resistance mutations suggests that EmbB is the main target of the front-line anti-TB drug, ethambutol. Herein, we report the cryo-EM structures of Mycobacterium smegmatis EmbB in its "resting state" and DPA-bound "active state". EmbB is a fifteen-transmembrane-spanning protein, assembled as a dimer. Each protomer has an associated acyl-carrier-protein (AcpM) on their cytoplasmic surface. Conformational changes upon DPA binding indicate an asymmetric movement within the EmbB dimer during catalysis. Functional studies have identified critical residues in substrate recognition and catalysis, and demonstrated that ethambutol inhibits transferase activity of EmbB by competing with DPA. The structures represent the first step directed towards a rational approach for anti-TB drug discovery.

11.
Protein & Cell ; (12): 505-517, 2020.
Article in English | WPRIM (Western Pacific) | ID: wpr-828759

ABSTRACT

Inhibition of Mycobacterium tuberculosis (Mtb) cell wall assembly is an established strategy for anti-TB chemotherapy. Arabinosyltransferase EmbB, which catalyzes the transfer of arabinose from the donor decaprenyl-phosphate-arabinose (DPA) to its arabinosyl acceptor is an essential enzyme for Mtb cell wall synthesis. Analysis of drug resistance mutations suggests that EmbB is the main target of the front-line anti-TB drug, ethambutol. Herein, we report the cryo-EM structures of Mycobacterium smegmatis EmbB in its "resting state" and DPA-bound "active state". EmbB is a fifteen-transmembrane-spanning protein, assembled as a dimer. Each protomer has an associated acyl-carrier-protein (AcpM) on their cytoplasmic surface. Conformational changes upon DPA binding indicate an asymmetric movement within the EmbB dimer during catalysis. Functional studies have identified critical residues in substrate recognition and catalysis, and demonstrated that ethambutol inhibits transferase activity of EmbB by competing with DPA. The structures represent the first step directed towards a rational approach for anti-TB drug discovery.

12.
Methods Mol Biol ; 1954: 175-186, 2019.
Article in English | MEDLINE | ID: mdl-30864132

ABSTRACT

D-Arabinofuranose is a major glycosyl constituent of mycobacteria found in two essential cell envelope heteropolysaccharides, arabinogalactan and lipoarabinomannan. Seven different arabinosyltransferases at least are required to synthesize the arabinan domain of these two major glycans. Because of their interest from the perspective of drug development, these enzymes have been the object of intense investigations. In this chapter, we describe the protocols used to perform nonradioactive arabinosyltransferase assays with synthetic acceptor and donor substrates and characterize the enzymatic products of the reactions by mass spectrometry.


Subject(s)
Bacterial Proteins/metabolism , Enzyme Assays/methods , Galactans/metabolism , Lipopolysaccharides/metabolism , Mycobacterium smegmatis/metabolism , Pentosyltransferases/metabolism , Arabinose/analogs & derivatives , Arabinose/metabolism , Biosynthetic Pathways , Cell Wall/enzymology , Cell Wall/metabolism , Chromatography, Liquid/methods , Mass Spectrometry/methods , Mycobacterium smegmatis/enzymology , Substrate Specificity
13.
Cell Surf ; 5: 100033, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32743148

ABSTRACT

Cotton fibre provides a unicellular model system for studying cell expansion and secondary cell wall deposition. Mature cotton fibres are mainly composed of cellulose while the walls of developing fibre cells contain a variety of polysaccharides and proteoglycans required for cell expansion. This includes hydroxyproline-rich glycoproteins (HRGPs) comprising the subgroup, extensins. In this study, extensin occurrence in cotton fibres was assessed using carbohydrate immunomicroarrays, mass spectrometry and monosaccharide profiling. Extensin amounts in three species appeared to correlate with fibre quality. Fibre cell expression profiling of the four cotton cultivars, combined with extensin arabinoside chain length measurements during fibre development, demonstrated that arabinoside side-chain length is modulated during development. Implications and mechanisms of extensin side-chain length dynamics during development are discussed.

14.
J Biol Chem ; 289(51): 35172-81, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25352598

ABSTRACT

The Mycobacterium tuberculosis cell wall is a complex structure essential for the viability of the organism and its interaction with the host. The glycolipid lipoarabinomannan (LAM) plays an important role in mediating host-bacteria interactions and is involved in modulation of the immune response. The arabinosyltransferase EmbC required for LAM biosynthesis is essential. We constructed recombinant strains of M. tuberculosis expressing a variety of alleles of EmbC. We demonstrated that EmbC has a functional signal peptide in M. tuberculosis. Over- or underexpression of EmbC resulted in reduced or increased sensitivity to ethambutol, respectively. The C-terminal domain of EmbC was essential for activity because truncated alleles were unable to mediate LAM production in Mycobacterium smegmatis and were unable to complement an embC deletion in M. tuberculosis. The C-terminal domain of the closely related arabinosyltransferase EmbB was unable to complement the function of the EmbC C-terminal domain. Two functional motifs were identified. The GT-C motif contains two aspartate residues essential for function in the DDX motif. The proline-rich region contains two highly conserved asparagines (Asn-638 and Asn-652). Mutation of these residues was tolerated, but loss of Asn-638 resulted in the synthesis of truncated LAM, which appeared to lack arabinose branching. All embC alleles that were incapable of complementing LAM production in M. smegmatis were not viable in M. tuberculosis, supporting the hypothesis that LAM itself is essential in M. tuberculosis.


Subject(s)
Bacterial Proteins/genetics , Lipopolysaccharides/biosynthesis , Mutation , Mycobacterium tuberculosis/genetics , Pentosyltransferases/genetics , Amino Acid Sequence , Antitubercular Agents/pharmacology , Asparagine/genetics , Asparagine/metabolism , Aspartic Acid/genetics , Aspartic Acid/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Blotting, Western , Ethambutol/pharmacology , Gene Expression Regulation, Bacterial , Genes, Essential/genetics , Microbial Viability/genetics , Molecular Sequence Data , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Pentosyltransferases/chemistry , Pentosyltransferases/metabolism , Protein Sorting Signals/genetics , Protein Structure, Secondary , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
15.
J Sulphur Chem ; 34(1-2): 33-37, 2013.
Article in English | MEDLINE | ID: mdl-28966658

ABSTRACT

A short synthetic route to ß,d-arabinofuranosyl 1-C-sulfonic acid (7), a possible biomimetic for the arabinofuranosyl anomeric phosphate, is described. The furanosyl 1-C-sulfonate was prepared by buffered DMDO oxidation of an S-acetyl-1-thio-ß-arabinofuranose derivative. Deprotection under mild conditions allowed isolation of the free sulfonic acid without desulfonylation.

SELECTION OF CITATIONS
SEARCH DETAIL