Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38931848

ABSTRACT

Antibiotic-resistant strains of Staphylococcus aureus are being viewed as a serious threat by various public health agencies. Identifying novel targets in this important pathogen is crucial to the development of new effective antibacterial formulations. We investigated the antibacterial effect of a colloidal nanosilver formulation, Silversol®, against an antibiotic-resistant strain of S. aureus using appropriate in vitro assays. Moreover, we deciphered the molecular mechanisms underlying this formulation's anti-S. aureus activity using whole transcriptome analysis. Lower concentrations of the test formulation exerted a bacteriostatic effect against this pathogen, and higher concentrations exerted a bactericidal effect. Silversol® at sub-lethal concentration was found to disturb multiple physiological traits of S. aureus such as growth, antibiotic susceptibility, membrane permeability, efflux, protein synthesis and export, biofilm and exopolysaccharide production, etc. Transcriptome data revealed that the genes coding for transcriptional regulators, efflux machinery, transferases, ß-lactam resistance, oxidoreductases, metal homeostasis, virulence factors, and arginine biosynthesis are expressed differently under the influence of the test formulation. Genes (argG and argH) involved in arginine biosynthesis emerged among the major targets of Silversol®'s antibacterial activity against S. aureus.

2.
Plant Mol Biol ; 114(2): 27, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478146

ABSTRACT

Cyanobacteria are oxygen-evolving photosynthetic prokaryotes that affect the global carbon and nitrogen turnover. Synechocystis sp. PCC 6803 (Synechocystis 6803) is a model cyanobacterium that has been widely studied and can utilize and uptake various nitrogen sources and amino acids from the outer environment and media. l-arginine is a nitrogen-rich amino acid used as a nitrogen reservoir in Synechocystis 6803, and its biosynthesis is strictly regulated by feedback inhibition. Argininosuccinate synthetase (ArgG; EC 6.3.4.5) is the rate-limiting enzyme in arginine biosynthesis and catalyzes the condensation of citrulline and aspartate using ATP to produce argininosuccinate, which is converted to l-arginine and fumarate through argininosuccinate lyase (ArgH). We performed a biochemical analysis of Synechocystis 6803 ArgG (SyArgG) and obtained a Synechocystis 6803 mutant overexpressing SyArgG and ArgH of Synechocystis 6803 (SyArgH). The specific activity of SyArgG was lower than that of other arginine biosynthesis enzymes and SyArgG was inhibited by arginine, especially among amino acids and organic acids. Both arginine biosynthesis enzyme-overexpressing strains grew faster than the wild-type Synechocystis 6803. Based on previous reports and our results, we suggest that SyArgG is the rate-limiting enzyme in the arginine biosynthesis pathway in cyanobacteria and that arginine biosynthesis enzymes are similarly regulated by arginine in this cyanobacterium. Our results contribute to elucidating the regulation of arginine biosynthesis during nitrogen metabolism.


KEY MESSAGE: This study revealed the catalytic efficiency and inhibition of cyanobacterial argininosuccinate synthetase by arginine and demonstrated that a strain overexpressing this enzyme grew faster than the wild-type strain.


Subject(s)
Synechocystis , Synechocystis/genetics , Synechocystis/metabolism , Aspartic Acid/metabolism , Arginine/metabolism , Photosynthesis , Nitrogen/metabolism
3.
Microbiol Res ; 283: 127692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508088

ABSTRACT

NADP/NADPH plays an indispensable role in cellular metabolism, serving as a pivotal cofactor in numerous enzymatic processes involved in anabolic pathways, antioxidant defense, and the biosynthesis of essential cellular components. NAD/NADH kinases (NADKs) phosphorylate NAD/NADH, constituting the sole de novo synthetic pathway for NADP/NADPH generation. Despite the pivotal role of NADP/NADPH in cellular functions, the physiological role of NADK remains largely unexplored in filamentous fungi. In this study, we identified three putative NADKs in Fusarium graminearum-FgNadk1, FgNadk2, and FgNadk3-responsible for NAD/NADH phosphorylation. NADK-mediated formation of intracellular NADPH proved crucial for vegetative growth, sexual reproduction, and virulence. Specifically, FgNadk2, the mitochondrial NADK, played a role in oxidative stress resistance and the maintenance of mitochondrial reactive oxygen species levels. Moreover, the deletion of FgNADK2 resulted in arginine auxotrophy, contributing to the reduced fungal virulence. These findings underscore the necessity of mitochondrial NADK in fungal virulence in F. graminearum, revealing its involvement in mitochondrial redox homeostasis and the arginine biosynthetic pathway. This study provides critical insights into the interconnectedness of metabolic pathways essential for fungal growth, stress response, and pathogenicity.


Subject(s)
Fusarium , NAD , Virulence , NAD/metabolism , NADP/metabolism , Oxidative Stress , Oxidation-Reduction , Fungal Proteins/genetics , Fungal Proteins/metabolism
4.
Heliyon ; 10(5): e26804, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38468956

ABSTRACT

Background: The metabolism of arginine, a conditionally essential amino acid, plays a crucial role in cancer progression and prognosis. However, a more detailed understanding of the influence of arginine biosynthesis genes in cancer is currently unavailable. Methods: We performed an integrative multi-omics analysis using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to determine the characteristics of these genes across multiple cancer types. To measure the overall activity of arginine biosynthesis genes in cancer, we calculated arginine biosynthesis scores based on gene expression. Results: Our results indicated that the arginine biosynthesis score was negatively correlated with immune-related pathways, immune infiltration, immune checkpoint expression, and patient prognosis, and single-cell data further clarified that patients with high arginine biosynthesis scores showed a reduced proportion of T and B cells in an immune desert tumor microenvironment and were insensitive to immunotherapy. We also identified several potential drugs through the Cancer Therapeutic Response Portal (CTRP) and Genomics of Drug Sensitivity in Cancer (GDSC) databases that could target arginine biosynthesis genes and potentially improve the response rate to immunotherapy in patients with a high arginine biosynthesis fraction. Conclusion: Overall, our analyses emphasize that arginine biosynthesis genes are associated with immune evasion in several cancers. Targeting these genes may facilitate more effective immunotherapy.

5.
J Bacteriol ; 206(2): e0033723, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38299858

ABSTRACT

Genome sequencing has demonstrated that Staphylococcus aureus encodes arginine biosynthetic genes argDCJBFGH synthesizing proteins that mediate arginine biosynthesis using glutamate as a substrate. Paradoxically, however, S. aureus does not grow in a defined, glutamate-replete medium lacking arginine and glucose (CDM-R). Studies from our laboratory have found that specific mutations are selected by S. aureus that facilitate growth in CDM-R. However, these selected mutants synthesize arginine utilizing proline as a substrate rather than glutamate. In this study, we demonstrate that the ectopic expression of the argDCJB operon supports the growth of S. aureus in CDM-R, thus documenting the functionality of this pathway. Furthermore, suppressor mutants of S. aureus JE2 putA::Tn, which is defective in synthesizing arginine from proline, were selected on CDM-R agar. Genome sequencing revealed that these mutants had compensatory mutations within both spoVG, encoding an ortholog of the Bacillus subtilis stage V sporulation protein, and sarA, encoding the staphylococcal accessory regulator. Transcriptional studies document that argD expression is significantly increased when JE2 spoVG sarA was grown in CDM-R. Lastly, we found that a mutation in ahrC was required to induce argD expression in JE2 spoVG sarA when grown in an arginine-replete medium (CDM), suggesting that AhrC also functions to repress argDCJB in an arginine-dependent manner. In conclusion, these data indicate that the argDCJB operon is functional when transcribed in vitro and that SNPs within potential putative regulatory proteins are required to alleviate the repression.IMPORTANCEAlthough Staphylococcus aureus has the capability to synthesize all 20 amino acids, it is phenotypically auxotrophic for several amino acids including arginine. This work identifies putative regulatory proteins, including SpoVG, SarA, and AhrC, that function to inhibit the arginine biosynthetic pathways using glutamate as a substrate. Understanding the ultimate mechanisms of why S. aureus is selected to repress arginine biosynthetic pathways even in the absence of arginine will add to the growing body of work assessing the interactions between metabolism and S. aureus pathogenesis.


Subject(s)
Glutamic Acid , Staphylococcus aureus , Staphylococcus aureus/metabolism , Glutamic Acid/metabolism , Arginine/metabolism , Bacterial Proteins/metabolism , Transcription Factors/metabolism , Amino Acids/metabolism , Proline/genetics , Proline/metabolism , Gene Expression Regulation, Bacterial
6.
Sci Rep ; 14(1): 4294, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383634

ABSTRACT

Deleterious effects of environmental exposures may contribute to the rising incidence of early-onset colorectal cancer (eoCRC). We assessed the metabolomic differences between patients with eoCRC, average-onset CRC (aoCRC), and non-CRC controls, to understand pathogenic mechanisms. Patients with stage I-IV CRC and non-CRC controls were categorized based on age ≤ 50 years (eoCRC or young non-CRC controls) or  ≥ 60 years (aoCRC or older non-CRC controls). Differential metabolite abundance and metabolic pathway analyses were performed on plasma samples. Multivariate Cox proportional hazards modeling was used for survival analyses. All P values were adjusted for multiple testing (false discovery rate, FDR P < 0.15 considered significant). The study population comprised 170 patients with CRC (66 eoCRC and 104 aoCRC) and 49 non-CRC controls (34 young and 15 older). Citrate was differentially abundant in aoCRC vs. eoCRC in adjusted analysis (Odds Ratio = 21.8, FDR P = 0.04). Metabolic pathways altered in patients with aoCRC versus eoCRC included arginine biosynthesis, FDR P = 0.02; glyoxylate and dicarboxylate metabolism, FDR P = 0.005; citrate cycle, FDR P = 0.04; alanine, aspartate, and glutamate metabolism, FDR P = 0.01; glycine, serine, and threonine metabolism, FDR P = 0.14; and amino-acid t-RNA biosynthesis, FDR P = 0.01. 4-hydroxyhippuric acid was significantly associated with overall survival in all patients with CRC (Hazards ratio, HR = 0.4, 95% CI 0.3-0.7, FDR P = 0.05). We identified several unique metabolic alterations, particularly the significant differential abundance of citrate in aoCRC versus eoCRC. Arginine biosynthesis was the most enriched by the differentially altered metabolites. The findings hold promise in developing strategies for early detection and novel therapies.


Subject(s)
Colorectal Neoplasms , Metabolomics , Humans , Middle Aged , Citrates , Citric Acid , Arginine
7.
Diabetes Metab Syndr Obes ; 16: 4065-4080, 2023.
Article in English | MEDLINE | ID: mdl-38106622

ABSTRACT

Aim: Liu-Wei-Luo-Bi (LWLB) granules was a Chinese compound prescription for treating diabetic peripheral neuropathy (DPN). The aim of this study was to investigate the effect of LWLB granules on diabetic mice with peripheral neuropathy and to elucidate the potential mechanism based on an untargeted metabolomics approach. Methods: One hundred forty db/db mice were randomly divided into seven groups: the Control group, DPN group, Mudan (MD) granules group, Epalrestat (Epa) group, and the LWLB low, medium, or high dose (LW-l, LW-m, or LW-h) group. After 12 weeks of treatment, body weight, blood glucose, mechanical pain threshold, motor conduction velocity (MCV), sensory conduction velocity (SCV), and Pathological Organization of the Sciatic and Caudal Nerves in mice were measured. Serum samples were collected for untargeted metabolomics analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and multivariate statistics. Disease-related pathways were screened out with function enrichment analyses of candidate biomarkers. Results: LWLB granules can improve the peripheral neuropathy of type 2 diabetic mice with peripheral nerve conduction disorders, mainly through significantly improving the nerve conduction velocity (P < 0.05) and lowering the mechanical pain threshold (P < 0.05). A total of 43 metabolites were identified as potential biomarkers related to the therapeutic effect of LWLB granules. Fifty, 4, and 26; 23, 4, and 22; and 24, 1, and 16 biomarkers were discovered in the LW-l, LW-m, and LW-h groups at the 4th, 6th, and 12th weeks, respectively. Five, three, seven, five, and four metabolic pathways were found in MD, Epa, LW-l, LW-m, and LW-h groups, respectively. The arginine biosynthesis pathway is the overlapping pathway in LW-l, LW-m, and LW-h groups. Conclusion: LWLB granules have an obvious neuroprotective effect on diabetic peripheral neuropathy, and the metabolism mechanism of LWLB is mainly related to the arginine biosynthesis pathway on diabetic db/db mice with peripheral neuropathy.

8.
Front Microbiol ; 14: 1232039, 2023.
Article in English | MEDLINE | ID: mdl-37731930

ABSTRACT

Multidrug-resistant gram-negative pathogens such as Escherichia coli have become increasingly difficult to treat and therefore alternative treatment options are needed. Targeting virulence factors like biofilm formation could be one such option. Inhibition of biofilm-related structures like curli and cellulose formation in E. coli has been shown for different phenolic natural compounds like epigallocatechin gallate. This study demonstrates this effect for other structurally unrelated phenolics, namely octyl gallate, scutellarein and wedelolactone. To verify whether these structurally different compounds influence identical pathways of biofilm formation in E. coli a broad comparative RNA-sequencing approach was chosen with additional RT-qPCR to gain initial insights into the pathways affected at the transcriptomic level. Bioinformatical analysis of the RNA-Seq data was performed using DESeq2, BioCyc and KEGG Mapper. The comparative bioinformatics analysis on the pathways revealed that, irrespective of their structure, all compounds mainly influenced similar biological processes. These pathways included bacterial motility, chemotaxis, biofilm formation as well as metabolic processes like arginine biosynthesis and tricarboxylic acid cycle. Overall, this work provides the first insights into the potential mechanisms of action of novel phenolic biofilm inhibitors and highlights the complex regulatory processes of biofilm formation in E. coli.

9.
Front Cell Infect Microbiol ; 13: 1228159, 2023.
Article in English | MEDLINE | ID: mdl-37767199

ABSTRACT

Introduction: Adherent-invasive Escherichia coli (AIEC) is strongly associated with the pathogenesis of Crohn's disease (CD). However, no molecular markers currently exist for AIEC identification. This study aimed to identify differentially expressed genes (DEGs) between AIEC and non-AIEC strains that may contribute to AIEC pathogenicity and to evaluate their utility as molecular markers. Methods: Comparative transcriptomics was performed on two closely related AIEC/non-AIEC strain pairs during Intestine-407 cell infection. DEGs were quantified by RT-qPCR in the same RNA extracts, as well as in 14 AIEC and 23 non-AIEC strains to validate the results across a diverse strain collection. Binary logistical regression was performed to identify DEGs whose quantification could be used as AIEC biomarkers. Results: Comparative transcriptomics revealed 67 differences in expression between the two phenotypes in the strain pairs, 50 of which (81.97%) were corroborated by RT-qPCR. When explored in the whole strain collection, 29 DEGs were differentially expressed between AIEC and non-AIEC phenotypes (p-value < 0.042), and 42 genes between the supernatant fraction of infected cell cultures and the cellular fraction containing adhered and intracellular bacteria (p-value < 0.049). Notably, six DEGs detected in the strain collection were implicated in arginine biosynthesis and five in colanic acid synthesis. Furthermore, two biomarkers based on wzb and cueR gene expression were proposed with an accuracy of ≥ 85% in our strain collection. Discussion: This is the first transcriptomic study conducted using AIEC-infected cell cultures. We have identified several genes that may be involved in AIEC pathogenicity, two of which are putative biomarkers for identification.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Bacterial Adhesion/genetics , Intestines/pathology , Phenotype , Epithelial Cells/microbiology , Biomarkers/metabolism , Gene Expression
10.
Int J Mol Sci ; 24(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629055

ABSTRACT

N-Acetyl-L-glutamate kinase (NAGK) catalyzes the rate-limiting step in the ornithine/arginine biosynthesis pathway in eukaryotic and bacterial oxygenic phototrophs. NAGK is the most highly conserved target of the PII signal transduction protein in Cyanobacteria and Archaeplastida (red algae and Chlorophyta). However, there is still much to be learned about how NAGK is regulated in vivo. The use of unicellular green alga Chlamydomonas reinhardtii as a model system has already been instrumental in identifying several key regulation mechanisms that control nitrogen (N) metabolism. With a combination of molecular-genetic and biochemical approaches, we show the existence of the complex CrNAGK control at the transcriptional level, which is dependent on N source and N availability. In growing cells, CrNAGK requires CrPII to properly sense the feedback inhibitor arginine. Moreover, we provide primary evidence that CrPII is only partly responsible for regulating CrNAGK activity to adapt to changing nutritional conditions. Collectively, our results suggest that in vivo CrNAGK is tuned at the transcriptional and post-translational levels, and CrPII and additional as yet unknown factor(s) are integral parts of this regulation.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genetics , Arginine , Biotin , Eukaryota
11.
Cell Rep Med ; 4(9): 101157, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37586364

ABSTRACT

To evaluate whether nicotinamide adenine dinucleotide-positive (NAD+) boosting modulates adaptive immunity, primary CD4+ T cells from healthy control and psoriasis subjects were exposed to vehicle or nicotinamide riboside (NR) supplementation. NR blunts interferon γ (IFNγ) and interleukin (IL)-17 secretion with greater effects on T helper (Th) 17 polarization. RNA sequencing (RNA-seq) analysis implicates NR blunting of sequestosome 1 (sqstm1/p62)-coupled oxidative stress. NR administration increases sqstm1 and reduces reactive oxygen species (ROS) levels. Furthermore, NR activates nuclear factor erythroid 2-related factor 2 (Nrf2), and genetic knockdown of nrf2 and the Nrf2-dependent gene, sqstm1, diminishes NR amelioratory effects. Metabolomics analysis identifies that NAD+ boosting increases arginine and fumarate biosynthesis, and genetic knockdown of argininosuccinate lyase ameliorates NR effects on IL-17 production. Hence NR via amino acid metabolites orchestrates Nrf2 activation, augments CD4+ T cell antioxidant defenses, and attenuates Th17 responsiveness. Oral NR supplementation in healthy volunteers similarly increases serum arginine, sqstm1, and antioxidant enzyme gene expression and blunts Th17 immune responsiveness, supporting evaluation of NAD+ boosting in CD4+ T cell-linked inflammation.


Subject(s)
Antioxidants , NAD , Humans , NAD/metabolism , Sequestosome-1 Protein/metabolism , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , Oxidation-Reduction , Inflammation/drug therapy
12.
Microbiol Spectr ; 11(4): e0028823, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37347159

ABSTRACT

The evolutionary relationship between arginine and lysine biosynthetic pathways has been well established in bacteria and hyperthermophilic archaea but remains largely unknown in haloarchaea. Here, the endogenous CRISPR-Cas system was harnessed to edit arginine and lysine biosynthesis-related genes in the haloarchaeon Natrinema gari J7-2. The ΔargW, ΔargX, ΔargB, and ΔargD mutant strains display an arginine auxotrophic phenotype, while the ΔdapB mutant shows a lysine auxotrophic phenotype, suggesting that strain J7-2 utilizes the ArgW-mediated pathway and the diaminopimelate (DAP) pathway to synthesize arginine and lysine, respectively. Unlike the ArgD in Escherichia coli acting as a bifunctional aminotransferase in both the arginine biosynthesis pathway and the DAP pathway, the ArgD in strain J7-2 participates only in arginine biosynthesis. Meanwhile, in strain J7-2, the function of argB cannot be compensated for by its evolutionary counterpart ask in the DAP pathway. Moreover, strain J7-2 cannot utilize α-aminoadipate (AAA) to synthesize lysine via the ArgW-mediated pathway, in contrast to hyperthermophilic archaea that employ a bifunctional LysW-mediated pathway to synthesize arginine (or ornithine) and lysine from glutamate and AAA, respectively. Additionally, the replacement of a 5-amino-acid signature motif responsible for substrate specificity of strain J7-2 ArgX with that of its hyperthermophilic archaeal homologs cannot endow the ΔdapB mutant with the ability to biosynthesize lysine from AAA. The in vitro analysis shows that strain J7-2 ArgX acts on glutamate rather than AAA. These results suggest that the arginine and lysine biosynthetic pathways of strain J7-2 are highly specialized during evolution. IMPORTANCE Due to their roles in amino acid metabolism and close evolutionary relationship, arginine and lysine biosynthetic pathways represent interesting models for probing functional specialization of metabolic routes. The current knowledge with respect to arginine and lysine biosynthesis is limited for haloarchaea compared to that for bacteria and hyperthermophilic archaea. Our results demonstrate that the haloarchaeon Natrinema gari J7-2 employs the ArgW-mediated pathway and the DAP pathway for arginine and lysine biosynthesis, respectively, and the two pathways are functionally independent of each other; meanwhile, ArgX is a key determinant of substrate specificity of the ArgW-mediated pathway in strain J7-2. This study provides new clues about haloarchaeal amino acid metabolism and confirms the convenience and efficiency of endogenous CRISPR-Cas system-based genome editing in haloarchaea.


Subject(s)
Halobacteriaceae , Lysine , Lysine/metabolism , Arginine/metabolism , Biosynthetic Pathways/genetics , CRISPR-Cas Systems , Gene Editing , Amino Acids/metabolism , Halobacteriaceae/genetics , Halobacteriaceae/metabolism , Bacteria/genetics , Glutamates/genetics , Glutamates/metabolism
13.
Article in English | MEDLINE | ID: mdl-37022754

ABSTRACT

A strictly anaerobic hyperthermophilic archaeon, designated strain IOH2T, was isolated from a deep-sea hydrothermal vent (Onnuri vent field) area on the Central Indian Ocean Ridge. Strain IOH2T showed high 16S rRNA gene sequence similarity to Thermococcus sibiricus MM 739T (99.42 %), Thermococcus alcaliphilus DSM 10322T (99.28 %), Thermococcus aegaeus P5T (99.21 %), Thermococcus litoralis DSM 5473T (99.13 %), 'Thermococcus bergensis' T7324T (99.13 %), Thermococcus aggregans TYT (98.92 %) and Thermococcus prieurii Bio-pl-0405IT2T (98.01 %), with all other strains showing lower than 98 % similarity. The average nucleotide identity and in silico DNA-DNA hybridization values were highest between strain IOH2T and T. sibiricus MM 739T (79.33 and 15.00 %, respectively); these values are much lower than the species delineation cut-offs. Cells of strain IOH2T were coccoid, 1.0-1.2 µm in diameter and had no flagella. Growth ranges were 60-85 °C (optimum at 80 °C), pH 4.5-8.5 (optimum at pH 6.3) and 2.0-6.0 % (optimum at 4.0 %) NaCl. Growth of strain IOH2T was enhanced by starch, glucose, maltodextrin and pyruvate as a carbon source, and elemental sulphur as an electron acceptor. Through genome analysis of strain IOH2T, arginine biosynthesis related genes were predicted, and growth of strain IOH2T without arginine was confirmed. The genome of strain IOH2T was assembled as a circular chromosome of 1 946 249 bp and predicted 2096 genes. The DNA G+C content was 39.44 mol%. Based on the results of physiological and phylogenetic analyses, Thermococcus argininiproducens sp. nov. is proposed with type strain IOH2T (=MCCC 4K00089T=KCTC 25190T).


Subject(s)
Thermococcus , Thermococcus/genetics , Seawater , Base Composition , Phylogeny , RNA, Ribosomal, 16S/genetics , Indian Ocean , DNA, Bacterial/genetics , Fatty Acids/chemistry , Sequence Analysis, DNA , Bacterial Typing Techniques
14.
Biomed Pharmacother ; 162: 114660, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058819

ABSTRACT

Multidrug-resistance (MDR) Pseudomonas aeruginosa (P. aeruginosa) is a lethal gram-negative pathogen causing hospital-acquired and ventilator-associated pneumonia, which is difficult to treat. Our previous studies confirmed that baicalin, an essential bioactive component in Scutellaria baicalensis Georgi, exhibited anti-inflammatory effects in an acute pneumonia rat model induced by MDR P. aeruginosa. However, this effect of baicalin in constrast its low bioavailability, and its mechanism of action is still unknown. Thus, this study investigated whether the therapeutic effects of baicalin against MDR P. aeruginosa acute pneumonia are owing to the regulation of gut microbiota and their metabolites using pyrosequencing of the 16S rRNA genes in rat feces and metabolomics. As a result, baicalin attenuated the inflammation by acting directly on neutrophils and regulated the production of the inflammatory cytokines TNF-α, IL-1ß, IL-6, and IL-10. The mechanisms were through down-regulation of TLR4 and inhibition of NF-κB. Furthermore, pyrosequencing of the 16S rRNA genes in rat feces revealed that baicalin regulated the composition of gut microbial communities. At the genus level, baicalin efficiently increased the abundance of Ligilactobacillus, Lactobacillus and Bacteroides, but decreased the abundance of Muribaculaceae and Alistipes. Further, arginine biosynthesis was analyzed as the core pathway regulated by baicalin via combination with predicting gut microbiota function and targeted metabolomics. In conclusion, this study has demonstrated that baicalin relieved inflammatory injury in acute pneumonia rat induced by MDR P. aeruginosa via arginine biosynthesis associated with gut microbiota. Baicalin could be a promising and effective adjunctive therapy for lung inflammation caused by MDR P. aeruginosa infection.


Subject(s)
Pneumonia , Pseudomonas aeruginosa , Rats , Animals , RNA, Ribosomal, 16S , Inflammation/drug therapy , Pneumonia/drug therapy , Flavonoids/pharmacology , Arginine/pharmacology
15.
Nutrients ; 15(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37049619

ABSTRACT

Functional constipation (FC) is a gastrointestinal disorder with high incidence, and it seriously affects patients' physical and mental health. Several studies have shown that the gut microbiome is associated with FC, but these studies have produced inconsistent findings, with few reflecting the relationship between the gut microbiome and metabolites. This study used 16S rRNA microbial genomics and non-target metabolome based on liquid chromatography-mass spectrometry to analyze the gut microbiota composition and serum metabolic profiles of 30 FC patients and 28 healthy individuals. We found that patients with FC and healthy individuals have different gut microbiota structures and serum metabolic profiles. FC patients had more Bacteroides and butyrate-producing bacteria (Roseburia, Faecaliberium, Butyriccoccus). The upstream products of host arginine biosynthesis (2-oxoglutaric acid, L-glutamic acid, N-acetylornithine, and L-ornithine) were significantly reduced in FC patients' serum metabolites. In summary, our study describes the gut microbiome and serum metabolome of patients with functional constipation. It reveals that functional constipation may be associated with increased Bacteroidetes and downregulation of upstream products of host arginine biosynthesis, which may be potential markers for diagnosing functional constipation.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Metabolome , Constipation , Arginine/metabolism
16.
Small ; 19(14): e2205682, 2023 04.
Article in English | MEDLINE | ID: mdl-36604977

ABSTRACT

The self-preservation and intelligent survival abilities of methicillin-resistant Staphylococcus aureus (MRSA) result in the ineffective treatment of many antibiotics. Nano-drug delivery systems have emerged as a new strategy to overcome MRSA infection. ZIF-8 nanoparticles (ZIF-8 NPs) exhibit good antibacterial activities, while its molecular mechanisms are largely elusive. In this study, the ZIF-8 NPs are prepared using the room temperature solution reaction method. The values of minimum inhibitory concentration of ZIF-8 NPs against Escherichia coli and MRSA isolates are 25 and 12.5 µg mL-1 , respectively. Transcriptome and metabonomic analyses reveal that ZIF-8 NPs could trigger the inhibition of arginine biosynthesis pathway and the production of ROS, which lead to dysfunctional tricarboxylic acid cycle and disruption of cell membrane integrity, eventually killing MRSA isolates. Moreover, ZIF-8 NPs show desirable treatment and repair effects on mice model of MRSA isolates wound infected-model. The results, for the first time, reveal that the inhibition of arginine biosynthesis mediates the production of ROS and energy metabolism dysfunction contributes to the antibacterial ability of ZIF-8 NPs against MRSA. This study offers a new insight into ZIF-8 NPs combating MRSA isolates.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Zeolites , Animals , Mice , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Arginine/pharmacology
17.
Mol Carcinog ; 62(4): 561-572, 2023 04.
Article in English | MEDLINE | ID: mdl-36705466

ABSTRACT

Cancerous inhibitor of protein phosphatase 2A (Cip2a) is an oncoprotein, playing important roles in tumor progression. However, the underlying mechanisms by which Cip2a promotes tumor aggressiveness in NSCLC remain to be further investigated. In this study, we found that Cip2a expression is elevated in NSCLC and correlates with poor prognosis. Knockdown of Cip2a significantly reduced the ability of cell proliferation, invasion, and metastasis of NSCLC both in vitro and in vivo. Furthermore, we found that Cip2a promotes tumor progression partly by inducing arginine biosynthesis, and knockdown of Cip2a exhibited a significantly increased sensitivity to arginine deprivation and mTOR inhibition. In addition, we found that p53 mutants in NSCLC cells increased Cip2a expression by inhibiting the activity of wild-type p53. Our findings provide new insights into the mechanisms of Cip2a in promoting tumor progression and suggest that Cip2a represents a potential therapeutic target for treating NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Tumor Suppressor Protein p53 , Cell Proliferation/genetics , Autoantigens/genetics , Autoantigens/metabolism , Autoantigens/therapeutic use , Cell Line, Tumor
18.
J Biomol Struct Dyn ; 41(14): 6811-6821, 2023.
Article in English | MEDLINE | ID: mdl-35994323

ABSTRACT

Arginase is a manganese-dependent metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The product L-ornithine is an important component which has wide applications in the healthcare and pharmaceutical industry. Enzymatic biosynthesis of L-ornithine is one of the effective methods in which arginase is used as a bio-catalyst. Here, we report the crystal structure of arginase from Thermus thermophilus (TtArginase) in three different crystal forms. All structures were solved by molecular replacement and refined at 2.0 Å, 2.3 Å and 2.91 Å resolution respectively. TtArginase is compared with other structural homologs and the putative catalytic site residues were identified. To understand the thermophilic nature of TtArginase, the sequence and structural factors of TtArginase was compared with its mesophilic counterpart Bacillus subtilis arginase (BsArginase). To get insights on structural stability, molecular dynamics (MD) simulations were carried for TtArginase and BsArginase at three different temperatures (300 K, 333 K and 353 K). The results indicate that TtArginase is comparatively more stable than BsArginase. MD simulations were carried out in the absence of the metal ions at the active site which revealed high plasticity of the active site. The results suggest that metal ions are critical not only for the catalytic function, but also required for the maintenance of the proper active site geometry. Since arginase can be employed for large-scale industrial production of L-ornithine, the structural details of thermophilic arginases such as TtArginase will be helpful to engineer the protein to optimize its enzymatic action in a variety of conditions.Communicated by Ramaswamy H. Sarma.

19.
Front Plant Sci ; 14: 1297956, 2023.
Article in English | MEDLINE | ID: mdl-38179474

ABSTRACT

Halo blight is a plant disease that leads to a significant decrease in the yield of common bean crops and kiwi fruits. The infection is caused by Pseudomonas syringae pathovars that produce phaseolotoxin, an antimetabolite which targets arginine metabolism, particularly by inhibition of ornithine transcarbamylase (OTC). OTC is responsible for production of citrulline from ornithine and carbamoyl phosphate. Here we present the first crystal structures of the plant OTC from Arabidopsis thaliana (AtOTC). Structural analysis of AtOTC complexed with ornithine and carbamoyl phosphate reveals that OTC undergoes a significant structural transition when ornithine enters the active site, from the opened to the closed state. In this study we discuss the mode of OTC inhibition by phaseolotoxin, which seems to be able to act only on the fully opened active site. Once the toxin is proteolytically cleaved, it mimics the reaction transition state analogue to fit inside the fully closed active site of OTC. Additionally, we indicate the differences around the gate loop region which rationally explain the resistance of some bacterial OTCs to phaseolotoxin.

20.
BMC Plant Biol ; 22(1): 604, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36539684

ABSTRACT

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is a herb within the Quinoa subfamily of Amaranthaceae, with remarkable environmental adaptability. Its edible young leaves and grains are rich in protein, amino acids, microorganisms, and minerals. Although assessing the effects of fertilization on quinoa yield and quality has become an intensive area of research focus, the associated underlying mechanisms remain unclear. As one of the three macro nutrients in plants, potassium has an important impact on plant growth and development. In this study, extensive metabolome and transcriptome analyses were conducted in quinoa seedlings 30 days after fertilizer application to characterize the growth response mechanism to potassium.  RESULTS: The differential metabolites and genes present in the seedlings of white and red quinoa cultivars were significantly enriched in the photosynthetic pathway. Moreover, the PsbQ enzyme on photosystem II and delta enzyme on ATP synthase were significantly down regulated in quinoa seedlings under potassium deficiency. Additionally, the differential metabolites and genes of red quinoa seedlings were significantly enriched in the arginine biosynthetic pathway. CONCLUSIONS: These findings provide a more thorough understanding of the molecular changes in quinoa seedlings that occur under deficient, relative to normal, potassium levels. Furthermore, this study provides a theoretical basis regarding the importance of potassium fertilizers, as well as their efficient utilization by growing quinoa seedlings.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/chemistry , Seedlings/genetics , Transcriptome , Potassium/metabolism , Metabolome
SELECTION OF CITATIONS
SEARCH DETAIL
...