Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.315
Filter
1.
Br J Anaesth ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960833

ABSTRACT

BACKGROUND: The mechanisms by which megadose sodium ascorbate improves clinical status in experimental sepsis is unclear. We determined its effects on cerebral perfusion, oxygenation, and temperature, and plasma levels of inflammatory biomarkers, nitrates, nitrites, and ascorbate in ovine Gram-negative sepsis. METHODS: Sepsis was induced by i.v. infusion of live Escherichia coli for 31 h in unanaesthetised Merino ewes instrumented with a combination sensor in the frontal cerebral cortex to measure tissue perfusion, oxygenation, and temperature. Fluid resuscitation at 23 h was followed by i.v. megadose sodium ascorbate (0.5 g kg-1 over 30 min+0.5 g kg-1 h-1 for 6.5 h) or vehicle (n=6 per group). Norepinephrine was titrated to restore mean arterial pressure (MAP) to 70-80 mm Hg. RESULTS: At 23 h of sepsis, MAP (mean [sem]: 85 [2] to 64 [2] mm Hg) and plasma ascorbate (27 [2] to 15 [1] µM) decreased (both P<0.001). Cerebral ischaemia (901 [58] to 396 [40] units), hypoxia (34 [1] to 19 [3] mm Hg), and hyperthermia (39.5 [0.1]°C to 40.8 [0.1]°C) (all P<0.001) developed, accompanied by malaise and lethargy. Sodium ascorbate restored cerebral perfusion (703 [121] units], oxygenation (30 [2] mm Hg), temperature (39.2 [0.1]°C) (all PTreatment<0.05), and the behavioural state to normal. Sodium ascorbate slightly reduced the sepsis-induced increase in interleukin-6, returned VEGF-A to normal (both PGroupxTime<0.01), and increased plasma ascorbate (20 000 [300] µM; PGroup<0.001). The effects of sodium ascorbate were not reproduced by equimolar sodium bicarbonate. CONCLUSIONS: Megadose sodium ascorbate rapidly reversed sepsis-induced cerebral ischaemia, hypoxia, hyperthermia, and sickness behaviour. These effects were not reproduced by an equimolar sodium load.

2.
Brain Behav Immun ; 120: 557-570, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972487

ABSTRACT

Neuroinflammation is a major characteristic of pathology in several neurodegenerative diseases. Microglia, the brain's resident myeloid cells, shift between activation states under neuroinflammatory conditions, both responding to, but also driving damage in the brain. Vitamin C (ascorbate) is an essential antioxidant for central nervous system function that may have a specific role in the neuroinflammatory response. Uptake of ascorbate throughout the central nervous system is facilitated by the sodium-dependent vitamin C transporter 2 (SVCT2). SVCT2 transports the reduced form of ascorbate into neurons and microglia, however the contribution of altered SVCT2 expression to the neuroinflammatory response in microglia is not well understood. In this study we demonstrate that SVCT2 expression modifies microglial response, as shown through changes in cell morphology and mRNA expression, following a mild traumatic brain injury (mTBI) in mice with decreased or increased expression of SVCT2. Results were supported by in vitro studies in an immortalized microglial cell line and in primary microglial cultures derived from SVCT2-heterozygous and transgenic animals. Overall, this work demonstrates the importance of SVCT2 and ascorbate in modulating the microglial response to mTBI and suggests a potential role for both in response to neuroinflammatory challenges.

3.
Biochemistry (Mosc) ; 89(6): 1146-1157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981707

ABSTRACT

Water shortage induces physiological, biochemical, and molecular alterations in plant leaves that play an essential role in plant adaptive response. The effects of drought and post-drought rewatering on the activity of antioxidant enzymes and levels of H2O2, phenolic compounds, ascorbic acid, and proline were studied in six local tomato (Solanum lycopersicum L.) varieties. The contents of H2O2 and ascorbic acid increased in all drought-exposed tomato plants and then decreased upon rewatering. The level of phenolic compounds also decreased in response to water shortage and then recovered upon rehydration, although the extent of this response was different in different varieties. The activities of ascorbate peroxidase (APX) and guaiacol peroxidase (POX) and the content of proline significantly increased in the drought-stressed plants and then decreased when the plants were rewatered. The activities of 8 constitutive APX isoforms and 2 constitutive POX isoforms varied upon exposure to drought and were observed after rewatering in all studied varieties. The information on the response of tomato plants to drought and subsequent rewatering is of great importance for screening and selection of drought-tolerant varieties, as well as for development of strategies for increasing plant productivity under adverse environmental conditions.


Subject(s)
Antioxidants , Ascorbate Peroxidases , Droughts , Solanum lycopersicum , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Hydrogen Peroxide/metabolism , Stress, Physiological , Water/metabolism , Ascorbic Acid/metabolism , Peroxidase/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Proline/metabolism
4.
Chembiochem ; : e202400401, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981854

ABSTRACT

A molecular switch based on the metastable radical anion derived from a substituted heteroaryl quinone is described. Pyrrolil quinone thiocyanate (PQ 5) showed an interaction with the fluoride anion that was visible to the naked eye and quantified by UV/vis and 1H and 13C NMR. The metastable quinoid species formed by the interaction with F- ("ON" state) showed a molecular switching effect autocontrolled by the presence of ascorbate ("OFF" state) and back to the "ON" state by an autooxidation process, measured by visible and UV/vis spectroscopy. Due to its out-of-equilibrium properties and the exchange of matter and energy, a dissipative structural behaviour is proposed. Considering its similarity to the mechanism of coenzyme Q in oxidative phosphophorylation, PQ 5 was evaluated on Saccharomyces cerevisiae mitochondrial function for inhibition of complexes II, III and IV, reactive oxygen species (ROS) production, catalase activity and lipid peroxidation. The results showed that PQ 5 inhibited complex III activity as well as the activity of all electron transport chain (ETC) complexes. In addition, PQ 5 reduced ROS production and catalase activity in yeast. The results suggest that PQ 5 may have potential applications as a new microbicidal compound by inducing ETC dysfunction.

5.
Biol Trace Elem Res ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914726

ABSTRACT

The aim of this study was to investigate the in vitro antioxidant activity of zinc ascorbate (AsA-Zn), its effects on the growth performance of and liver function in Magang geese under heat stress, and its potential mechanism. At AsA-Zn concentrations of 7.5, 15, 30, and 60 µmol/L, the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+) radical scavenging rate increased significantly by 120.85%, 53.43%, 36.12%, and 0.99%, respectively, compared with that of ascorbic acid (AsA), indicating that AsA-Zn had better antioxidant performance in vitro. In this study, Magang geese were divided into a control group (basal diet, CON) and experimental groups, who received the basal diet supplemented with 400 mg/kg AsA or 30 (AsA-Zn30), 60 (AsA-Zn60), or 90 (AsA-Zn90) mg/kg AsA-Zn. AsA-Zn supplementation considerably reduced the feed-to-gain ratio, whereas both AsA and AsA-Zn significantly increased the thymus index. Moreover, AsA-Zn supplementation improved serum protein levels, lipid metabolism, liver function, and antioxidant capacity while reducing hepatocyte vacuolar degeneration. Furthermore, supplementation with AsA-Zn60 significantly increased the total antioxidant capacity, glutathione peroxidase activity, and superoxide dismutase activity and decreased the malondialdehyde content in the serum, liver, and hepatic mitochondria (P < 0.05), with more pronounced effects in the AsA-Zn60 group. Moreover, supplementation with ASA-Zn regulated the Nrf 2 signaling pathway and significantly increased the expression of genes encoding antioxidant-related factors in the liver. In conclusion, AsA-Zn has good antioxidant activity, and AsA-Zn supplementation may improve the antioxidant capacity of heat-stressed geese and promote their growth. Supplementation with 30 mg/kg AsA-Zn is recommended.

6.
BMC Ophthalmol ; 24(1): 270, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914965

ABSTRACT

BACKGROUND: This study aimed to explore differences in vitreous humour metabolites and metabolic pathways between patients with and without diabetic retinopathy (DR) and identify potential metabolite biomarkers. METHODS: Clinical data and vitreous fluid samples were collected from 125 patients (40 without diabetes, 85 with DR). The metabolite profiles of the vitreous fluid samples were analysed using ultra-high performance liquid chromatography, Q-Exactive mass spectrometry, and multivariate statistical analysis. A machine learning model based on Least Absolute Shrinkage and Selection Operator Regularized logistic regression was used to build a risk scoring model based on selected metabolite levels. Candidate metabolites were regressed to glycated haemoglobin levels by a logistic regression model. RESULTS: Twenty differential metabolites were identified between the DR and control groups and were significantly enriched in five Kyoto Encyclopedia of Genes and Genomes pathways (arginine biosynthesis; tricarboxylic acid cycle; alanine, aspartate, and glutamate metabolism; tyrosine metabolism; and D-glutamate metabolism). Ferrous ascorbate significantly contributes to poorer glycaemic control outcomes, offering insights into potential new pathogenic pathways in DR. CONCLUSIONS: Disorders in the metabolic pathways of arginine biosynthesis, tricarboxylic acid cycle, alanine, aspartate, glutamate metabolism, tyrosine metabolism, and D-glutamate metabolism were associated with DR. Risk scores based on vitreous fluid metabolites can be used for the diagnosis and management of DR. Ferrous ascorbate can provide insights into potential new pathogenic pathways for DR.


Subject(s)
Ascorbic Acid , Biomarkers , Diabetic Retinopathy , Metabolomics , Vitreous Body , Humans , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/diagnosis , Vitreous Body/metabolism , Biomarkers/metabolism , Male , Metabolomics/methods , Female , Middle Aged , Ascorbic Acid/metabolism , Aged , Chromatography, High Pressure Liquid
7.
Cells ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38920663

ABSTRACT

Erysiphe alphitoides is a species of powdery mildew responsible for the major foliar disease of oak trees, including Quercus robur. Infection with E. alphitoides leads to a reduction in the growth of the trees and in their ability to survive. This paper reports on the biochemical changes characteristic of defence responses in oak leaves with different infection area sizes, collected in July, August, and September during three growing seasons. The study highlights the effect of E. alphitoides infection on changes in the ascorbate-glutathione cycle, phenolic compound profile, and metal content (mineral distribution). Visible symptoms of pathogen infection appeared gradually in July, but the most intense biochemical plant responses in oak leaves were detected mainly in August and September. These responses included increased ascorbate-glutathione enzyme activities, phenolic compounds, and metal contents. In addition, microscopic analyses revealed a strong fluorescence signal of lignin in the epidermis of pathogen-infected leaves. The involvement of the studied compounds in the basic defence mechanisms of oak against E. alphitoides infection is discussed in the paper.


Subject(s)
Antioxidants , Ascomycota , Ascorbic Acid , Glutathione , Plant Diseases , Plant Leaves , Quercus , Quercus/microbiology , Quercus/metabolism , Ascorbic Acid/metabolism , Ascomycota/pathogenicity , Plant Diseases/microbiology , Antioxidants/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Glutathione/metabolism , Host-Pathogen Interactions , Phenols/metabolism , Lignin/metabolism
8.
Cells ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891020

ABSTRACT

Improving the drought resistance of rice is of great significance for expanding the planting area and improving the stable yield of rice. In our previous work, we found that ROLLED AND ERECT LEAF1 (REL1) protein promoted enhanced tolerance to drought stress by eliminating reactive oxygen species (ROS) levels and triggering the abscisic acid (ABA) response. However, the mechanism through which REL1 regulates drought tolerance by removing ROS is unclear. In this study, we identified REL1 interacting protein 5 (RIP5) and found that it directly combines with REL1 in the chloroplast. We found that RIP5 was strongly expressed in ZH11 under drought-stress conditions, and that the rip5-ko mutants significantly improved the tolerance of rice plants to drought, whereas overexpression of RIP5 resulted in greater susceptibility to drought. Further investigation suggested that RIP5 negatively regulated drought tolerance in rice by decreasing the content of ascorbic acid (AsA), thereby reducing ROS clearance. RNA sequencing showed that the knockout of RIP5 caused differential gene expression that is chiefly associated with ascorbate and aldarate metabolism. Furthermore, multiple experimental results suggest that REL1 is involved in regulating drought tolerance by inhibiting RIP5. Collectively, our findings reveal the importance of the inhibition of RIP5 by REL1 in affecting the rice's response to drought stress. This work not only explains the drought tolerance mechanism of rice, but will also help to improve the drought tolerance of rice.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Reactive Oxygen Species , Oryza/genetics , Oryza/metabolism , Oryza/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Stress, Physiological , Abscisic Acid/metabolism , Chloroplasts/metabolism , Adaptation, Physiological/genetics , Plants, Genetically Modified , Ascorbic Acid/metabolism , Protein Binding , Drought Resistance
9.
Pain Ther ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864974

ABSTRACT

INTRODUCTION: Pain is the most common reason for seeking medical treatment. Despite extensive research efforts and effective analgesics modulating pain, there is still a major therapeutic gap in addressing the root causes of pain. Pain is associated with tissue damage induced by oxidative stress and induction of inflammatory mediators following high consumption of antioxidants. The role of antioxidants in general, and the administration of L-ascorbate in particular, is still controversially discussed and underestimated in the daily clinical practice. METHODS: The current literature on the therapeutic effect of L-ascorbate, ascorbic acid, and vitamin C on various pain conditions was evaluated against the background of evidence-based medicine. Those articles, obtained from systematic search in PubMed, were critically assessed and rated in terms of evidence level and methodological quality by two independent experts. The primary purpose of this work was to establish specific pain therapy guidance for intravenous L-ascorbate. RESULTS: A PubMed search revealed 14 suitable articles comprising controlled clinical trials and meta-analyses. An additional ten publications could be identified via secondary literature. There is supporting evidence for the efficacy of ascorbate treatment in inflammatory pain conditions, in the complex regional pain syndrome, in post zoster neuralgia, in neuropathic pain, in post-operative pain conditions, and in tumor-related pain. However, the considered studies differ in the type of administration, in dosage, in duration of treatment, as well as in quality of research. Despite all study heterogeneity, it became evident that research of high scientific quality is in support of the efficacy of L-ascorbate in pain treatment. DISCUSSION: Oxidative stress is present in almost all pain conditions. Because oral administration of most magistral formulas of vitamin C does not provide biological availability, parenteral administration should be preferred and can be supported by an oral dose with high bioavailability on days without intravenous treatment. L-ascorbate should be preferred for parenteral high dosage, rather than ascorbic acid, as it does not release acid valences under physiological conditions. CONCLUSIONS: L-ascorbate is an effective, safe, and economically favorable integrative treatment option for various pain conditions, addressing the root cause of tissue damage and inflammatory mediator burst.

10.
Gene ; 927: 148697, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880186

ABSTRACT

Protocatechualdehyde is a plant natural phenolic aldehyde and an active ingredient with important bioactivities in traditional Chinese medicine. Protocatechualdehyde is also a key intermediate in the synthesis of Amaryllidaceae alkaloids for supplying the C6-C1 skeleton. However, the biosynthesis of protocatechualdehyde in plants remains obscure. In this study, we measured the protocatechualdehyde contents in the root, bulb, scape and flower of the Amaryllidaceae plant Lycoris aurea (L'Hér.) Herb., and performed the correlation analysis between the protocatechualdehyde contents and the transcriptional levels of the phenolic oxidization candidate protein encoding genes. We found that a novel ascorbate peroxidase encoded by the contig_24999 in the L. aurea transcriptome database had potential role in the biosynthesis of protocatechualdehyde. The LauAPX_24999 gene was then cloned from the cDNA of the scape of L. aurea. The transient expression of LauAPX_24999 protein in Arabidopsis protoplasts demonstrated that LauAPX_24999 protein was localized in the cytoplasm, thus belonging to Class II L-ascorbate peroxidase. Subsequently, LauAPX_24999 protein was heterogenously expressed in Escherichia coli, and identified that LauAPX_24999 biosynthesized protocatechualdehyde from p-hydroxybenzaldehyde using L-ascorbic acid as the electron donor. The protein structure modelling and molecular docking indicated that p-hydroxybenzaldehyde could access to the active pocket of LauAPX_24999 protein, and reside at the δ-edge of the heme group while L-ascorbic acid binds at the γ-heme edge. To our knowledge, LauAPX_24999 is the first enzyme discovered in plants able to biosynthesize protocatechualdehyde from p-hydroxybenzaldehyde, and offers a competent enzyme resource for the biosynthesis of Amaryllidaceae alkaloids via synthetic biology.

11.
Clin Cosmet Investig Dermatol ; 17: 1481-1494, 2024.
Article in English | MEDLINE | ID: mdl-38933604

ABSTRACT

Purpose: The topical application of antioxidants has been shown to augment the skin's innate antioxidant system and enhance photoprotection. A challenge of topical antioxidant formulation is stability and penetrability. The use of a targeted drug delivery system may improve the bioavailability and delivery of antioxidants. In this ex vivo study, we assessed the effects of the topical application of a liposome-encapsulated antioxidant complex versus a free antioxidant complex alone on skin photoaging parameters and penetrability in human skin explants. Patients and Methods: Human organotypic skin explant cultures (hOSEC) were irradiated to mimic photoaging. The encapsulated antioxidant complex and free antioxidant complex were applied topically onto the irradiated hOSEC daily for 7 days. The two control groups were healthy untreated hOSEC and irradiated hOSEC. Photoprotective efficacy was measured with pro-inflammatory cytokine (IL-6 and IL-8) and matrix metalloproteinase 9 (MMP-9) secretion. Cell viability and metabolic activity were measured via resazurin assay. Tissue damage was evaluated via lactate dehydrogenase (LDH) cytotoxicity assay. Skin penetration of the encapsulated antioxidant complex was assessed via fluorescent dye and confocal microscopy. Results: Compared to healthy skin, irradiated skin experienced increases in IL-6, IL-8 (p < 0.05), and MMP-9 (p < 0.05) secretion. After treatment with the encapsulated antioxidant complex, there was a 39.3% reduction in IL-6 secretion, 49.8% reduction in IL-8 (p < 0.05), and 38.5% reduction in MMP-9 (p < 0.05). After treatment with the free antioxidant complex, there were no significant differences in IL-6, IL-8, or MMP-9 secretion. Neither treatment group experienced significant LDH leakage or reductions in metabolic activity. Liposomes passed through the stratum corneum and into the epidermis. Conclusion: The topical application of a liposome-encapsulated antioxidant complex containing ectoin, astaxanthin-rich microalgae Haematococcus pluvialis extract, and THDA improves penetrability and restored IL-6, IL-8, and MMP-9 levels in irradiated human skin explants, which was not seen in the comparator free antioxidant complex group.

12.
Antioxidants (Basel) ; 13(5)2024 May 19.
Article in English | MEDLINE | ID: mdl-38790722

ABSTRACT

Ascorbate (vitamin C) is an essential vitamin for the human body and participates in various physiological processes as an important coenzyme and antioxidant. Furthermore, the role of ascorbate in the prevention and treatment of cancer including gynecological cancer has gained much more interest recently. The bioavailability and certain biological functions of ascorbate are distinct in males versus females due to differences in lean body mass, sex hormones, and lifestyle factors. Despite epidemiological evidence that ascorbate-rich foods and ascorbate plasma concentrations are inversely related to cancer risk, ascorbate has not demonstrated a significant protective effect in patients with gynecological cancers. Adequate ascorbate intake may have the potential to reduce the risk of human papillomavirus (HPV) infection and high-risk HPV persistence status. High-dose ascorbate exerts antitumor activity and synergizes with chemotherapeutic agents in preclinical cancer models of gynecological cancer. In this review, we provide evidence for the biological activity of ascorbate in females and discuss the potential role of ascorbate in the prevention and treatment of ovarian, endometrial, and cervical cancers.

13.
Daru ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38740692

ABSTRACT

BACKGROUND: Anemia affects one-fourth of the world's population and is caused mostly by iron deficiency. Iron supplementation is the most essential strategy for preventing iron deficiency anemia. Conventional oral iron salts have many drawbacks such as poor absorption & bioavailability, and poor tolerability resulting in poor clinical outcomes. OBJECTIVE: To compare the effectiveness and safety of ferrous ascorbate, ferrous fumarate, ferrous bis-glycinate, and Sucrosomial iron in the management of iron deficiency anemia. METHOD: The study is a retrospective observational clinical study comprising 260 subjects with hemoglobin between 7-10 g/dl. The patients were divided into four groups I, II, III, and IV, and received ferrous fumarate, ferrous ascorbate, ferrous bis-glycinate, and Sucrosomial iron respectively. Hematological profile and iron store indices were measured at baseline and month 3. One-way ANOVA followed by Tukey multiple comparison test was used to assess statistical significance (P < 0.05) using GraphPad Prism V.9.3.1 software. RESULTS: The observational study showed that hemoglobin levels were significantly increased in the ferrous ascorbate group (11.86 ± 0.09; P < 0.0001), ferrous fumarate group (11.72 ± 0.08; P < 0.0001), ferrous bis-glycinate group (11.69 ± 0.11; P = 0.0003) and Sucrosomial iron group (12.20 ± 0.1; P < 0.0001) compared to the baseline. The Sucrosomial iron-supplemented group showed significantly higher improvement in hemoglobin levels and serum ferritin levels compared to conventional oral iron salts (P < 0.05) with a better safety profile. CONCLUSION: The Sucrosomial iron showed significantly higher improvement in hemoglobin levels and higher improvement in iron store indices parameters along with a good tolerability profile compared to other conventional oral iron salts.

14.
Plant J ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804089

ABSTRACT

The successful interaction between pollen and stigma is a critical process for plant sexual reproduction, involving a series of intricate molecular and physiological events. After self-compatible pollination, a significant reduction in reactive oxygen species (ROS) production has been observed in stigmas, which is essential for pollen grain rehydration and subsequent pollen tube growth. Several scavenging enzymes tightly regulate ROS homeostasis. However, the potential role of these ROS-scavenging enzymes in the pollen-stigma interaction in Brassica napus remains unclear. Here, we showed that the activity of ascorbate peroxidase (APX), an enzyme that plays a crucial role in the detoxification of hydrogen peroxide (H2O2), was modulated depending on the compatibility of pollination in B. napus. We then identified stigma-expressed APX1s and generated pentuple mutants of APX1s using CRISPR/Cas9 technology. After compatible pollination, the BnaAPX1 pentuple mutants accumulated higher levels of H2O2 in the stigma, while the overexpression of BnaA09.APX1 resulted in lower levels of H2O2. Furthermore, the knockout of BnaAPX1 delayed the compatible response-mediated pollen rehydration and germination, which was consistent with the effects of a specific APX inhibitor, ρ-Aminophenol, on compatible pollination. In contrast, the overexpression of BnaA09.APX1 accelerated pollen rehydration and germination after both compatible and incompatible pollinations. However, delaying and promoting pollen rehydration and germination did not affect the seed set after compatible and incompatible pollination in APX1 pentuple mutants and overexpression lines, respectively. Our results demonstrate the fundamental role of BnaAPX1 in pollen rehydration and germination by regulating ROS homeostasis during the pollen-stigma interaction in B. napus.

15.
Epigenomes ; 8(2)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38804366

ABSTRACT

The treatment of metastatic melanoma has been revolutionised by immunotherapy, yet a significant number of patients do not respond, and many experience autoimmune adverse events. Associations have been reported between patient outcome and monocyte subsets, whereas vitamin C (ascorbate) has been shown to mediate changes in cancer-stimulated monocytes in vitro. We therefore investigated the relationship of ascorbate with monocyte subsets and epigenetic modifications in patients with metastatic melanoma receiving immunotherapy. Patients receiving immunotherapy were compared to other cancer cohorts and age-matched healthy controls. Ascorbate levels in plasma and peripheral blood-derived mononuclear cells (PBMCs), monocyte subtype and epigenetic markers were measured, and adverse events, tumour response and survival were recorded. A quarter of the immunotherapy cohort had hypovitaminosis C, with plasma and PBMC ascorbate levels significantly lower than those from other cancer patients or healthy controls. PBMCs from the immunotherapy cohort contained similar frequencies of non-classical and classical monocytes. DNA methylation markers and intracellular ascorbate concentration were correlated with monocyte subset frequency in healthy controls, but correlation was lost in immunotherapy patients. No associations between ascorbate status and immune-related adverse events or tumour response or overall survival were apparent.

16.
J Hazard Mater ; 472: 134453, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723481

ABSTRACT

Crop plants face complex tropospheric ozone (O3) stress, emphasizing the need for a food security-focused management strategy. While research extensively explores O3's harmful effects, this study delves into the combined impacts of O3 and CO2. This study investigates the contrasting responses of O3-sensitive (PBW-550) and O3-resistant (HUW-55) wheat cultivars, towards elevated ozone (eO3) and elevated carbon dioxide (eCO2), both individually and in combination. The output of the present study confirms the positive effect of eCO2 on wheat cultivars exposed to eO3 stress, with more prominent effects on O3-sensitive cultivar PBW-550, as compared to the O3-resistant HUW-55. The differential response of the two wheat cultivars can be attributed to the mechanistic variations in the enzyme activities of the Halliwell-Asada pathway (AsA-GSH cycle) and the ascorbate and glutathione pool. The results indicate that eCO2 was unable to uplift the regeneration of the glutathione pool in HUW-55, however, PBW-550 responded well, under similar eO3 conditions. The study's findings, highlighting mechanistic variations in antioxidants, show a more positive yield response in PBW-550 compared to HUW-55 under ECO treatment. This insight can inform agricultural strategies, emphasizing the use of O3-sensitive cultivars for sustained productivity in future conditions with high O3 and CO2 concentrations.


Subject(s)
Ascorbic Acid , Carbon Dioxide , Glutathione , Ozone , Triticum , Ozone/toxicity , Ozone/pharmacology , Triticum/drug effects , Triticum/metabolism , Carbon Dioxide/metabolism , Glutathione/metabolism , Ascorbic Acid/metabolism , Air Pollutants/toxicity
17.
Planta ; 259(6): 144, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709333

ABSTRACT

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Subject(s)
Hordeum , Indoleacetic Acids , Nitric Oxide , Oxidative Stress , Phosphates , Photosynthesis , Plant Roots , Silicon , Hordeum/metabolism , Hordeum/genetics , Hordeum/drug effects , Hordeum/growth & development , Hordeum/physiology , Silicon/pharmacology , Silicon/metabolism , Indoleacetic Acids/metabolism , Phosphates/deficiency , Phosphates/metabolism , Nitric Oxide/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Photosynthesis/drug effects , Antioxidants/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seedlings/genetics , Seedlings/drug effects , Seedlings/physiology
18.
J Exp Bot ; 75(9): 2599-2603, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699987

ABSTRACT

This Special Issue was assembled to mark the 25th anniversary of the proposal of the d -mannose/ l -galactose (Smirnoff-Wheeler) ascorbate biosynthesis pathway in plants ( Wheeler et al., 1998 ). The issue aims to assess the current state of knowledge and to identify outstanding questions about ascorbate metabolism and functions in plants.


Subject(s)
Ascorbic Acid , Plants , Ascorbic Acid/metabolism , Plants/metabolism
19.
3 Biotech ; 14(6): 159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38770163

ABSTRACT

There is little data, to our knowledge, on the biochemical properties of different Satureja sp. genotypes affected by plant growth regulators (PGR) under temperature stress. A split plot research on the basis of a complete randomized block design with three replicates examining temperature stress (planting dates, 8th of April, May and June) (main factor), and the factorial combination of plant growth regulators (PGR, control (CO), gibberellic acid (GA), fertilization (MI), and amino acid (A)), and genotypes (Khuzestani, Mutika, and Bakhtiari) on plant biochemical properties, was conducted. Plant pigment contents (chlorophyll a, and b and carotenoids (car)), antioxidant activity (catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GP)), and leaf protein were determined. Treatments significantly and differently affected the genotypes performance. PD3 and PD1resulted in significantly higher activity of APX (0.059 U. mg-1) and GP (0.190 U. mg-1), respectively (P ≤ 0.05). Temperature stress significantly affected plant CAT activity (U. mg-1) at PD1 (0.084) and PD3 (0.820). Higher temperature significantly enhanced leaf Pro, MI increased plant APX (0.054) and CAT activities (0.111 U. mg-1) significantly, and GA resulted in the highest and significantly different GP activity (0.186 U. mL-1). Treatments T1 and T3 significantly enhanced Chla and Car content, and MI resulted in significantly higher Chlb content (0.085 mg g-1 leaf fresh weight). Car and CAT are the two most sensitive biochemical traits under temperature stress and can more effectively regulate Satureja growth and activity. It is possible to alleviate temperature stress on Satureja biochemical properties by the tested PGR.

20.
Plant Biol (Stuttg) ; 26(4): 521-531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38568875

ABSTRACT

Plants face a wide range of biotic and abiotic stress conditions, which are further intensified by climate change. Among these stressors, increased irradiation in terms of intensity and wavelength range can lead to detrimental effects, such as chlorophyll degradation, destruction of the PSII reaction center, generation of ROS, alterations to plant metabolism, and even plant death. Here, we investigated the responses of two citrus genotypes, Citrus macrophylla (CM), and Troyer citrange (TC) to UV-B light-induced stress, by growing plants of both genotypes under control and UV-B stress conditions for 5 days to evaluate their tolerance mechanisms. TC seedlings had higher sensitivity to UV-B light than CM seedlings, as they showed more damage and increased levels of oxidative harm (indicated by the accumulation of MDA). In contrast, CM seedlings exhibited specific adaptive mechanisms, including accumulation of higher levels of proline under stressful conditions, and enhanced antioxidant capacity, as evidenced by increased ascorbate peroxidase activity and upregulation of the CsAPX2 gene. Phytohormone accumulation patterns were similar in both genotypes, with a decrease in ABA content in response to UV-B light. Furthermore, expression of genes involved in light perception and response was specifically affected in the tolerant CM seedlings, which exhibited higher expression of CsHYH/CsHY5 and CsRUP1-2 genes. These findings underscore the importance of the antioxidant system in citrus plants subjected to UV-B light-induced stress and suggest that CsHYH/CsHY5 and CsRUP1-2 could be considered genes associated with tolerance to such challenging conditions.


Subject(s)
Antioxidants , Citrus , Proline , Seedlings , Ultraviolet Rays , Citrus/radiation effects , Citrus/genetics , Citrus/physiology , Citrus/metabolism , Proline/metabolism , Antioxidants/metabolism , Seedlings/radiation effects , Seedlings/physiology , Seedlings/genetics , Seedlings/metabolism , Stress, Physiological , Gene Expression Regulation, Plant/radiation effects , Genotype , Plant Growth Regulators/metabolism , Oxidative Stress/radiation effects , Adaptation, Physiological/radiation effects , Adaptation, Physiological/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...