Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.674
Filter
1.
Sci Rep ; 14(1): 15329, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961199

ABSTRACT

GDP-L-galactose phosphorylase (GGP) is a key rate-limiting enzyme in plant ascorbic acid synthesis, which plays an important role in plant growth and development as well as stress response. However, the presence of GGP and its function in potato and pepper are not known. In this study, we first identified two GGP genes in each potato and pepper genomes using a genome-wide search approach. We then analyzed their physicochemical properties, conserved domains, protein structures and phylogenetic relationships. Phylogenetic tree analysis revealed that members of the potato and pepper GGP gene families are related to eggplant (Solanum melongena L.), Arabidopsis (Arabidopsis thaliana L.), tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.), with tomato being the most closely related. The promoter sequences mainly contain homeopathic elements such as light-responsive, hormone-responsive and stress-responsive, with light-responsive elements being the most abundant. By analyzing the structure of the genes, it was found that there is no transmembrane structure or signal peptide in the GGP gene family of potatoes and peppers, and that all of its members are hydrophilic proteins. The expression profiles of different tissues show that StGGP1 has the highest expression levels in leaves, StGGP2 has the highest expression levels in stamens, and CaGGPs have the highest expression levels in the early stages of fruit development (Dev1). It was found that StGGPs and CaGGPs genes showed different response to phytohormones and abiotic stresses. Abscisic acid (ABA) treatment induced the most significant change in the expression of StGGPs, while the expression of CaGGPs showed the most pronounced change under methyl jasmonate (MeJA) treatment. StGGPs responded mainly to dark treatment, whereas CaGGPs responded mainly to NaCl stress. These results provide an important basis for a detailed study about the functions of GGP homologous genes in potato and pepper in response to abiotic stresses.


Subject(s)
Capsicum , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Growth Regulators , Plant Proteins , Solanum tuberosum , Stress, Physiological , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Capsicum/genetics , Capsicum/growth & development , Capsicum/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Promoter Regions, Genetic
2.
J Pharm Biomed Anal ; 249: 116334, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38976964

ABSTRACT

This work presents the modification of glassy carbon electrodes (GCE) by using a dispersion resulting from the non-covalent functionalization of multi-walled carbon nanotubes (MWCNT) with polyarginine (polyArg). MWCNT-polyArg is used for the quantification of ascorbic acid (AA) in the presence of acetaminophen (APAP) and viceversa. Since ascorbic acid and acetaminophen are strongly absorbed on GCE/MWCNT-polyArg, they can be detected in the presence of 4.0×10-5 M acetaminophen (and 3.0×10-5 M ascorbic acid) by using adsorptive stripping with media exchange and differential pulse voltammetry. Using water as the solvent for the MWCNT dispersion, the result was Z-potential of 0.053 ± 0.006 V. The developed sensor showed excellent specificity, sensitivity, stability and reproducibility compared to previously published sensors. The GCE/MWCNT-polyArg sensor shows a fast response time of ∼5 minutes, low limits of detection and quantification for AA (0.95 and 2.9 µM respectively) and APAP (0.27 and 0.82µM, respectively), high sensitivity of 0.0616 µA/M for AA or APAP 0.240µA/M. It was used to test its practicability by determining the concentration of AA or APAP (AA and APAP) in pharmaceutical samples. Finally, the simultaneous measurement of ascorbic acid and acetaminophen in pharmaceuticals showed a good correlation, with a maximum error and RSD of 4.5 and 5.1 %, respectively.

3.
Article in English | MEDLINE | ID: mdl-38973337

ABSTRACT

Myocardial reperfusion injury (MRI) accounts for up to 50% of the final size in acute myocardial infarction and other conditions associated with ischemia-reperfusion. Currently, there is still no therapy to prevent MRI, but it is well known that oxidative stress has a key role in its mechanism. We previously reduced MRI in rats through a combined antioxidant therapy (CAT) of ascorbic acid, N-acetylcysteine, and deferoxamine. This study determines the safety and pharmacokinetics of CAT in a Phase I clinical trial. Healthy subjects (n = 18) were randomized 2:1 to CAT or placebo (NaCl 0.9% i.v.). Two different doses/infusion rates of CATs were tested in a single 90-minute intravenous infusion. Blood samples were collected at specific times for 180 minutes to measure plasma drug concentrations (ascorbic acid, N-acetylcysteine, and deferoxamine) and oxidative stress biomarkers. Adverse events were registered during infusion and followed for 30 days. Both CAT1 and CAT2 significantly increased the CAT drug concentrations compared to placebo (P < .05). Most of the pharmacokinetic parameters were similar between CAT1 and CAT2. In total, 6 adverse events were reported, all nonserious and observed in CAT1. The ferric-reducing ability of plasma (an antioxidant biomarker) increased in both CAT groups compared to placebo (P < .001). The CAT is safe in humans and a potential treatment for patients with acute myocardial infarction undergoing reperfusion therapy.

4.
Biochemistry (Mosc) ; 89(6): 1146-1157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981707

ABSTRACT

Water shortage induces physiological, biochemical, and molecular alterations in plant leaves that play an essential role in plant adaptive response. The effects of drought and post-drought rewatering on the activity of antioxidant enzymes and levels of H2O2, phenolic compounds, ascorbic acid, and proline were studied in six local tomato (Solanum lycopersicum L.) varieties. The contents of H2O2 and ascorbic acid increased in all drought-exposed tomato plants and then decreased upon rewatering. The level of phenolic compounds also decreased in response to water shortage and then recovered upon rehydration, although the extent of this response was different in different varieties. The activities of ascorbate peroxidase (APX) and guaiacol peroxidase (POX) and the content of proline significantly increased in the drought-stressed plants and then decreased when the plants were rewatered. The activities of 8 constitutive APX isoforms and 2 constitutive POX isoforms varied upon exposure to drought and were observed after rewatering in all studied varieties. The information on the response of tomato plants to drought and subsequent rewatering is of great importance for screening and selection of drought-tolerant varieties, as well as for development of strategies for increasing plant productivity under adverse environmental conditions.


Subject(s)
Antioxidants , Ascorbate Peroxidases , Droughts , Solanum lycopersicum , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Hydrogen Peroxide/metabolism , Stress, Physiological , Water/metabolism , Ascorbic Acid/metabolism , Peroxidase/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Proline/metabolism
5.
Food Chem ; 459: 140339, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38986206

ABSTRACT

A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 µs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.

6.
AAPS PharmSciTech ; 25(6): 159, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987438

ABSTRACT

Vitamin C is extensively used in cosmetic formulation, howbeit stability is the supreme demerit that limits its use in beautifying products. Numerous techniques are being employed to inhibit the degradation of vitamin C caused by formulation components to facilitate the use in skin rejuvenating products. Diverse materials are being exercised in formulation to stabilize the ascorbic acid and ingredients selected in this formulation composition help for stabilization. The initial stable prototype is developed and further optimization is accomplished by applying the design of experiment tools. The stable pharmaceutical formulations were evaluated for the evaluation parameters and designated as two optimized formulations. The analytical method for the assay of ascorbic acid from the United States pharmacopeia and the related substance method from European pharmacopeia has been modified to be used for cream formulation. The DoE design exhibited that the stability of formulation is impacted by citric acid and tartaric acid but not by propylene glycol and glycerin. The analysis results of topical formulations for the evaluation parameter exhibited satisfactory results. The in-vitro release study method has been developed, optimized, and validated to fit the analysis. The in-vitro studies have been performed for selected compositions and both the formulation has similar kinds of release patterns. The stability study as per ICH guidelines exhibited that the product is stable for accelerated, intermediate, and room-temperature storage conditions. The optimized formulation shows constant release and permeation of ascorbic acid through the skin. The formulation with the combinations of citric acid, tartaric acid, and tocopherol is more stable and the degradation of vitamin C has been reduced significantly. The beaucoup strategies in the unique composition help to protect the degradation by inhibiting the multitudinous degradation pathways.


Subject(s)
Ascorbic Acid , Chemistry, Pharmaceutical , Drug Stability , Ascorbic Acid/chemistry , Chemistry, Pharmaceutical/methods , Tartrates/chemistry , Citric Acid/chemistry , Drug Compounding/methods , Excipients/chemistry
7.
BMC Plant Biol ; 24(1): 662, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987668

ABSTRACT

BACKGROUND: Enhancing crops' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC). RESULTS: The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant's nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS. CONCLUSION: Under drought conditions, biopriming with B. bassiana enhanced Malva's growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.


Subject(s)
Beauveria , Droughts , Beauveria/physiology , Beauveria/genetics , Drought Resistance
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124585, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38850825

ABSTRACT

The studies of two isomers of ascorbic acid and their deuteroanalogues, presented in the paper, have been accomplished by vibrational spectroscopy methods and quantum-chemical simulations. The spectroscopic research of L-ascorbic and D-isoascorbic acids have been carried out by the infrared (IR) and Raman (R) techniques. On the basis of the obtained results the spectral interpretation of the hydrogen bonded groups of ascorbic acids has been performed. Car-Parrinello Molecular Dynamics (CPMD) and Density Functional Theory (DFT) have been employed to support spectroscopic experimental findings and shed light onto the bridged proton dynamics in the L- and D- isomers of ascorbic acids. The accurate assignments of the hydrogen bond modes have been accomplished with the application of deuterosubstitution, CPMD-solid state simulations and Potential Energy Distribution (PED) analysis. The spectral and structural results have shown that dependency ν(OH) = f(γ(OH)) is the most common for the OHO hydrogen bond, whereas dependency d(OO) = f(γ(OH)) differs as for the ionic and resonance assisted hydrogen bonds.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124709, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38945008

ABSTRACT

The convenience and high efficiency of recently developed I-III-VI group AgInS2 (AIS) fluorescence sensors have garnered considerable attention. In this study, glutathione (GSH) was employed as a stabilizer to synthesize Mn doped AgInS2 quantum dots (Mn-AIS QDs) via a one-step hydrothermal method at a lower temperature. The resultant samples displayed favorable photoluminescent characteristics and excellent water dispersibility. The photoluminescence of Mn-AIS QDs is quenched by Fe (III) via a photo-induced electron transfer mechanism (PET), and this quenching can be reversed by ascorbic acid (AA) as a result of the redox reaction between the Mn-AIS-Fe (III) complex and AA. Utilizing the on-off-on fluorescence principle, a fluorescence switch sensor based on Mn-AIS QDs was developed for the detection of Fe (III) and AA. The linear range for the detection of Fe (III) using the Mn-AIS QDs sensor was established to be 0.03-120 µM, with a detection limit (LOD) of 0.16 nM. For the detection of AA within the Mn-AIS-Fe (III) system, the linear range spanned from 0.05 to 180 µM, with a LOD of 0.031 µM. Both Mn-AIS and Mn-AIS-Fe (III) demonstrated robust anti-interference properties, facilitating the accurate detection of Fe (III) in tap water and AA in vitamin C tablets. This approach is notable for its simplicity, cost-effectiveness, and considerable potential for application in the creation of innovative biological and environmental sensors.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124730, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38943757

ABSTRACT

Most known chemiluminescence (CL) systems are flash-type that generate weak luminescence and decline quickly after dozens of seconds, while the glow-type CL systems have stable emission for an extended period to achieve accurate quantitation. In this work, a long-term CL system based on hydrazine-hydrate (N2H4·H2O) modified carbon quantum dots (N-CQDs) as a luminescent probe, with K2S2O8 and H2O2 as co-reactants, was proposed. The CL emission enhanced by H2O2 increased 18-fold more than that of N-CQDs and K2S2O8 direct reaction, and decayed by 5% of the maximum intensity over 700 s. In the reaction system, K2S2O8 and H2O2 co-reactants can promote each other to continuously generate corresponding radicals (•OH, O2•-, 1O2), which in turn trigger the CL emission of N-CQDs. This phenomenon was identified as the primary cause for the production of persistent CL. In addition, a stable and selective CL sensor based on the N-CQDs-K2S2O8-H2O2 CL enhancing system was developed for ascorbic acid quantitation in the linear range from 0.1 to 10.0 mM with a detection limit of 0.036 mM. The method has been applied to the analysis of tablet samples and holds potential in pharmaceutical analysis field.

11.
Animals (Basel) ; 14(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38929439

ABSTRACT

This study investigated the effects of rumen-protected L-tryptophan or L-ascorbic acid supplementation on the productivity of lactating Holstein cows during a high-temperature period. Thirty cows were assigned to three dietary groups: control (CON), treatment 1 (TRT 1; rumen-protected L-tryptophan, 20 g/cow/d), and treatment 2 (TRT 2; rumen-protected L-ascorbic acid, 20 g/cow/d). As the high-temperature period progressed, the decrease in milk yield and dry matter intake (DMI) in the TRT 1 and TRT 2 groups was lower than that in the CON group. The total protein level in the plasma of the TRT 1 group was higher than that in the CON group (p < 0.05). Milk melatonin concentration was higher in the TRT 1 group than in the CON and TRT 2 groups (p < 0.05). Thus, the present results indicate that rumen-protected L-tryptophan or L-ascorbic acid has positive effects in preventing declines in DMI and milk yield by reducing heat stress in Holstein cows. In particular, rumen-protected L-tryptophan is considered effective in increasing the melatonin concentration in milk.

12.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930902

ABSTRACT

The current study focused on the design of an extremely sensitive electrochemical sensor of ascorbic acid based on a mixture of NiAl2O4-NiO nanoparticles that, produced in a single step using the sol-gel method, on an ITO electrode. This new sensing platform is useful for the detection of ascorbic acid with a wide range of concentrations extending from the attomolar to the molar. SEM micrographs show the porous structure of the NiAl2O4-NiO sample, with a high specific surface area, which is beneficial for the catalytic performance of the nanocomposite. An XRD diffractogram confirmed the existence of two phases, NiAl2O4 and NiO, both corresponding to the face-centred cubic crystal structure. The performances of the modified electrode, as a biomolecule, in the detection of ascorbic acid was evaluated electrochemically by cyclic voltammetry and chronoamperometry. The sensor exhibited a sensitive electrocatalytic response at a working potential of E = +0.3 V vs. Ag/Ag Cl, reaching a steady-state current within 30 s after each addition of ascorbic acid solution with a wide dynamic range of concentrations extending from attolevels (10-18 M) to molar (10 mM) and limits of detection and quantification of 1.2 × 10-18 M and 3.96 × 10-18 M, respectively. This detection device was tested for the quantification of ascorbic acid in a 500 mg vitamin C commercialized tablet that was not pre-treated.

13.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930980

ABSTRACT

Two-dimensional MXenes have become an important material for electrochemical sensing of biomolecules due to their excellent electric properties, large surface area and hydrophilicity. However, the simultaneous detection of multiple biomolecules using MXene-based electrodes is still a challenge. Here, a simple solvothermal process was used to synthesis the Ti3C2Tx coated with TiO2 nanosheets (Ti3C2Tx@TiO2 NSs). The surface modification of TiO2 NSs on Ti3C2Tx can effectively reduce the self-accumulation of Ti3C2Tx and improve stability. Glassy carbon electrode was modified by Ti3C2Tx@TiO2 NSs (Ti3C2Tx@TiO2 NSs/GCE) and was able simultaneously to detect dopamine (DA), ascorbic acid (AA) and uric acid (UA). Under concentrations ranging from 200 to 1000 µM, 40 to 300 µM and 50 to 400 µM, the limit of detection (LOD) is 2.91 µM, 0.19 µM and 0.25 µM for AA, DA and UA, respectively. Furthermore, Ti3C2Tx@TiO2 NSs/GCE demonstrated remarkable stability and reliable reproducibility for the detection of AA/DA/UA.


Subject(s)
Ascorbic Acid , Dopamine , Nanostructures , Titanium , Uric Acid , Titanium/chemistry , Uric Acid/analysis , Uric Acid/chemistry , Dopamine/analysis , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Nanostructures/chemistry , Limit of Detection , Electrochemical Techniques/methods , Electrodes , Reproducibility of Results , Biosensing Techniques/methods
14.
Plants (Basel) ; 13(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931104

ABSTRACT

In this study, processing tomato (Solanum lycopersicum L.) 'Ligeer 87-5' was hydroponically cultivated under 100 mM NaCl to simulate salt stress. To investigate the impacts on ion homeostasis, osmotic regulation, and redox status in tomato seedlings, different endogenous levels of ascorbic acid (AsA) were established through the foliar application of 0.5 mM AsA (NA treatment), 0.25 mM lycorine (LYC, an inhibitor of AsA synthesis; NL treatment), and a combination of LYC and AsA (NLA treatment). The results demonstrated that exogenous AsA significantly increased the activities and gene expressions of key enzymes (L-galactono-1,4-lactone dehydrogenase (GalLDH) and L-galactose dehydrogenase (GalDH)) involved in AsA synthesis in tomato seedling leaves under NaCl stress and NL treatment, thereby increasing cellular AsA content to maintain its redox status in a reduced state. Additionally, exogenous AsA regulated multiple ion transporters via the SOS pathway and increased the selective absorption of K+, Ca2+, and Mg2+ in the aerial parts, reconstructing ion homeostasis in cells, thereby alleviating ion imbalance caused by salt stress. Exogenous AsA also increased proline dehydrogenase (ProDH) activity and gene expression, while inhibiting the activity and transcription levels of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine-δ-aminotransferase (OAT), thereby reducing excessive proline content in the leaves and alleviating osmotic stress. LYC exacerbated ion imbalance and osmotic stress caused by salt stress, which could be significantly reversed by AsA application. Therefore, exogenous AsA application increased endogenous AsA levels, reestablished ion homeostasis, maintained osmotic balance, effectively alleviated the inhibitory effect of salt stress on tomato seedling growth, and enhanced their salt tolerance.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124669, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38909560

ABSTRACT

The synthesis of carbon quantum dots (CQDs) using chemical precursors with different organic groups is a strategy to improve optical properties and expand applications in several fields of research such as Analytical Chemistry. Ascorbic acid and riboflavin are widely used in human food supplementation, making quality monitoring of these vitamin supplements relevant and necessary. In this work, disodium ethylenediaminetetraacetic, sodium thiosulfate and urea were applied to obtain CQDs through a single-step microwave-assisted synthesis. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, infrared spectroscopy, zeta potential measurements, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. The synthesized nanoparticles exhibited satisfactory and stable optical properties with luminescence at 430 nm, water solubility, and fluorescence quantum yield of 8.9 %. They were applied in the quantification of ascorbic acid and riboflavin in vitamin supplements. The fluorescence mechanisms observed were dynamic quenching for the CQDs/Cr(VI) sensor, followed by a return of fluorescence in the presence of ascorbic acid, and static quenching and inner filter effect in the interaction with riboflavin. Factorial designs 23 and 24 were used to optimize the analytical parameters. The CQDs/Cr(VI) sensor used in the determination of ascorbic acid, employing an on-off-on strategy, resulted in a linear range of 0.5 to 50 µg mL-1 and a limit of detection of 0.15 µg mL-1. The ratiometric fluorescence used in the determination of riboflavin resulted in a linear range of 0.1 to 7 µg mL-1 and a limit of detection of 0.09 µg mL-1. The analytical results for ascorbic acid were compared to the reference method of the Brazilian pharmacopeia, showing accuracy and precision according to the Brazilian Health Regulation Agency. Therefore, the synthesized CQDs were used to determine ascorbic acid and riboflavin in vitamin supplements, and the application of this nanomaterial can be expanded to different analytes and matrices, using simple and low-cost analysis techniques.

16.
J Pediatr Intensive Care ; 13(2): 119-126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38919697

ABSTRACT

Ascorbic acid, or vitamin C, is a physiological antioxidant that has been found to be deficient in critically ill adults with sepsis and acute respiratory distress system. In adults, ascorbic acid supplementation has been shown to reduce the need for vasopressors and mechanical ventilation. This study aimed to describe the prevalence of ascorbic acid deficiency in critically ill pediatric patients. This prospective, single-centered study analyzed 34 patients aged 1 month to 18 years old with septic shock and/or acute respiratory failure requiring mechanical ventilation in a quaternary, urban, pediatric intensive care unit. Plasma ascorbic acid levels were measured by high-performance liquid chromatography within 24 hours of meeting eligibility criteria. The median level was 23.34 µM (IQR [11.45, 39.14]). Twenty-three patients had repeat samples that were collected 3 to 5 days later. The median for repeat samples was higher at 42.41 µM (IQR [13.08, 62.43]). Patients who were enterally fed had significantly higher levels than those who were not (62.4 ± 7.7 µM vs. 32.4 ± 7.1 µM; p = 0.03). Ascorbic acid levels vary widely among critically ill children with septic shock and/or respiratory failure requiring mechanical ventilation, but one-half of our patients had deficient levels that are typically seen in scurvy. Further studies are warranted to investigate the significance of low levels as well as the impact of normalizing levels through nutritional support.

17.
BMC Res Notes ; 17(1): 179, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926714

ABSTRACT

OBJECTIVE: The stability of ascorbic acid (AA) in the human aqueous humor (AqH) remains unclear. This study aimed to investigate the stability of AqH AA under varying conditions (27, 4, - 20, and - 80 °C) without acidification. RESULTS: Rapid AA degradation occurred at 27 °C. At 4 °C, a significant 12.2% degradation was observed after 24 h. Storage at - 20 °C resulted in a notable 37.5% degradation after 28 days, whereas storage at - 80 °C resulted in 10.7% degradation after 28 days. Unacidified AqH samples recorded early decomposition at 27 °C and 4 °C. In conclusion, it is recommended to conduct measurements within 28 days for samples stored at - 80 °C.


Subject(s)
Aqueous Humor , Ascorbic Acid , Ascorbic Acid/chemistry , Humans , Aqueous Humor/chemistry , Aqueous Humor/metabolism , Drug Stability , Hydrogen-Ion Concentration
18.
Mikrochim Acta ; 191(7): 384, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38861028

ABSTRACT

Multifunctional N, Fe-doped carbon dots (N, Fe-CDs) were synthesized by the one-step hydrothermal method using ferric ammonium citrate and dicyandiamide as raw materials. The N, Fe-CDs exhibited peroxidase-like (POD) activity by catalyzing the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) to the green oxidation state ox-TMB in the presence of hydrogen peroxide (H2O2). Subsequently, based on the POD activity of N, Fe-CDs, an efficient and sensitive colorimetric method for the detection of H2O2 and ascorbic acid (AA) was established with a limit of detection of 0.40 µM and 2.05 µM. The proposed detection method has been successfully applied to detect AA in fruit juice, vitamin C tablets, and human serum samples and has exhibited excellent application prospects in biotechnology and food fields. Furthermore, N, Fe-CDs also showed a protective effect on the cell damage caused by H2O2 and could be used as an antioxidant agent.


Subject(s)
Ascorbic Acid , Carbon , Fruit and Vegetable Juices , Hydrogen Peroxide , Oxidation-Reduction , Quantum Dots , Hydrogen Peroxide/chemistry , Ascorbic Acid/chemistry , Humans , Carbon/chemistry , Quantum Dots/chemistry , Fruit and Vegetable Juices/analysis , Benzidines/chemistry , Colorimetry/methods , Limit of Detection , Iron/chemistry , Nitrogen/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology
19.
Mikrochim Acta ; 191(7): 398, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877344

ABSTRACT

Persistent luminescent nanomaterials (PLNPs) Zn0.8Ga2O4: Cr3+, Zr3+ with high brightness and good dispersion were prepared by hydrothermal method. The PLNPs were used as luminescent units, and CoOOH nanosheets were used as quenching agents. Based on the fluorescence internal filtering effect, the luminescence of PLNPs were effectively quenched by CoOOH modification on the surface of PLNPs. However, the introduction of ascorbic acid (AA) restored the luminescence of PLNPs and successfully achieved highly sensitive and selective detection of AA. This was due to a selective redox reaction between CoOOH and AA, in which CoOOH was reduced to Co2+. The degree of luminescence recovery of PLNPs showed a good linear relationship with AA concentration in the range 5-250 µM, with a detection limit of 0.72 µM. The recovery of actual spiked samples were 97.9-102.2%. This method is expected to provide reference for the study of other redox substances in biological systems.

20.
Cancers (Basel) ; 16(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38927877

ABSTRACT

Cancer cells show altered antioxidant defense systems, dysregulated redox signaling, and increased generation of reactive oxygen species (ROS). Targeting cancer cells through ROS-mediated mechanisms has emerged as a significant therapeutic strategy due to its implications in cancer progression, survival, and resistance. Extensive research has focused on selective generation of H2O2 in cancer cells for selective cancer cell killing by employing various strategies such as metal-based prodrugs, photodynamic therapy, enzyme-based systems, nano-particle mediated approaches, chemical modulators, and combination therapies. Many of these H2O2-amplifying approaches have demonstrated promising anticancer effects and selectivity in preclinical investigations. They selectively induce cytotoxicity in cancer cells while sparing normal cells, sensitize resistant cells, and modulate the tumor microenvironment. However, challenges remain in achieving selectivity, addressing tumor heterogeneity, ensuring efficient delivery, and managing safety and toxicity. To address those issues, H2O2-generating agents have been combined with other treatments leading to optimized combination therapies. This review focuses on various chemical agents/approaches that kill cancer cells via H2O2-mediated mechanisms. Different categories of compounds that selectively generate H2O2 in cancer cells are summarized, their underlying mechanisms and function are elucidated, preclinical and clinical studies as well as recent advancements are discussed, and their prospects as targeted therapeutic agents and their therapeutic utility in combination with other treatments are explored. By understanding the potential of these compounds, researchers can pave the way for the development of effective and personalized cancer treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...