Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Parasitol ; 216: 107940, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32562606

ABSTRACT

Therapeutic options for the treatment of leishmaniasis are insufficient and need improvements owing to their low efficiency and high toxicity as well as the emergence of resistant strains. The limited number of new drugs for neglected diseases and lack of innovation in your development are still challenges. In this context, the process of discovery and development of biological assays play a pivotal role for the identification of bioactive compounds. The assays currently used for screening of drugs with cytotoxic activity against Leishmania parasites, include different processes that utilize intact parasite (free or intracellular) or specific enzymes of metabolism as a target cell. These assays allow the screening of large numbers of samples followed by more detailed secondary confirmatory assays to confirm the observed activity and assess their toxicity. In the present study, we described the development of a new functional and more complete assay that enables simultaneous assessment of potential anti-Leishmania compounds through evaluation of internalization of fluorescein-labeled L. braziliensis promastigotes by human peripheral blood monocytes and their cytotoxicity by flow cytometry. We standardized the conditions for parasite labeling to achieve better phagocytosis analysis by setting the ratio of number of parasites per cell as 1 to 2, at incubation time of 6h. The cytotoxicity assessment was performed by the quantification of cells undergoing early/late apoptosis and necrosis using a double labelling platform employing 7AAD for late apoptosis and necrosis analysis and Annexin-V for early apoptosis evaluation. Hemolysis analysis was an additional parameter to test cytotoxicity. Two drugs used on clinic (Amphotericin B and Glucantime®) were used to validate the proposed methodology, and the assay was able to detect their known leishmanicidal activity and immunotoxicity properties. This new predictive assay will contribute to the development of translational medicine strategies in drug discovery for neglected diseases such as leishmaniasis.


Subject(s)
Animal Testing Alternatives/methods , Antiprotozoal Agents/toxicity , Flow Cytometry/methods , Leishmania/drug effects , Neglected Diseases/drug therapy , Adult , Amphotericin B/pharmacology , Amphotericin B/toxicity , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Fluorescein-5-isothiocyanate , Fluorescent Dyes , Humans , Leishmania braziliensis/drug effects , Leishmaniasis/drug therapy , Leukocytes/drug effects , Leukocytes/parasitology , Meglumine Antimoniate/pharmacology , Meglumine Antimoniate/therapeutic use , Meglumine Antimoniate/toxicity , Microscopy, Confocal , Middle Aged , Monocytes/drug effects , Monocytes/parasitology , Time Factors , Young Adult
2.
Intervirology ; 61(6): 301-306, 2018.
Article in English | MEDLINE | ID: mdl-30917376

ABSTRACT

The human metapneumovirus (hMPV) is an important viral agent associated with severe infections of the upper and lower airways, especially in young children and immunosuppressed subjects. Nevertheless, in vitro studies of hMPV are very difficult due to the little knowledge we have on its laboratory manipulation. OBJECTIVE: The aim of this study was to isolate and propagate hMPV from patients, and to establish a method to quantify the virus by plaque assay. METHOD: As part of a Latin American respiratory virus surveillance study, 12 nasal secretion samples - hMPV-positive by direct fluorescence - were inoculated on LLC-MK2 cells to isolate the virus. The supernatants were re-inoculated and the cytopathic effect and syncytium formation were evaluated daily; the infection was confirmed by immunofluorescence and RT-PCR. A protocol to titrate the harvested virus was established inoculating serial dilutions on LLC-MK2 cells, and agarose was then added as an overlay. After different time periods, the monolayers were fixed and stained with Naphthol blue/black or crystal violet and finally the viral titer was obtained. RESULTS: Eight out of 12 hMPV-positive respiratory samples were positive for the isolation and confirmed by RT-PCR and immunofluorescence, but the cytopathic effect and syncytium formation were observed only in 5 cultures. One out of 8 viral isolates was used for propagation and plaque assay standardization. We found that incubation for 7 days in the semisolid overlay yielded plaques with appropriate size and shape to be counted, although crystal violet staining showed slightly larger plaques than those seen with Naphthol blue/black staining. CONCLUSIONS: The isolation and propagation from patient-derived hMPV and the standardization of a practical, reliable, and inexpensive method of detection and quantification of hMPV were carried out, without the additional use of antibodies that had not been reported previously. These results offer some important insights for future studies of cellular and molecular biology of hMPV.


Subject(s)
Metapneumovirus/isolation & purification , Metapneumovirus/physiology , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/virology , Cytopathogenic Effect, Viral , Fluorescent Antibody Technique , Giant Cells , Humans , Immunohistochemistry , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Viral Load , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL