Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 471
Filter
1.
Front Immunol ; 15: 1395427, 2024.
Article in English | MEDLINE | ID: mdl-39007135

ABSTRACT

Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.


Subject(s)
Lupus Erythematosus, Systemic , Signal Transduction , src-Family Kinases , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , src-Family Kinases/metabolism , src-Family Kinases/genetics , Humans , Animals , B-Lymphocytes/immunology , Mice
2.
Article in English | MEDLINE | ID: mdl-38954383

ABSTRACT

INTRODUCTION: Limited epidemiologic data has suggested direct associations between hair pigment, race, and incidence of alopecia areata (AA). Here, we examine the relationship between natural hair color, race, and the lifetime risk alopecia. METHODS: In this case-control study, we included UK Biobank patients of all races and self-reported hair color with diagnoses of AA, androgenetic alopecia (AGA), or scarring alopecia (SA). Multivariable logistic regression was used to detect differences in lifetime risk. RESULTS: Findings reveal a significantly increased risk of AA among individuals with black hair compared to dark brown hair (OR 1.71 [95% CI 1.22-2.38], p < 0.001). Those with red or blonde hair showed a decreased risk of AA (0.74 [0.56-0.97]; 0.62 [0.41-0.95], p < 0.05). No racial differences in AA prevalence were observed among individuals with black hair. CONCLUSIONS: Darker hair colors may be associated with a higher risk of AA, lighter hair colors with a lower risk, and differences in hair color could contribute to previously noted racial variations in AA incidence, potentially influencing dermatologists' perspectives on the disease's epidemiology.

3.
Clin Case Rep ; 12(7): e9126, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38947541

ABSTRACT

VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a novel autoinflammatory syndrome. We describe a case of VEXAS syndrome with upper airway and oral cavity involvement which are not well described in the literature.

4.
Chem Biodivers ; : e202401253, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997793

ABSTRACT

Cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signaling pathway is a crucial component of innate immunity that plays a vital role in protecting against pathogen infections and cellular stress. However, aberrant activation of cGAS-STING pathway is associated with inflammatory and autoimmune diseases. Here, we developed cyclopeptide STING inhibitors by cyclizing the N-terminal tail (NTT) of STING. These cyclopeptides selectively inhibited the activation of STING pathway in human or murine cell lines. Mechanistically, the inhibitors directly bound to STING, and subsequently blocked the aggregation and activation of STING. In addition, the optimal inhibitor STi-2 significantly suppressed the elevated levels of type I interferon and proinflammatory cytokines in primary macrophages derived from Trex1-/- mice and systemic inflammation in Trex1-/- mice. Overall, our work facilitates the development of specific inhibitors of STING as potential therapies in the treatment of cGAS-STING associated autoinflammatory diseases.

5.
Cell ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38936360

ABSTRACT

Interleukin (IL)-23 and IL-17 are well-validated therapeutic targets in autoinflammatory diseases. Antibodies targeting IL-23 and IL-17 have shown clinical efficacy but are limited by high costs, safety risks, lack of sustained efficacy, and poor patient convenience as they require parenteral administration. Here, we present designed miniproteins inhibiting IL-23R and IL-17 with antibody-like, low picomolar affinities at a fraction of the molecular size. The minibinders potently block cell signaling in vitro and are extremely stable, enabling oral administration and low-cost manufacturing. The orally administered IL-23R minibinder shows efficacy better than a clinical anti-IL-23 antibody in mouse colitis and has a favorable pharmacokinetics (PK) and biodistribution profile in rats. This work demonstrates that orally administered de novo-designed minibinders can reach a therapeutic target past the gut epithelial barrier. With high potency, gut stability, and straightforward manufacturability, de novo-designed minibinders are a promising modality for oral biologics.

6.
Rheumatol Adv Pract ; 8(2): rkae065, 2024.
Article in English | MEDLINE | ID: mdl-38854419

ABSTRACT

Objectives: To unravel the mechanisms underlying cell death in the vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome using peripheral blood samples and to assess the clinical value of this knowledge. Methods: Nine patients undergoing treatment for VEXAS syndrome at Yokohama City University Hospital were included in this study. Monocytes and neutrophils were isolated from peripheral blood and then monocytes were differentiated into polarized macrophages. Viable cell counts, cell death assays and measurements of various indicators such as high mobility group box 1 (HMGB1) concentration, extracellular adenosine triphosphate (ATP) concentration, annexin V level and caspase 1, 3 and 7 activities were performed. Results: Elevated cell death of monocytes and neutrophils was observed in VEXAS syndrome patients, as indicated by cultured cell counts and cell death assays. Annexin V assays and measurements of caspase 1, 3 and 7 activities suggested increased apoptosis and pyroptosis in these cells. Serum HMGB1 levels were significantly elevated in VEXAS syndrome patients and decreased after prednisolone (PSL) dose escalation. Monocytes and neutrophils from the VEXAS group exhibited heightened extracellular ATP secretion, which was significantly reduced by soluble PSL co-culture. Conclusion: This study confirms increased cell death of monocytes and neutrophils and damage-associated molecular patterns in VEXAS syndrome, and these findings may be valuable for drug screening, therapeutic strategies and as biomarkers.

7.
Immunity ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38908373

ABSTRACT

Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-ß-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.

8.
Adv Pediatr ; 71(1): 213-228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944485

ABSTRACT

Systemic autoinflammatory diseases (SAID) are a growing family of disorders of the innate immune system. Over the years, there have been changes in the definition, classification and nomenclature of SAID as new syndromes and pathophysiologic mechanisms continue to be described. Recognizing the clinical manifestations of SAID is important for their early diagnosis and management. The field continues to advance with potential new therapies underway.


Subject(s)
Hereditary Autoinflammatory Diseases , Humans , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/classification , Hereditary Autoinflammatory Diseases/therapy , Hereditary Autoinflammatory Diseases/immunology , Child , Immunity, Innate
9.
Biomolecules ; 14(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38927050

ABSTRACT

Schnitzler syndrome is a rare disorder characterized by a chronic urticarial rash associated with immunoglobulin M (IgM) monoclonal gammopathy. Schnitzler syndrome shares strong clinicopathologic similarities with monogenic IL-1-mediated autoinflammatory disorders and is now considered an acquired adult-onset autoinflammatory disease. The spectacular effect of interleukin-1 inhibitors demonstrates the key role of this cytokine in the pathogenesis of the disease. However, the physiopathology of Schnitzler syndrome remains elusive, and the main question regarding the relationship between autoinflammatory features and monoclonal gammopathy is still unanswered. The purpose of this narrative review is to describe what is currently known about the pathogenesis of this peculiar disease, as well as to address its diagnosis and management.


Subject(s)
Schnitzler Syndrome , Schnitzler Syndrome/drug therapy , Schnitzler Syndrome/diagnosis , Humans , Immunoglobulin M/immunology , Interleukin-1/antagonists & inhibitors , Interleukin-1/metabolism
10.
Genes (Basel) ; 15(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927735

ABSTRACT

The aim of this study was to describe the clinical and molecular genetic findings in seven individuals from three unrelated families with Blau syndrome. A complex ophthalmic and general health examination including diagnostic imaging was performed. The NOD2 mutational hot spot located in exon 4 was Sanger sequenced in all three probands. Two individuals also underwent autoinflammatory disorder gene panel screening, and in one subject, exome sequencing was performed. Blau syndrome presenting as uveitis, skin rush or arthritis was diagnosed in four cases from three families. In two individuals from one family, only camptodactyly was noted, while another member had camptodactyly in combination with non-active uveitis and angioid streaks. One proband developed two attacks of meningoencephalitis attributed to presumed neurosarcoidosis, which is a rare finding in Blau syndrome. The probands from families 1 and 2 carried pathogenic variants in NOD2 (NM_022162.3): c.1001G>A p.(Arg334Gln) and c.1000C>T p.(Arg334Trp), respectively. In family 3, two variants of unknown significance in a heterozygous state were found: c.1412G>T p.(Arg471Leu) in NOD2 and c.928C>T p.(Arg310*) in NLRC4 (NM_001199139.1). In conclusion, Blau syndrome is a phenotypically highly variable, and there is a need to raise awareness about all clinical manifestations, including neurosarcoidosis. Variants of unknown significance pose a significant challenge regarding their contribution to etiopathogenesis of autoinflammatory diseases.


Subject(s)
Arthritis , Mutation , Nod2 Signaling Adaptor Protein , Pedigree , Sarcoidosis , Synovitis , Uveitis , Humans , Arthritis/genetics , Arthritis/diagnosis , Arthropathy, Neurogenic/genetics , Arthropathy, Neurogenic/diagnosis , Central Nervous System Diseases , Exome Sequencing , Hereditary Autoinflammatory Diseases , Lymphedema/genetics , Lymphedema/diagnosis , Nod2 Signaling Adaptor Protein/genetics , Sarcoidosis/genetics , Sarcoidosis/diagnosis , Synovitis/genetics , Synovitis/diagnosis , Uveitis/genetics , Uveitis/diagnosis
11.
Dermatologie (Heidelb) ; 75(7): 577-586, 2024 Jul.
Article in German | MEDLINE | ID: mdl-38856791

ABSTRACT

Inborn errors of immunity (IEI) can affect different parts of the immune system and manifest especially through pathological infection susceptibility and immune dysregulation. Cutaneous manifestations of IEI can hint at the underlying immunodeficiency and the tendency for infection and inflammation. These manifestations can present as recurring eczema, erythema, abscesses, and hair loss with poor response to therapy. Cutaneous manifestations can be specific for certain IEI, or rather unspecific. Together with clinical course and severity, they can indicate the diagnosis. Early and accurate recognition, diagnosis, and treatment are crucial for optimizing patient outcomes. The diagnosis can be determined through a detailed patient history, clinical examination, and immunological diagnostics. Collaboration between immunologists and dermatologists is vital for comprehensive care and improvement of life quality.


Subject(s)
Skin Diseases , Humans , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/diagnosis , Skin Diseases/immunology , Skin Diseases/therapy , Skin Diseases/diagnosis
12.
Clin Exp Immunol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864482

ABSTRACT

Familial mediterranean fever (FMF) is characterized by inflammatory attacks due to overactivation of pyrin inflammasome. This study aimed to investigate the reliability of S100A8/A9, neopterin, and matrix metalloproteinase 3 (MMP3) at monitoring subclinical inflammation and disease activity, and at differentiating FMF attacks from appendicitis, the most common misdiagnosis among FMF patients. Blood samples (n=75), comprising from FMF patients during an attack (n=20), the same FMF patients during the attack-free period (n=14), patients with appendicitis (n=24), and healthy volunteers (n=17) were obtained. Duplicate determinations of S100A8/A9, neopterin, and MMP-3 levels were conducted using the enzyme-linked immunosorbent assay (ELISA). FMF patients with and without attack and patients with appendicitis had significantly elevated S100A8/A9 levels compared to healthy volunteers (p-values: <0.001, 0.036, 0.002, respectively). Patients with appendicitis and FMF patients with and without attack had significantly increased serum neopterin levels compared to healthy volunteers (p-value: <0.001). MMP3 levels were significantly higher among patients with appendicitis and FMF patients during attack compared to healthy controls (p-values: <0.001, 0.001). Serum levels of S100A8/A9, neopterin, and MMP3 were increased significantly during attacks compared to attack-free periods among FMF patients (p-values: 0.03, 0.047, 0.007). S100A8/A9 emerges as a valuable marker for monitoring disease activity. Neopterin and S100A8/A9 might help physicians to monitor subclinical inflammation during the attack-free periods of FMF patients. MMP3 might aid in diagnosing FMF attacks when distinguishing between attack and attack-free periods is challenging.

13.
Clin Immunol ; 265: 110292, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914362

ABSTRACT

OTULIN encodes an eponymous linear deubiquitinase (DUB) essential for controlling inflammation as a negative regulator of the canonical NF-κB signaling pathway via the regulation of M1-Ub dynamics. Biallelic loss-of-function (LOF) mutations in OTULIN cause an autosomal recessive condition named Otulin-Related Autoinflammatory Syndrome (ORAS), also known as Otulipenia or AutoInflammation, Panniculitis, and Dermatosis Syndrome (AIPDS). Monoallelic OTULIN LOF, also known as OTULIN Haploinsufficiency (OHI) or Immunodeficiency 107 (IMD107), has been linked to an incompletely penetrant, dominantly inherited susceptibility to invasive Staphylococcal infections. At the same time, a recent novel ORAS-like inflammatory syndrome was described in association with a heterozygous missense mutation that appears to exert dominant negative (DN) effects. In this manuscript, we report the identification of a novel homozygous missense mutation, c.595 T > A; p.(Trp199Arg), in a Moroccan infant with an ORAS phenotype and provide experimental evidence for its pathogenicity. We go on to systematically review the literature for OTULIN-associated conditions by using the GenIA database (www.geniadb.net) to collect, extract and harmonize all clinical, laboratory and functional data for published patients and variants. Our comprehensive synthesis of genotypic, phenotypic, and mechanistic data enables a more in-depth view of the diverse mechanisms and pathways by which the OTULIN pathogenic variants may lead to human immune disease. This review may help variant classification activities and inform future variant evaluation, as well as the development of diagnostic and management guidelines. It also identifies current knowledge gaps and raises additional questions warranting future investigation.


Subject(s)
Mutation, Missense , Humans , Mutation, Missense/genetics , Infant , Male , Female , Endopeptidases
15.
Clin Immunol ; 263: 110231, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692449

ABSTRACT

Moderate-to-severe systemic lupus erythematosus (SLE) is characterized by extensive autoantibody deposition and persistent autoinflammation. As the existing animal models are limited in accurately reproducing the pathological characteristics of human SLE, we introduced a novel animal model simulating multi-organ autoinflammation through intra-organ injections. The model closely mimicked key features of SLE, including IgG deposition, inflammation, and tissue damage. The model could be used to assess the roles of IgG, immune cells, cytokines, and Fc gamma receptor (FcγR) in the pathogenesis of autoinflammation. The results obtained from this model could be confirmed by lupus MRL/lpr mice. The review suggested that the diagnostic criteria should be reconsidered to incorporate IgG deposition in tissues and highlighted the limitations of current T-cell and B-cell-focused treatments. To summarize, the IgG deposition model can be used to investigate the pathogenesis and treatment of multi-organ tissue damage associated with SLE.


Subject(s)
Disease Models, Animal , Immunoglobulin G , Lupus Erythematosus, Systemic , Animals , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Mice , Immunoglobulin G/immunology , Humans , Mice, Inbred MRL lpr , Inflammation/immunology , Receptors, IgG/immunology , Receptors, IgG/metabolism , B-Lymphocytes/immunology
16.
Res Sq ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38712244

ABSTRACT

OTULIN encodes an eponymous linear deubiquitinase (DUB), which through the regulation of M1-Ub dynamics, is essential for controlling inflammation as a negative regulator of the canonical NF-κB signaling pathway. Biallelic loss-of-function (LOF) mutations in OTULIN cause an autosomal recessive condition named Otulin-Related Autoinflammatory Syndrome (ORAS), also known as Otulipenia or AutoInflammation, Panniculitis, and Dermatosis Syndrome (AIPDS). Monoallelic OTULIN LOF, also known as OTULIN Haploinsufficiency (OHI) or Immunodeficiency 107 (IMD107), has been linked to an incompletely penetrant, dominantly inherited susceptibility to invasive Staphylococcal infections. At the same time, a recent novel ORAS-like inflammatory syndrome was described in association with a heterozygous missense mutation that appears to exert dominant negative effects. In this manuscript, we report the identification of a novel homozygous missense mutation, c.595T>A; p.(Trp199Arg), in a Moroccan infant with an ORAS phenotype. We go on to systematically review the literature for OTULIN-related human disease phenotypes by using the GenIA database to collect, extract and harmonize all clinical, laboratory and functional data for published patients and variants. Our comprehensive synthesis of genotypic, phenotypic, and mechanistic data enables a more in-depth view of the diverse mechanisms and pathways by which the OTULIN pathogenic variants may lead to human immune disease. This review may help variant classification activities and the drafting of diagnostic and management guidelines; but it also identifies outstanding knowledge gaps and raises additional questions for future investigation.

17.
Cell Rep Med ; 5(4): 101503, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593810

ABSTRACT

In monogenic autoinflammatory diseases, mutations in genes regulating innate immune responses often lead to uncontrolled activation of inflammasome pathways or the type I interferon (IFN-I) response. We describe a mechanism of autoinflammation potentially predisposing patients to life-threatening necrotizing soft tissue inflammation. Six unrelated families are identified in which affected members present with necrotizing fasciitis or severe soft tissue inflammations. Exome sequencing reveals truncating monoallelic loss-of-function variants of nuclear factor κ light-chain enhancer of activated B cells (NFKB1) in affected patients. In patients' macrophages and in NFKB1-variant-bearing THP-1 cells, activation increases both interleukin (IL)-1ß secretion and IFN-I signaling. Truncation of NF-κB1 impairs autophagy, accompanied by the accumulation of reactive oxygen species and reduced degradation of inflammasome receptor nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3), and Toll/IL-1 receptor domain-containing adaptor protein inducing IFN-ß (TRIF), thus leading to combined excessive inflammasome and IFN-I activity. Many of the patients respond to anti-inflammatory treatment, and targeting IL-1ß and/or IFN-I signaling could represent a therapeutic approach for these patients.


Subject(s)
Fasciitis, Necrotizing , Interferon Type I , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Immunity, Innate , Inflammation/metabolism , NF-kappa B p50 Subunit
18.
Cell Rep ; 43(4): 114114, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625791

ABSTRACT

Patients afflicted with Stimulator of interferon gene (STING) gain-of-function mutations frequently present with debilitating interstitial lung disease (ILD) that is recapitulated in mice expressing the STINGV154M mutation (VM). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in initiating ILD. To identify STING-expressing non-hematopoietic cell types required for the development of ILD, we use a conditional knockin (CKI) model and direct expression of the VM allele to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted VM expression results in enhanced recruitment of immune cells to the lung associated with elevated chemokine expression and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of STING-associated vasculopathy with onset in infancy (SAVI) patients or patients afflicted with other ILD-related disorders.


Subject(s)
Endothelial Cells , Gain of Function Mutation , Lung , Membrane Proteins , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice , Lung/pathology , Lung/metabolism , Lymphocytes/metabolism , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/metabolism , Mice, Inbred C57BL , Humans
19.
J Clin Immunol ; 44(4): 99, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619739

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by its large heterogeneity in terms of clinical presentation and severity. The pathophysiology of SLE involves an aberrant autoimmune response against various tissues, an excess of apoptotic bodies, and an overproduction of type-I interferon. The genetic contribution to the disease is supported by studies of monozygotic twins, familial clustering, and genome-wide association studies (GWAS) that have identified numerous risk loci. In the early 70s, complement deficiencies led to the description of familial forms of SLE caused by a single gene defect. High-throughput sequencing has recently identified an increasing number of monogenic defects associated with lupus, shaping the concept of monogenic lupus and enhancing our insights into immune tolerance mechanisms. Monogenic lupus (moSLE) should be suspected in patients with either early-onset lupus or syndromic lupus, in male, or in familial cases of lupus. This review discusses the genetic basis of monogenic SLE and proposes its classification based on disrupted pathways. These pathways include defects in the clearance of apoptotic cells or immune complexes, interferonopathies, JAK-STATopathies, TLRopathies, and T and B cell dysregulations.


Subject(s)
Autoimmunity , Lupus Erythematosus, Systemic , Humans , Male , Antigen-Antibody Complex , Autoimmunity/genetics , Genome-Wide Association Study , Lupus Erythematosus, Systemic/genetics , Phenotype , Female , Twin Studies as Topic
20.
Z Rheumatol ; 83(5): 341-353, 2024 Jun.
Article in German | MEDLINE | ID: mdl-38634905

ABSTRACT

Fever is a frequent and important symptom in patients with rheumatological diseases and can be an expression of activity of the underlying rheumatological disease. There is great variability in the incidence of fever as a symptom of the disease between individual diseases. The growing understanding of the molecular signatures of the diseases can help to explain these discrepancies: A genetic overactivation of potently pyrogenic cytokines is the reason why fever is nearly always present in autoinflammatory syndromes. In contrast, fever is less common in polyarthritis and myositis and mostly limited to severe courses of disease. In the diagnostic work-up of fever, frequent differential diagnoses, such as infections, malignancies, side effects of drugs and hypersensitivity reactions should be considered. This article provides an overview of the physiology of the development of fever, describes the relevance of fever in individual rheumatological diseases and proposes a workflow for the clinical clarification of rheumatological patients who present with fever.


Subject(s)
Fever , Rheumatic Diseases , Humans , Rheumatic Diseases/complications , Rheumatic Diseases/diagnosis , Fever/diagnosis , Fever/etiology , Diagnosis, Differential , Fever of Unknown Origin/etiology , Fever of Unknown Origin/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...