Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Cell Rep ; 43(8): 114641, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39154339

ABSTRACT

Caspase-8-dependent pyroptosis has been shown to mediate host protection from Yersinia infection. For this mode of cell death, the kinase activity of receptor-interacting protein kinase 1 (RIPK1) is required, but the autophosphorylation sites required to drive caspase-8 activation have not been determined. Here, we show that non-canonical autophosphorylation of RIPK1 at threonine 169 (T169) is necessary for caspase-8-mediated pyroptosis. Mice with alanine in the T169 position are highly susceptible to Yersinia dissemination. Mechanistically, the delayed formation of a complex containing RIPK1, ZBP1, Fas-associated protein with death domain (FADD), and caspase-8 abrogates caspase-8 maturation in T169A mice and leads to the eventual activation of RIPK3-dependent necroptosis in vivo; however, this is insufficient to protect the host, suggesting that timely pyroptosis during early response is specifically required to control infection. These results position RIPK1 T169 phosphorylation as a driver of pyroptotic cell death critical for host defense.


Subject(s)
Pyroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Yersinia Infections , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Yersinia Infections/metabolism , Yersinia Infections/microbiology , Mice , Caspase 8/metabolism , Mice, Inbred C57BL , Yersinia/metabolism , Humans
2.
Proc Natl Acad Sci U S A ; 121(26): e2402783121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38889145

ABSTRACT

Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of target protein phosphorylation. Thus, autophosphorylation and binding to the GluN2B subunit are the only two requirements for CaMKII in synaptic memory.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Long-Term Potentiation , Memory , Receptors, N-Methyl-D-Aspartate , Synapses , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Phosphorylation , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Long-Term Potentiation/physiology , Memory/physiology , Synapses/metabolism , Rats , Mice
3.
Cell Commun Signal ; 22(1): 310, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844908

ABSTRACT

Liver Kinase B1 (LKB1), encoded by Serine-Threonine Kinase 11 (STK11), is a master kinase that regulates cell migration, polarity, proliferation, and metabolism through downstream adenosine monophosphate-activated protein kinase (AMPK) and AMPK-related kinase signalling. Since genetic screens identified STK11 mutations in Peutz-Jeghers Syndrome, STK11 mutants have been implicated in tumourigenesis labelling it as a tumour suppressor. In support of this, several compounds reduce tumour burden through upregulating LKB1 signalling, and LKB1-AMPK agonists are cytotoxic to tumour cells. However, in certain contexts, its role in cancer is paradoxical as LKB1 promotes tumour cell survival by mediating resistance against metabolic and oxidative stressors. LKB1 deficiency has also enhanced the selectivity and cytotoxicity of several cancer therapies. Taken together, there is a need to develop LKB1-specific pharmacological compounds, but prior to developing LKB1 inhibitors, further work is needed to understand LKB1 activity and regulation. However, investigating LKB1 activity is strenuous as cell/tissue type, mutations to the LKB1 signalling pathway, STE-20-related kinase adaptor protein (STRAD) binding, Mouse protein 25-STRAD binding, splicing variants, nucleocytoplasmic shuttling, post-translational modifications, and kinase conformation impact the functional status of LKB1. For these reasons, guidelines to standardize experimental strategies to study LKB1 activity, associate proteins, spliced isoforms, post-translational modifications, and regulation are of upmost importance to the development of LKB1-specific therapies. Therefore, to assess the therapeutic relevancy of LKB1 inhibitors, this review summarizes the importance of LKB1 in cell physiology, highlights contributors to LKB1 activation, and outlines the benefits and risks associated with targeting LKB1.


Subject(s)
AMP-Activated Protein Kinase Kinases , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction/drug effects
4.
J Biol Chem ; 300(6): 107387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763336

ABSTRACT

The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.


Subject(s)
Adenosine Triphosphatases , Humans , Animals , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Cryoelectron Microscopy , Biological Transport , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Lipid Metabolism , Protein Conformation
5.
Clin Genet ; 106(1): 37-46, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38424693

ABSTRACT

Genetic missense variants in TNNI3K, encoding troponin-I interacting kinase, have been associated with dilated cardiomyopathy (DCM) and observed in families with supraventricular tachycardias (SVT). Previously, a family harboring the TNNI3K-c.1615A > G (p.Thr539Ala) variant presented with congenital junctional ectopic tachycardia (CJET), an arrhythmia that arises from the atrioventricular (AV) node and His bundle. However, this was a relatively small four-generational family with limited genetic testing (N = 3). We here describe a multigenerational family with CJET harboring a novel ultra-rare TNNI3K variant: TNNI3K-c.1729C > T (p.Leu577Phe). Of all 18 variant carriers, 13 individuals presented with CJET, resulting in a genetic penetrance of 72%. In addition, CJET is reported in another small family harboring TNNI3K-c.2225C > T (p.Pro742Leu). Similar to the previously published CJET family, both TNNI3K variants demonstrate a substantial reduction of kinase activity. Our study contributes novel evidence supporting the involvement of TNNI3K genetic variants as significant contributors to CJET, shedding light on potential mechanisms underlying this cardiac arrhythmia.


Subject(s)
Pedigree , Protein Serine-Threonine Kinases , Tachycardia, Ectopic Junctional , Humans , Female , Male , Adult , Tachycardia, Ectopic Junctional/genetics , Tachycardia, Ectopic Junctional/physiopathology , Protein Serine-Threonine Kinases/genetics , Middle Aged , Genetic Predisposition to Disease , Mutation, Missense/genetics , Adolescent , Child , Young Adult
6.
J Biol Chem ; 300(3): 105763, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367671

ABSTRACT

The EGF receptor is mutated in a number of cancers. In most cases, the mutations occur in the intracellular tyrosine kinase domain. However, in glioblastomas, many of the mutations are in the extracellular ligand binding domain. To determine what changes in receptor function are induced by such extracellular domain mutations, we analyzed the binding and biological response to the seven different EGF receptor ligands in three common glioblastoma mutants-R84K, A265V, and G574V. Our data indicate that all three mutations significantly increase the binding affinity of all seven ligands. In addition, the mutations increase the potency of all ligands for stimulating receptor autophosphorylation, phospholipase Cγ, Akt, and MAP kinase activity. In all mutants, the rank order of ligand potency seen at the wild-type receptor was retained, suggesting that the receptors still discriminate among the different ligands. However, the low-affinity ligands, EPR and EPG, did show larger than average enhancements of potency for stimulating Akt and MAPK but not receptor autophosphorylation and phospholipase Cγ activation. Relative to the wild-type receptor, these changes lead to an increase in the responsiveness of these mutants to physiological concentrations of ligands and an alteration in the ratio of activation of the different pathways. This may contribute to their oncogenic potential. In the context of recent findings, our data also suggest that so-called "high"-affinity biological responses arise from activation by isolated receptor dimers, whereas "low"-affinity biological responses require clustering of receptors which occurs at higher concentrations of ligand.


Subject(s)
ErbB Receptors , Epidermal Growth Factor/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Ligands , Mutation , Phospholipases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Protein Domains/genetics , CHO Cells , Animals , Cricetinae , Humans , Glioblastoma/genetics
7.
Biochem Biophys Res Commun ; 688: 149220, 2023 12 25.
Article in English | MEDLINE | ID: mdl-37952278

ABSTRACT

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is one of the drug target kinases involved in neurological disorders. DYRK1A phosphorylates substrate proteins related to disease progression in an intermolecular manner. Meanwhile, DYRK1A intramolecularly phosphorylates its own residues on key segments during folding process, which is required for its activation and stabilization. To reproduce the autophosphorylation in vitro, DYRK1A was expressed in Escherichia coli-based cell-free protein synthesis system. Although this system was useful for investigating autophosphorylation of serine residue at position 97 (Ser97) in DYRK1A, only a small fraction of the synthesized protein was successfully autophosphorylated. In this study, we found that the addition of DnaK, a bacterial HSP70 chaperone, to cell-free expression of DYRK1A promoted its Ser97 autophosphorylation. Structure prediction with AlphaFold2 indicates that Ser97 forms a hydrogen bond within an α-helix structure, indicating a possibility that DnaK unfolds the α-helix and maintains the structure around Ser97 in a conformation susceptible to phosphorylation. In addition, DnaK promoted phosphorylation of DYRK1B and HIPK2, but not DYRK2 and DYRK4, suggesting a sequence selectivity in the action of DnaK. This study provides a facile method for promoting autophosphorylation of DYRK family kinases in cell-free protein expression.


Subject(s)
Escherichia coli , Protein Processing, Post-Translational , Phosphorylation , Escherichia coli/genetics , Protein Biosynthesis
8.
Biomed Pharmacother ; 168: 115729, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37862964

ABSTRACT

Myocardial fibrosis is the fundamental remodeling process in myocardial ischemia (MI) and also the major contributor of heart failure and death. Tanshinol (Danshensu in Chinese, DSS), a major ingredient of salvia mitiorrhiza Bunge (Lamiaceae) root, exerted significant cardio protection effects. In this study, we aimed to identify the action target and then uncover the mechanism of DSS alleviating myocardial fibrosis. The pharmacological activities of DSS protecting ischemic cardiac was assessed and the myocardial proteomics was carried out. To identify the target of DSS, a cellular thermal shift assay combined with LC-MS identification was conducted. Surface plasmon resonance assay, molecular dynamics simulation and pharmacological and molecular biology approaches were adopted to explore the action mechanisms of DSS. Our results revealed that DSS effectively alleviated MI-induced left ventricle dysfunctions and the increasements of circulating myocardial markers. Besides, DSS significantly reversed the proteomic profile related to myocardial fibrotic processes and the ERK2 was identified as a crucial cellular target of DSS. DSS abated the temperature-dependent denaturation of ERK2 in a dose-dependent manner and the KD value of DSS and ERK2 was 60.19 µM. After Ang II stimulation, DSS suppressed the phosphorylation of Thr188 rather than the classic residues in TEY motif. DSS interfered the ERK2 homo-dimerization and then blocked the intermolecular autophosphorylation at Thr188 site. Thereout, DSS inhibited the nuclear translocation of ERK2 and the expression of downstream fibrotic biomolecules. Collectively, our results demonstrated that DSS targeted ERK2 and suppressed the intermolecular autophosphorylation at Thr188 residue, thus protecting ischemic myocardia from fibrosis remodeling.


Subject(s)
Cardiomyopathies , Proteomics , Humans , Phosphorylation , Myocardium/pathology , Cardiomyopathies/pathology , Fibrosis , Ischemia/pathology
9.
J Biol Chem ; 299(9): 105072, 2023 09.
Article in English | MEDLINE | ID: mdl-37474104

ABSTRACT

Eukaryotic protein kinases (EPKs) adopt an active conformation following phosphorylation of a particular activation loop residue. Most EPKs spontaneously autophosphorylate this residue. While structure-function relationships of the active conformation are essentially understood, those of the "prone-to-autophosphorylate" conformation are unclear. Here, we propose that a site within the αC-helix of EPKs, occupied by Arg in the mitogen-activated protein kinase (MAPK) Erk1/2 (Arg84/65), impacts spontaneous autophosphorylation. MAPKs lack spontaneous autoactivation, but we found that converting Arg84/65 of Erk1/2 to various residues enables spontaneous autophosphorylation. Furthermore, Erk1 molecules mutated in Arg84 are oncogenic. Arg84/65 thus obstructs the adoption of the "prone-to-autophosphorylate" conformation. All MAPKs harbor an Arg that is equivalent to Arg84/65 of Erks, whereas Arg is rarely found at the equivalent position in other EPKs. We observed that Arg84/65 of Erk1/2 interacts with the DFG motif, suggesting that autophosphorylation may be inhibited by the Arg84/65-DFG interactions. Erk1/2s mutated in Arg84/65 autophosphorylate not only the TEY motif, known as critical for catalysis, but also on Thr207/188. Our MS/MS analysis revealed that a large proportion of the Erk2R65H population is phosphorylated on Thr188 or on Tyr185 + Thr188, and a small fraction is phosphorylated on the TEY motif. No molecules phosphorylated on Thr183 + Thr188 were detected. Thus, phosphorylation of Thr183 and Thr188 is mutually exclusive suggesting that not only TEY-phosphorylated molecules are active but perhaps also those phosphorylated on Tyr185 + Thr188. The effect of mutating Arg84/65 may mimic a physiological scenario in which allosteric effectors cause Erk1/2 activation by autophosphorylation.


Subject(s)
Arginine , Mitogen-Activated Protein Kinase 1 , Mitogen-Activated Protein Kinase 3 , Phosphorylation , Arginine/metabolism , Humans , Animals , Mice , Cell Line , HEK293 Cells , Enzyme Activation/genetics , Mutation , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/chemistry , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Protein Structure, Tertiary , Models, Molecular , Crystallization , Amino Acid Sequence
10.
Biochem J ; 480(15): 1165-1182, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37459121

ABSTRACT

The Hippo pathway controls tissue growth and regulates stem cell fate through the activities of core kinase cassette that begins with the Sterile 20-like kinase MST1/2. Activation of MST1/2 relies on trans-autophosphorylation but the details of the mechanisms regulating that reaction are not fully elucidated. Proposals include dimerization as a first step and include multiple models for potential kinase-domain dimers. Efforts to verify and link these dimers to trans-autophosphorylation were unsuccessful. We explored the link between dimerization and trans-autophosphorylation for MST2 and the entire family of MST kinases. We analyzed crystal lattice contacts of structures of MST kinases and identified an ensemble of kinase-domain dimers compatible with trans-autophosphorylation. These dimers share a common dimerization interface comprised of the activation loop and αG-helix while the arrangements of the kinase-domains within the dimer varied depending on their activation state. We then verified the dimerization interface and determined its function using MST2. Variants bearing alanine substitutions of the αG-helix prevented dimerization of the MST2 kinase domain both in solution and in cells. These substitutions also blocked autophosphorylation of full-length MST2 and its Drosophila homolog Hippo in cells. These variants retain the same secondary structure as wild-type and capacity to phosphorylate a protein substrate, indicating the loss of MST2 activation can be directly attributed to a loss of dimerization rather than loss of either fold or catalytic function. Together this data functionally links dimerization and autophosphorylation for MST2 and suggests this activation mechanism is conserved across both species and the entire MST family.


Subject(s)
Protein Serine-Threonine Kinases , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Dimerization , Phosphorylation , Hippo Signaling Pathway
11.
Thromb Res ; 229: 53-68, 2023 09.
Article in English | MEDLINE | ID: mdl-37413892

ABSTRACT

BACKGROUND: HIV-infected individuals are known to be at higher risk for thrombotic cardiovascular disease (CVD), which may also be differentially affected by components of anti-HIV drugs. To identify the effects of a series of FDA-approved anti-HIV drugs on platelet aggregation in humans, focusing on the novel pharmacological effects of rilpivirine (RPV), a reverse transcriptase inhibitor, on platelet function both in vitro and in vivo and the mechanisms involved. METHODS AND RESULTS: In vitro studies showed that RPV was the only anti-HIV reagent that consistently and efficiently inhibited aggregation elicited by different agonists, exocytosis, morphological extension on fibrinogen, and clot retraction. Treatment of mice with RPV significantly prevented thrombus formation in FeCl3-injured mesenteric vessels, postcava with stenosis surgery, and ADP -induced pulmonary embolism models without defects in platelet viability, tail bleeding, and coagulation activities. RPV also improved cardiac performance in mice with post-ischemic reperfusion. A mechanistic study revealed that RPV preferentially attenuated fibrinogen-stimulated Tyr773 phosphorylation of ß3-integrin by inhibiting Tyr419 autophosphorylation of c-Src. Molecular docking and surface plasmon resonance analyses showed that RPV can bind directly to c-Src. Further mutational analysis showed that the Phe427 residue of c-Src is critical for RPV interaction, suggesting a novel interaction site for targeting c-Src to block ß3-integrin outside-in signaling. CONCLUSION: These results demonstrated that RPV was able to prevent the progression of thrombotic CVDs by interrupting ß3-integrin-mediated outside-in signaling via inhibiting c-Src activation without hemorrhagic side effects, highlighting RPV as a promising reagent for the prevention and therapy of thrombotic CVDs.


Subject(s)
Anti-HIV Agents , Thrombosis , Humans , Mice , Animals , Integrin beta3/metabolism , Phosphorylation , Rilpivirine/metabolism , Rilpivirine/pharmacology , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Drug Repositioning , Molecular Docking Simulation , Blood Platelets/metabolism , Thrombosis/drug therapy , Thrombosis/prevention & control , Thrombosis/metabolism , Anti-HIV Agents/metabolism , Anti-HIV Agents/pharmacology , Fibrinogen/metabolism
12.
Addict Biol ; 28(5): e13276, 2023 05.
Article in English | MEDLINE | ID: mdl-37186439

ABSTRACT

Calcium/calmodulin-dependent kinase II (CaMKII) is a key enzyme at the glutamatergic synapses. CAMK2A gene variants have been linked with alcohol use disorder (AUD) by an unknown mechanism. Here, we looked for the link between αCaMKII autophosphorylation and the AUD aetiology. Autophosphorylation-deficient heterozygous αCaMKII mutant mice (T286A+/- ) were trained in the IntelliCages to test the role of αCaMKII activity in AUD-related behaviours. The glutamatergic synapses morphology in CeA was studied in the animals drinking alcohol using 3D electron microscopy. We found that T286A+/- mutants consumed less alcohol and were more sensitive to sedating effects of alcohol, as compared to wild-type littermates (WT). After voluntary alcohol drinking, T286A+/- mice had less excitatory synapses in the CeA, as compared to alcohol-naive animals. This change correlated with alcohol consumption was not reversed after alcohol withdrawal and not observed in WT mice. Our study suggests that αCaMKII autophosphorylation affects alcohol consumption by controlling sedative effects of alcohol and preventing synaptic loss in the individuals drinking alcohol. This finding advances our understanding of the molecular processes that regulate alcohol dependence.


Subject(s)
Alcoholism , Substance Withdrawal Syndrome , Animals , Mice , Alcoholism/genetics , Alcoholism/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Ethanol/pharmacology , Ethanol/metabolism , Phosphorylation/genetics , Substance Withdrawal Syndrome/metabolism , Synapses/metabolism
13.
Methods Mol Biol ; 2648: 63-73, 2023.
Article in English | MEDLINE | ID: mdl-37039985

ABSTRACT

The nonradioactive method, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the presence of Phos-tag (Phos-tag electrophoresis), is used to evaluate a kinase autophosphorylation and/or phosphotransfer reaction from a kinase/ATP to its protein substrate. This method outperforms radioisotope methods using [32P]ATP for detecting trace amounts of phosphorylated protein in fresh protein preparations. Phos-tag electrophoresis has been used to perform detailed analyses of the kinase activity of a heme-based oxygen sensor-specifically, a globin-coupled histidine kinase from the soil bacterium Anaeromyxobacter sp. Fw109-5 (AfGcHK).


Subject(s)
Heme , Proteins , Heme/metabolism , Ligands , Bacteria/metabolism , Electrophoresis, Polyacrylamide Gel , Oxygen/metabolism , Adenosine Triphosphate/metabolism
14.
Proc Natl Acad Sci U S A ; 120(7): e2212909120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745811

ABSTRACT

Phosphorylation is a ubiquitous mechanism by which signals are transduced in cells. Protein kinases, enzymes that catalyze the phosphotransfer reaction are, themselves, often regulated by phosphorylation. Paradoxically, however, a substantial fraction of more than 500 human protein kinases are capable of catalyzing their own activation loop phosphorylation. Commonly, these kinases perform this autophosphorylation reaction in trans, whereby transient dimerization leads to the mutual phosphorylation of the activation loop of the opposing protomer. In this study, we demonstrate that protein kinase D (PKD) is regulated by the inverse mechanism of dimerization-mediated trans-autoinhibition, followed by activation loop autophosphorylation in cis. We show that PKD forms a stable face-to-face homodimer that is incapable of either autophosphorylation or substrate phosphorylation. Dissociation of this trans-autoinhibited dimer results in activation loop autophosphorylation, which occurs exclusively in cis. Phosphorylation serves to increase PKD activity and prevent trans-autoinhibition, thereby switching PKD on. Our findings not only reveal the mechanism of PKD regulation but also have profound implications for the regulation of many other eukaryotic kinases.


Subject(s)
Protein Kinase C , Humans , Phosphorylation/physiology , Protein Kinase C/metabolism
15.
Photochem Photobiol Sci ; 22(6): 1257-1266, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36757561

ABSTRACT

Phytochromes are red-light photoreceptors that regulate a wide range of physiological processes in plants, fungi and bacteria. Canonical bacteriophytochromes are photosensory histidine kinases that undergo light-dependent autophosphorylation, thereby regulating cellular responses to red light via two-component signaling pathways. However, the molecular mechanism of kinase activation remains elusive for bacteriophytochromes. In particular, the directionality of autophosphorylation is still an open question in these dimeric photoreceptor kinases. In this work, we perform histidine kinase assays on two tandem bacteriophytochromes RpBphP2 and RpBphP3 from the photosynthetic bacterium Rhodopseudomonas palustris. By examining the kinase activities of full-length bacteriophytochromes and two loss-of-function mutants under different light conditions, we demonstrate that RpBphP2 and RpBphP3 undergo light-dependent trans-phosphorylation between protomers in both homodimeric and heterodimeric forms. We have further determined the crystal structure of the histidine kinase domains of RpBphP2 at 3.19 Å resolution. Based on structural comparisons and homology modeling, we also present a model to account for the actions of trans-autophosphorylation in bacteriophytochromes.


Subject(s)
Light , Phytochrome , Phosphorylation , Histidine Kinase/metabolism , Photosynthesis , Signal Transduction , Phytochrome/chemistry , Bacterial Proteins/chemistry
16.
Plant Commun ; 4(4): 100559, 2023 07 10.
Article in English | MEDLINE | ID: mdl-36774537

ABSTRACT

Accumulating evidence indicates that early and essential events for receptor-like kinase (RLK) function involve both autophosphorylation and substrate phosphorylation. However, the structural and biochemical basis for these events is largely unclear. Here, we used RLK FERONIA (FER) as a model and crystallized its core kinase domain (FER-KD) and two FER-KD mutants (K565R, S525A) in complexes with ATP/ADP and Mg2+ in the unphosphorylated state. Unphosphorylated FER-KD was found to adopt an unexpected active conformation in its crystal structure. Moreover, unphosphorylated FER-KD mutants with reduced (S525A) or no catalytic activity (K565R) also adopt similar active conformations. Biochemical studies revealed that FER-KD is a dual-specificity kinase, and its autophosphorylation is accomplished via an intermolecular mechanism. Further investigations confirmed that initiating substrate phosphorylation requires autophosphorylation of the activation segment on T696, S701, and Y704. This study reveals the structural and biochemical basis for the activation and regulatory mechanism of FER, providing a paradigm for the early steps in RLK signaling initiation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Signal Transduction/physiology , Phosphorylation
17.
Methods Mol Biol ; 2613: 79-87, 2023.
Article in English | MEDLINE | ID: mdl-36587072

ABSTRACT

Glycolipids play important biological roles mainly in biological membranes, but their functions at the molecular level remain to be fully established. A chemical biology approach using exogenously added glycolipid probes would be promising, but the possibility of cleavage by cellular glycohydrolases complicates the interpretation of results. Thus, there is a need for non-hydolyzable analogues. In the present study, we designed and synthesized GM3 analogues resistant to GM3-degrading sialidase by replacing the O-sialoside linkage with a C-sialoside linkage. The bioactivity of the analogues was also investigated.


Subject(s)
G(M3) Ganglioside , Neuraminidase , Cell Membrane , Glycolipids
18.
FEBS J ; 290(9): 2463-2488, 2023 05.
Article in English | MEDLINE | ID: mdl-36259272

ABSTRACT

Cyclin-dependent kinases (CDKs), in association with cyclins, control cell cycle progression by phosphorylating a large number of substrates. In animals, activation of CDKs regularly requires both the association with a cyclin and then phosphorylation of a highly conserved threonine residue in the CDK activation loop (the classical mechanism), mediated by a CDK-activating kinase (CAK). In addition to this typical mechanism of activation, some CDKs can also be activated by the association of a cyclin to a monomeric CDK previously phosphorylated by CAK although not all CDKs can be activated by this mechanism. In animals and yeast, cyclin, in addition to being required for CDK activation, provides substrate specificity to the cyclin/CDK complex; however, in plants both the mechanisms of CDKs activation and the relevance of the CDK-associated cyclin for substrate targeting have been poorly studied. In this work, by co-expressing proteins in E. coli, we studied maize CDKA2;1a and CDKB1;1, two of the main types of CDKs that control the cell cycle in plants. These kinases could be activated by the classical mechanism and by the association of CycD2;2a to a phosphorylated intermediate in its activation loop, a previously unproven mechanism for the activation of plant CDKs. Unlike CDKA2;1a, CDKB1;1 did not require CAK for its activation, since it autophosphorylated in its activation loop. Phosphorylation of CDKB1;1 and association of CycD2;2 was not enough for its full activation as association of maize CKS, a scaffolding protein, differentially stimulated substrate phosphorylation. Our results suggest that both CDKs participate in substrate recognition.


Subject(s)
Protein Serine-Threonine Kinases , Zea mays , Animals , Protein Serine-Threonine Kinases/metabolism , Zea mays/genetics , Escherichia coli/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Cyclins/metabolism , Saccharomyces cerevisiae/metabolism
19.
Biomed Pharmacother ; 156: 113895, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36274464

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a potential target for acute neuroprotection due to its key role in physiological and pathological glutamate signaling. The hub domain organizes the CaMKII holoenzyme into large oligomers, and additional functional effects on holoenzyme activation have lately emerged. We recently reported that compounds related to the proposed neuromodulator γ-hydroxybutyrate (GHB) selectively bind to the CaMKIIα hub domain and increase hub thermal stabilization, which is believed to have functional consequences and to mediate neuroprotection. However, the detailed molecular mechanism is unknown. In this study, we functionally characterize the novel and brain permeable GHB analog (E)-2-(5-hydroxy-2-phenyl-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-ylidene)acetic acid (Ph-HTBA). Administration of a single dose of Ph-HTBA at a clinically relevant time point (3-6 h after photothrombotic stroke) promotes neuroprotection with a superior effect at low doses compared to the smaller GHB analog 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA). In contrast to HOCPCA, Ph-HTBA reduces Ca2+-stimulated CaMKIIα Thr286 autophosphorylation in primary cortical neurons and substrate phosphorylation of recombinant CaMKIIα, potentially contributing to its neuroprotective effect. Supported by previous in silico docking studies, we suggest that Ph-HTBA makes distinct molecular interactions with the hub cavity, which may contribute to its differential functional profile and superior neuroprotective effect compared to HOCPCA. Together, this highlights Ph-HTBA as a promising tool to study hub functionality, but also as a good candidate for clinical development.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Sodium Oxybate , Humans , Ligands , Sodium Oxybate/metabolism , Neuroprotection , Neuroprotective Agents/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Holoenzymes
20.
Front Microbiol ; 13: 990091, 2022.
Article in English | MEDLINE | ID: mdl-36118193

ABSTRACT

Antimicrobial resistance (AMR) is a global concern threatening public health. Developing novel antibiotics is one of the effective strategies to tackle AMR. Serine/threonine kinases (STKs) have been recently shown to play critical roles in the physiology and pathogenesis of several important bacterial pathogens which are regarded as a promising antimicrobial drug target. We previously reported the roles of STK in the regulation of bacterial cell division, metabolism, and pathogenesis in Streptococcus suis, an important zoonotic bacterial pathogen. In this study, we firstly identified the Thr167 and Ser175 residues in the activation loop of S. suis STK (ssSTK) as the kinase autophosphorylation sites. Phenotyping results demonstrated that the autophosphorylation deficient strain resembled the stk deletion strain showing essentiality for bacterial growth in minimal medium, abnormal morphology, and decreased virulence when compared with the wild-type S. suis SC19 strain. Based on these findings, we established an ssSTK inhibitor screening approach by measuring the growth of S. suis in a minimal medium and testing the autophosphorylation inhibition by measuring the consumption of ATP in an enzymatic reaction by ssSTK. A series of inhibitors against ssSTK are identified from a commercial kinase inhibitors library, including Staurosporine, K252a, AT9283, and APY29. These inhibitors showed antimicrobial activity in vitro. Moreover, by using Galleria mellonella larvae infection assay, compound APY29 displayed in vivo efficacy against S. suis infection. Additionally, it was predicted by molecular docking that these inhibitors could interact with ssSTK. Collectively, our data illustrated the essential roles of ssSTK autophosphorylation in the physiology and pathogenicity of S. suis and consider these inhibitors as promising antimicrobial lead compounds.

SELECTION OF CITATIONS
SEARCH DETAIL