Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 502
Filter
1.
Microbiol Res ; 286: 127816, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38964072

ABSTRACT

Apple scab, caused by the hemibiotrophic fungus Venturia inaequalis, is currently the most common and damaging disease in apple orchards. Two strains of V. inaequalis (S755 and Rs552) with different sensitivities to azole fungicides and the bacterial metabolite fengycin were compared to determine the mechanisms responsible for these differences. Antifungal activity tests showed that Rs552 had reduced sensitivity to tebuconazole and tetraconazole, as well as to fengycin alone or in a binary mixture with other lipopeptides (iturin A, pumilacidin, lichenysin). S755 was highly sensitive to fengycin, whose activity was close to that of tebuconazole. Unlike fengycin, lipopeptides from the iturin family (mycosubtilin, iturin A) had similar activity on both strains, while those from the surfactin family (lichenysin, pumilacidin) were not active, except in binary mixtures with fengycin. The activity of lipopeptides varies according to their family and structure. Analyses to determine the difference in sensitivity to azoles (which target the CYP51 enzyme involved in the ergosterol biosynthesis pathway) showed that the reduced sensitivity in Rs552 is linked to (i) a constitutive increased expression of the Cyp51A gene caused by insertions in the upstream region and (ii) greater efflux by membrane pumps with the involvement of ABC transporters. Microscopic observations revealed that fengycin, known to interact with plasma membranes, induced morphological and cytological changes in cells from both strains. Sterol and phospholipid analyses showed a higher level of ergosta-7,22-dien-3-ol and a lower level of PI(C16:0/C18:1) in Rs552 compared with S755. These differences could therefore influence the composition of the plasma membrane and explain the differential sensitivity of the strains to fengycin. However, the similar antifungal activities of mycosubtilin and iturin A in the two strains indirectly indicate that sterols are probably not involved in the fengycin resistance mechanism. This leads to the conclusion that different mechanisms are responsible for the difference in susceptibility to azoles or fengycin in the strains studied.

2.
Front Vet Sci ; 11: 1376851, 2024.
Article in English | MEDLINE | ID: mdl-38903684

ABSTRACT

Introduction: Fungal diseases are frequently associated with elevated mortality rates in elasmobranchs. Currently, there is a notable absence of scientifically validated therapeutic medications that can ensure both effectiveness and safety when administered to this group of animals. The empirical prescription of azole antifungal agents, particularly voriconazole, has been posited as a potentially efficacious treatment approach for addressing most common mycoses in sharks and rays. However, there are still no published pharmacokinetic studies supporting its use in elasmobranchs and there is a lack of scientific base for its utilization in elasmobranchs. Methods: For this study, voriconazole was administered intravenously (IV) and intramuscularly (IM), at a single dose of 4 mg/kg to six adult undulate skates (Raja undulata). A washout period of 8 weeks was left between each route of administration. Blood samples were collected both before and at ten predetermined intervals after each dosing (0.25, 0.5, 1, 1.5, 2, 4, 8, 12, 24, and 36 h after drug administration). Plasma concentrations were quantified using a validated high-performance liquid chromatography method, and pharmacokinetic (PK) data was analyzed through non-compartmental methods. Results: The mean extrapolated concentration at 0 h (C0) after IV administration was 27.19 ± 7.15 µg/mL and the mean peak plasma concentrations (Cmax) ± SEM after IM administration resulted 2.98 ± 0.28 µg/mL at a mean time to maximum concentration (T max) of 1.33 ± 0.17 h. Terminal half-lives were calculated and resulted 11.18 ± 1.32 h for IV injections and 9.59 ± 1.38 h for IM injections. The area under the curve extrapolated to infinity was determined as 58.14 ± 2.79 h·µg/ml following IV injections and 37.60 ± 6.67 h·µg/ml following IM injections. The IM-administered voriconazole exhibited a mean absolute bioavailability of 64.67 ± 11.47%. Discussion: These discoveries provide backing for the possible application of voriconazole through the intramuscular route in undulate skates and support using lower dosage regimens compared to those required for oral administration, emphasizing the importance of conducting further pharmacokinetic studies with antifungals in elasmobranchs.

3.
Chem Asian J ; : e202400481, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856102

ABSTRACT

Zwitterionic compounds are an emergent class of energetic materials and have gained synthetic interest of many in the recent years. Due to their better packing efficiencies and strong inter/intramolecular electrostatic interactions, they often ensue superior energetic properties than their salt analogues. A systematic review from the perspective of design, synthesis, and physicochemical properties evaluation of the zwitterionic energetic materials is presented. Depending on the parent ring(s) used for the synthesis and the type of moieties bearing positive and negative charges, different classes of energetic materials, such as primary explosives, secondary explosives, heat resistant explosives, oxidizers, etc., may result. The properties of some of the energetic zwitterionic compounds are also compared with analogous energetic salts. This review will encourage readers to explore the possibility of designing new zwitterionic energetic materials.

4.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38931390

ABSTRACT

A series of hybrid compounds with triazole and thiazolidine nuclei connected by a linker has been synthesized and extensively studied. Various synthetic methods for the target compounds have been tested. A microbiological assessment of the obtained compounds was carried out on strains of pathogenic fungi C. albicans, C. non-albicans, multidrug-resistant C. auris, Rhizopus arrhizus, Aspergillus spp. and some dermatophytes and other yeasts. The lowest obtained MIC values for target compounds lie between 0.003 µg/mL and 0.5 µg/mL and therefore the compounds are not inferior or several times better than commercial azole drugs. The length of the acylpiperazine linker has a limited effect on antifungal activity. Some bioisosteric analogues were tested in microbiological analysis, but turned out to be weaker than the leader in activity. The highest activity was demonstrated by a compound with para-chlorobenzylidene substituent in the thiazolidine fragment. Molecular modelling was used to predict binding modes of synthesized molecules and rationalize experimentally observed SAR. The leader compound is twice more effective in inhibiting the formation of germ tubes by Candida albicans yeast cells compared to voriconazole. An increased level of Pdr5, an azoles drug efflux pump was observed, but the increase is lower than that caused by azoles. The results can be useful for further development of more powerful and safe antifungal agents.

5.
Biochem Pharmacol ; 226: 116400, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945275

ABSTRACT

The emergence of multidrug-resistant fungi is of grave concern, and its infections are responsible for significant deaths among immunocompromised patients. The treatment of fungal infections primarily relies on a clinical class of antibiotics, including azoles, polyenes, echinocandins, polyketides, and a nucleotide analogue. However, the incidence of fungal infections is increasing as the treatment for human and plant fungal infections overlaps with antifungal drugs. The need for new antifungal agents acting on different targets than known targets is undeniable. Also, the pace at which loss of fungal susceptibility to antibiotics cannot be undermined. There are several modes by which fungi can develop resistance to antibiotics, including reduced drug uptake, drug target alteration, and a reduction in the cellular concentration of the drug due to active extrusions and biofilm formation. The efflux pump's overexpression in the fungi primarily reduced the antibiotic's concentration to a sub-lethal concentration, thus responsible for developing resistant fungus strains. Several strategies are used to check antibiotic resistance in multi-drug resistant fungi, including synthesizing antibiotic analogs and giving antibiotics in combination therapies. Among them, the efflux pump protein inhibitors are considered potential adjuvants to antibiotics and can block the efflux of antibiotics by inhibiting efflux pump protein transporters. Moreover, it can sensitize the antifungal drugs to multi-drug resistant fungi with overexpressed efflux pump proteins. This review discusses the natural lead molecules, repurposable drugs, and formulation strategies to overcome the efflux pump activity in the fungi.

6.
Expert Rev Anti Infect Ther ; 22(6): 399-412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841996

ABSTRACT

INTRODUCTION: Terbinafine is considered the gold standard for treating skin fungal infections and onychomycosis. However, recent reports suggest that dermatophytes are developing resistance to terbinafine and the other traditional antifungal agents, itraconazole and fluconazole. When there is resistance to terbinafine, itraconazole or fluconazole, or when these agents cannot used, for example, due to potential drug interactions with the patient's current medications, clinicians may need to consider off-label use of new generation azoles, such as voriconazole, posaconazole, fosravuconazole, or oteseconazole. It is essential to emphasize that we do not advocate the use of newer generation azoles unless traditional agents such as terbinafine, itraconazole, or fluconazole have been thoroughly evaluated as first-line therapies. AREAS COVERED: This article reviews the clinical evidence, safety, dosage regimens, pharmacokinetics, and management algorithm of new-generation azole antifungals. EXPERT OPINION: Antifungal stewardship should be the top priority when prescribing new-generation azoles. First-line antifungal therapy is terbinafine and itraconazole. Fluconazole is a consideration but is generally less effective and its use may be off-label in many countries. For difficult-to-treat skin fungal infections and onychomycosis, that have failed terbinafine, itraconazole and fluconazole, we propose consideration of off-label voriconazole or posaconazole.


Subject(s)
Antifungal Agents , Azoles , Drug Resistance, Fungal , Onychomycosis , Humans , Antifungal Agents/administration & dosage , Antifungal Agents/adverse effects , Antifungal Agents/pharmacology , Onychomycosis/drug therapy , Onychomycosis/microbiology , Azoles/administration & dosage , Azoles/pharmacology , Dermatomycoses/drug therapy , Dermatomycoses/microbiology , Off-Label Use , Drug Interactions , Arthrodermataceae/drug effects
7.
Beilstein J Org Chem ; 20: 891-897, 2024.
Article in English | MEDLINE | ID: mdl-38711595

ABSTRACT

A stereoselective N-alkenylation of azoles with alkynes and iodine(III) electrophile is reported. The reaction between various azoles and internal alkynes is mediated by benziodoxole triflate as the electrophile in a trans-fashion, affording azole-bearing vinylbenziodoxoles in moderate to good yields. The tolerable azole nuclei include pyrazole, indazole, 1,2,3-triazole, benzotriazole, and tetrazole. The iodanyl group in the product can be leveraged as a versatile synthetic handle, allowing for the preparation of hitherto inaccessible types of densely functionalized N-vinylazoles.

8.
Chemphyschem ; 25(12): e202400105, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38721760

ABSTRACT

Pentazole is regarded as a unique inorganic molecule that possess organic heterocyclic structure. Therefore, the research on pentazolyl derivatives represents a cutting-edge direction in both contemporary inorganic chemistry and heterocyclic chemistry. Moreover, their synthesis is regarded as the most significant research topic in the field of energetic materials due to the great potential of pentazolyl derivatives to breakthrough the energy bottleneck of CHNO-based energetic materials. However, synthesizing pentazolyl derivatives is challenging. To provide a theoretical support for the synthesis, we conducted theoretical studies on six single-ring pentazolyl derivatives with different functional groups. The results suggest that derivatization reduces the bond strength and weakens the aromaticity of the pentazolate ring. Further analysis showed that derivatization mainly affects the π aromaticity of the pentazolate ring, and ultimately causing poor stability of the pentazolyl derivatives. Among the six derivatives investigated in this study, fluoro pentazole (cyclo-N5-F) and hydroxyl pentazole (cyclo-N5-OH) possess good aromaticity, which is similar to the reported cyclo-N5-NCHN(CH3)2. Further calculations show that the kinetic stability of cyclo-N5-OH is higher than that of cyclo-N5-F. These results collectively indicate that cyclo-N5-OH is a promising candidate for synthesizing single-ring pentazolyl derivatives.

9.
Life Sci ; 348: 122699, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38718854

ABSTRACT

AIMS: Azoles have been widely employed for the treatment of invasive fungal diseases; however, their efficacy is diminished as pathogenic fungi tolerate them due to their fungistatic properties. Geldanamycin (GdA) can render azoles fungicidal by inhibiting the ATPase and molecular chaperone activities of heat shock protein 90 (Hsp90). Nonetheless, the clinical applicability of GdA is restricted due to its cytotoxic ansamycin scaffold structure, its induction of cytoprotective heat shock responses, and the conservative nature of Hsp90. Hence, it is imperative to elucidate the mechanism of action of GdA to confer fungicidal properties to azoles and mitigate the toxic adverse effects associated with GdA. MATERIALS AND METHODS: Through various experimental methods, including the construction of gene-deleted Candida albicans mutants, in vitro drug sensitivity experiments, Western blot analysis, reactive oxygen species (ROS) assays, and succinate dehydrogenase activity assays, we identified Hsp90 client proteins associated with the tolerance of C. albicans to azoles. KEY FINDINGS: It was observed that GdA effectively hindered the entry of Hsp90 into mitochondria, resulting in the alleviation of inhibitory effect of Hsp90 on succinate dehydrogenase. Consequently, the activation of succinate dehydrogenase led to an increased production of ROS. within the mitochondria, thereby facilitating the antifungal effects of azoles against C. albicans. SIGNIFICANCE: This research presents a novel approach for conferring fungicidal properties to azoles, which involves specifically disrupting the interaction of between Hsp90 and succinate dehydrogenase rather than employing a non-specific inhibition of ATPase activity of Hsp90.


Subject(s)
Antifungal Agents , Azoles , Benzoquinones , Candida albicans , HSP90 Heat-Shock Proteins , Lactams, Macrocyclic , Reactive Oxygen Species , Succinate Dehydrogenase , Benzoquinones/pharmacology , Lactams, Macrocyclic/pharmacology , Candida albicans/drug effects , Antifungal Agents/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/antagonists & inhibitors , Azoles/pharmacology , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Mitochondria/drug effects , Mitochondria/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Drug Resistance, Fungal/drug effects
10.
Antimicrob Agents Chemother ; : e0161923, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712935

ABSTRACT

We used whole-genome sequencing to analyze a collection of 35 fluconazole-resistant and 7 susceptible Candida parapsilosis isolates together with coverage analysis and GWAS techniques to identify new mechanisms of fluconazole resistance. Phylogenetic analysis shows that although the collection is diverse, two persistent clinical lineages were identified. We identified copy number variation (CNV) of two genes, ERG11 and CDR1B, in resistant isolates. Two strains have a CNV at the ERG11 locus; the entire ORF is amplified in one, and only the promoter region is amplified in the other. We show that the annotated telomeric gene CDR1B is actually an artifactual in silico fusion of two highly similar neighboring CDR genes due to an assembly error in the C. parapsilosis CDC317 reference genome. We report highly variable copy numbers of the CDR1B region across the collection. Several strains have increased the expansion of the two genes into a tandem array of new chimeric genes. Other strains have experienced a deletion between the two genes creating a single gene with a reciprocal chimerism. We find translocations, duplications, and gene conversion across the CDR gene family in the C. parapsilosis species complex, showing that it is a highly dynamic family.

11.
Mycoses ; 67(6): e13750, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38813959

ABSTRACT

BACKGROUND: The prevalence of Candida glabrata healthcare-associated infections is on the rise worldwide and in Lebanon, Candida glabrata infections are difficult to treat as a result of their resistance to azole antifungals and their ability to form biofilms. OBJECTIVES: The first objective of this study was to quantify biofilm biomass in the most virulent C. glabrata isolates detected in a Lebanese hospital. In addition, other pathogenicity attributes were evaluated. The second objective was to identify the mechanisms of azole resistance in those isolates. METHODS: A mouse model of disseminated systemic infection was developed to evaluate the degree of virulence of 41 azole-resistant C. glabrata collected from a Lebanese hospital. The most virulent isolates were further evaluated alongside an isolate having attenuated virulence and a reference strain for comparative purposes. A DNA-sequencing approach was adopted to detect single nucleotide polymorphisms (SNPs) leading to amino acid changes in proteins involved in azole resistance and biofilm formation. This genomic approach was supported by several phenotypic assays. RESULTS: All chosen virulent isolates exhibited increased adhesion and biofilm biomass compared to the isolate having attenuated virulence. The amino acid substitutions D679E and I739N detected in the subtelomeric silencer Sir3 are potentially involved- in increased adhesion. In all isolates, amino acid substitutions were detected in the ATP-binding cassette transporters Cdr1 and Pdh1 and their transcriptional regulator Pdr1. CONCLUSIONS: In summary, increased adhesion led to stable biofilm formation since mutated Sir3 could de-repress adhesins, while decreased azole susceptibility could result from mutations in Cdr1, Pdh1 and Pdr1.


Subject(s)
Antifungal Agents , Biofilms , Candida glabrata , Candidiasis , Drug Resistance, Fungal , Mutation , Biofilms/growth & development , Candida glabrata/genetics , Candida glabrata/drug effects , Candida glabrata/isolation & purification , Candida glabrata/pathogenicity , Candida glabrata/physiology , Lebanon , Animals , Mice , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Humans , Virulence/genetics , Candidiasis/microbiology , Fungal Proteins/genetics , Polymorphism, Single Nucleotide , Disease Models, Animal , Azoles/pharmacology , Microbial Sensitivity Tests , Hospitals , Female
12.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731487

ABSTRACT

The wheat scab caused by Fusarium graminearum (F. graminearum) has seriously affected the yield and quality of wheat in China. In this study, gallic acid (GA), a natural polyphenol, was used to synthesize three azole-modified gallic acid derivatives (AGAs1-3). The antifungal activity of GA and its derivatives against F. graminearum was studied through mycelial growth rate experiments and field efficacy experiments. The results of the mycelial growth rate test showed that the EC50 of AGAs-2 was 0.49 mg/mL, and that of AGAs-3 was 0.42 mg/mL. The biological activity of AGAs-3 on F. graminearum is significantly better than that of GA. The results of field efficacy tests showed that AGAs-2 and AGAs-3 significantly reduced the incidence rate and disease index of wheat scab, and the control effect reached 68.86% and 72.11%, respectively. In addition, preliminary investigation was performed on the possible interaction between AGAs-3 and F. graminearum using density functional theory (DFT). These results indicate that compound AGAs-3, because of its characteristic of imidazolium salts, has potential for use as a green and environmentally friendly plant-derived antifungal agent for plant pathogenic fungi.


Subject(s)
Antifungal Agents , Azoles , Fusarium , Gallic Acid , Triticum , Fusarium/drug effects , Fusarium/growth & development , Gallic Acid/chemistry , Gallic Acid/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Triticum/microbiology , Azoles/pharmacology , Azoles/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Microbial Sensitivity Tests
13.
Antimicrob Agents Chemother ; : e0002224, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38624217

ABSTRACT

Candida parapsilosis has recently emerged as a major threat due to the worldwide emergence of fluconazole-resistant strains causing clonal outbreaks in hospitals and poses a therapeutic challenge due to the limited antifungal armamentarium. Here, we used precise genome editing using CRISPR-Cas9 to gain further insights into the contribution of mutations in ERG11, ERG3, MRR1, and TAC1 genes and the influence of allelic dosage to antifungal resistance in C. parapsilosis. Seven of the most common amino acid substitutions previously reported in fluconazole-resistant clinical isolates (including Y132F in ERG11) were engineered in two fluconazole-susceptible C. parapsilosis lineages (ATCC 22019 and STZ5). Each mutant was then challenged in vitro against a large array of antifungals, with a focus on azoles. Any possible change in virulence was also assessed in a Galleria mellonella model. We successfully generated a total of 19 different mutants, using CRISPR-Cas9. Except for R398I (ERG11), all remaining amino acid substitutions conferred reduced susceptibility to fluconazole. However, the impact on fluconazole in vitro susceptibility varied greatly according to the engineered mutation, the stronger impact being noted for G583R acting as a gain-of-function mutation in MRR1. Cross-resistance with newer azoles, non-medical azoles, but also non-azole antifungals such as flucytosine, was occasionally noted. Posaconazole and isavuconazole remained the most active in vitro. Except for G583R, no fitness cost was associated with the acquisition of fluconazole resistance. We highlight the distinct contributions of amino acid substitutions in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in C. parapsilosis.

14.
Microbiol Spectr ; 12(4): e0404223, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38442003

ABSTRACT

Azole drugs are the main therapeutic drugs for invasive fungal infections. However, azole-resistant strains appear repeatedly in the environment, posing a major threat to human health. Several reports have shown that mitochondria are associated with the virulence of pathogenic fungi. However, there are few studies on the mechanisms of mitochondria-mediated azoles resistance. Here, we first performed mitochondrial proteomic analysis on multiple Candida species (Candida albicans, Nakaseomyces glabrata, Pichia kudriavzevii, and Candida auris) and analyzed the differentially expressed mitochondrial proteins (DEMPs) between azole-sensitive and azole-resistant Candida species. Subsequently, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology analysis, and protein-protein interaction network analysis of DEMPs. Our results showed that a total of 417, 165, and 25 DEMPs were identified in resistant C. albicans, N. glabrata, and C. auris, respectively. These DEMPs were enriched in ribosomal biogenesis at cytosol and mitochondria, tricarboxylic acid cycle, glycolysis, transporters, ergosterol, and cell wall mannan biosynthesis. The high activations of these cellular activities, found in C. albicans and C. auris (at low scale), were mostly opposite to those observed in two fermenter species-N. glabrata and P. kudriavzevii. Several transcription factors including Rtg3 were highly produced in resistant C. albicans that experienced a complex I activation of mitochondrial electron transport chain (ETC). The reduction of mitochondrial-related activities and complex IV/V of ETC in N. glabrata and P. kudriavzevii was companying with the reduced proteins of Tor1, Hog1, and Snf1/Snf4.IMPORTANCECandida spp. are common organisms that cause a variety of invasive diseases. However, Candida spp. are resistant to azoles, which hinders antifungal therapy. Exploring the drug-resistance mechanism of pathogenic Candida spp. will help improve the prevention and control strategy and discover new targets. Mitochondria, as an important organelle in eukaryotic cells, are closely related to a variety of cellular activities. However, the role of mitochondrial proteins in mediating azole resistance in Candida spp. has not been elucidated. Here, we analyzed the mitochondrial proteins and signaling pathways that mediate azole resistance in Candida spp. to provide ideas and references for solving the problem of azole resistance. Our work may offer new insights into the connection between mitochondria and azoles resistance in pathogenic fungi and highlight the potential clinical value of mitochondrial proteins in the treatment of invasive fungal infections.


Subject(s)
Candida , Invasive Fungal Infections , Humans , Candida/genetics , Candida/metabolism , Azoles/pharmacology , Azoles/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Proteomics , Drug Resistance, Fungal/genetics , Candida albicans/metabolism , Signal Transduction , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/pharmacology , Microbial Sensitivity Tests
15.
Microbiol Spectr ; 12(4): e0404123, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38483474

ABSTRACT

Heteroresistance to antifungal agents poses a significant challenge in the treatment of fungal infections. Currently, the absence of established methods for detecting and measuring heteroresistance impedes progress in understanding this phenomenon in fungal pathogens. In response to this gap, we present a comprehensive set of new and optimized methods designed to detect and quantify azole heteroresistance in Candida albicans. Here, we define two primary assays for measuring heteroresistance: population analysis profiling, based on growth on solid medium, and single-cell assays, based on growth in liquid culture. We observe good correlations between the measurements obtained with liquid and solid assays, validating their utility for studying azole heteroresistance. We also highlight that disk diffusion assays could serve as an additional tool for the rapid detection of heteroresistance. These methods collectively provide a versatile toolkit for researchers seeking to assess heteroresistance in C. albicans. They also serve as a critical step forward in the characterization of antifungal heteroresistance, providing a framework for investigating this phenomenon in diverse fungal species and in the context of other antifungal agents. Ultimately, these advancements will enhance our ability to effectively measure antifungal drug responses and combat fungal infections.IMPORTANCEHeteroresistance involves varying antimicrobial susceptibility within a clonal population. This phenomenon allows the survival of rare resistant subpopulations during drug treatment, significantly complicating the effective management of infections. However, the absence of established detection methods hampers progress in understanding this phenomenon in human fungal pathogens. We propose a comprehensive toolkit to address this gap in the yeast Candida albicans, encompassing population analysis profiling, single-cell assays, and disk diffusion assays. By providing robust and correlated measurements through both solid and liquid assays, this work will provide a framework for broader applications across clinically relevant Candida species. These methods will enhance our ability to understand this phenomenon and the failure of antifungal therapy.


Subject(s)
Candida , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Azoles/pharmacology , Candida albicans , Mycoses/drug therapy , Microbial Sensitivity Tests , Drug Resistance, Fungal
16.
Chimia (Aarau) ; 78(3): 104-107, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38547010

ABSTRACT

Aryl azoles can be found in numerous active pharmaceutical ingredients (APIs). Milvexian is a Factor Xia inhibitor currently in phase III for the treatment of thrombotic events containing an ortho-substituted 1-aryl-1H-1,2,3-triazole moiety. During the process development of Milvexian, we assessed multiple approaches for the preparation of 4-chloro-1,2,3-triazole, intermediate 1. In this review article, we will detail how we initiated several academic collaborations to speed up the selection of the best synthesis for commercial manufacturing. Ultimately, those results not only helped us to achieve our goal but yielded general methodologies for the functionalization of azoles that extended even beyond our initial scope.

17.
Pathogens ; 13(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535591

ABSTRACT

(1) Background: Despite being considered a non-pathogenic yeast, recently, a growing occurrence of Saccharomyces cerevisiae infections has been noted. There is little knowledge about the drug susceptibility of this species. Therefore, the objective of this research was to expand it and determine the drug susceptibility profile of a local collection of clinical isolates of this species. (2) Methods: This study contained 55 clinical isolates identified as Saccharomyces cerevisiae using the MALDI-TOF method. The susceptibility of Saccharomyces cerevisiae was tested to 10 antifungals (amphotericin B, flucytosine, fluconazole, voriconazole, posaconazole, micafungin, anidulafungin, caspofungin, and itraconazole) using MICRONAUT-AT tests and manogepix, a new drug, using the microdilution method according to EUCAST. (3) Results: Overall, most strains were classified as sensitive to amphotericin B and flucytosine (MIC ranges of ≤0.03-1 and ≤0.06-0.125, respectively) and also to echinocandins. However, five isolates expressed high MIC values for all of the tested azoles, indicating cross-resistance. The MIC range for manogepix was 0.001-0.125 mg/L, with an MIC50 of 0.03 mg/L and an MIC90 of 0.06 mg/L. (4) Conclusions: The occurrence of resistance to azoles may be a concerning problem and therefore should be investigated further. However, the new antifungal manogepix appears to be an interesting new therapeutic option for treating such infections.

18.
J Fungi (Basel) ; 10(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38535230

ABSTRACT

The incidence of infections caused by Candida species, specifically by drug-resistant isolates, is a major health concern as they can disseminate to and colonize most vital organs, enhancing morbidity and mortality. Several molecular mechanisms have been reported to be involved in drug resistance. These are mostly drug- and isolate-specific. Here, we characterized three different genetically modified strains of C. albicans that were multi-drug-resistant (MDR) and deciphered a uniform mechanism responsible for resistance. DNA polymerase epsilon (Polε) is a leading strand-specific polymerase consisting of four subunits, namely, Pol2, Dpb2, Dpb3, and Dpb4. The deletion of one or both of the Dpb3 and Dpb4 subunits in C. albicans rendered multi-drug resistance. A detailed characterization of these strains revealed that acquired mutagenesis, drug efflux pumps, and other known mechanisms did not play a significant role because the complemented strain showed drug sensitivity. More importantly, the function of heat shock protein 90 (Hsp90) in these knockout strains is critical for reducing susceptibility to several antifungal drugs. Cell wall deformity and composition in these strains can add to such a phenotype. The inhibition of Hsp90 function by geldanamycin and tricostatin A sensitized the MDR strains to antifungals. Considering our earlier research and this report, we suggest that replication stress induces Hsp90 expression and activity in order to orchestrate a cellular stress response circuit and thus develop fungal drug resistance. Thus, Hsp90 is an important drug target for use in combinatorial therapy.

19.
Sci Total Environ ; 923: 171189, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447726

ABSTRACT

Antifungal resistance has emerged as a significant health concern with increasing reports of resistant variants in previously susceptible species. At present, little is known about occupational exposure to antifungal-resistant fungi. This study aimed to investigate Danish workers' occupational exposure to airborne fungi resistant to first-line treatment drugs. A retrospective study was performed on a unique collection of personal exposure samples gathered over a twenty-year period from Danish working environments, in sectors including agriculture, animal handling, waste management, and healthcare. A total of 669 samples were cultivated at 37 °C and fungal colonies were identified using MALDI-TOF MS. Subsequently, identification was confirmed by amplicon sequencing the genes of calmodulin and beta-tubulin to unveil potential cryptic species. Infectious fungi (495 isolates from 23 species) were tested for resistance against Itraconazole, Voriconazole, Posaconazole, and Amphotericin B. Working environments were highly variable in the overall fungal exposure, and showed vastly different species compositions. Resistance was found in 30 isolates of the species Aspergillus fumigatus (4 of 251 isolates), A. nidulans (2 of 13), A. niger complex (19 of 131), A. versicolor (3 of 18), and A. lentulus (2 of 2). Sequence analysis revealed several cryptic species within the A. niger complex including A. tubingensis, A. luchuensis, and A. phoenicis. Among the resistant A. fumigatus isolates, two contained the well-described TR34/L98H mutation in the cyp51A gene and promoter region, while the remainder harbored silent mutations. The results indicate that the working environment significantly contributes to exposure to resistant fungi, with particularly biofuel plant workers experiencing high exposure. Differences in the prevalence of resistance across working environments may be linked to the underlying species composition.


Subject(s)
Antifungal Agents , Fungal Proteins , Antifungal Agents/pharmacology , Retrospective Studies , Fungal Proteins/genetics , Fungi , Itraconazole , Aspergillus fumigatus , Microbial Sensitivity Tests , Azoles
20.
Int J Infect Dis ; 143: 107020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548167

ABSTRACT

OBJECTIVES: De-escalation (DES) from echinocandins to azoles is recommended by several medical societies in Candida infections. We summarise the evidence of DES on clinical and microbiological cure and 30-day survival and compare it with continuing the treatment with echinocandins (non-DES). METHODS: We searched MEDLINE, Embase, Web of Science and Scopus. Studies describing DES in inpatients and reporting any of the outcomes evaluated were included. Pooled estimates of the tree outcomes were calculated with a fixed or random-effects model. Heterogeneity was explored stratifying by subgroups and via meta-regression. This systematic review is registered with PROSPERO (CRD42023475486). RESULTS: Of 1853 records identified, 9 studies were included, totalling 1575 patients. Five studies stepped-down to fluconazole; one to voriconazole and three to any of azoles. The mean day of DES was 5.2 (4.6-6.5) days. The clinical cure OR was 1.29 (95% CI: 0.88-1.88); the microbiological cure 1.62 (95% CI: 0.71-3.71); and 30-day survival 2.17 (95% CI: 1.09-4.32). The 30-day survival data into subgroups showed higher effect on critically ill patients and serious-risk bias studies. Meta-regression did not identify significant effect modifiers. CONCLUSIONS: DES is a safe strategy; it showed no higher 30-day mortality and a trend towards greater clinical and microbiological cure.


Subject(s)
Antifungal Agents , Candidiasis , Humans , Antifungal Agents/therapeutic use , Candidiasis/drug therapy , Candidiasis/mortality , Candidiasis/microbiology , Fluconazole/therapeutic use , Candida/drug effects , Voriconazole/therapeutic use , Echinocandins/therapeutic use , Treatment Outcome , Azoles/therapeutic use , Azoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...