Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 520
Filter
1.
Mar Environ Res ; 200: 106656, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39067207

ABSTRACT

In areas with limited field data, predictive habitat mapping is a valuable method for elucidating species-environment relationships and enhancing our knowledge of the spatial distribution and complexity of benthic habitats. Species distribution models (SDMs) can be an important tool to support in science-based ecosystem management. The availability of direct observations of mesophotic species, including gorgonians and black corals, during costly surveys is generally limited. Therefore, predicting the distribution of mesophotic species in relation to key physical parameters of the seafloor would help improving conservation strategies in existing and new Marine Protected Areas (MPAs). This study aims to assess the distribution of gorgonians and black corals off Linosa Island, in the Strait of Sicily, a biogeographic boundary area between the western and eastern Mediterranean. The volcanic island of Linosa represents a small, naturally preserved area, with very limited human pressure, hosting rich marine benthic biodiversity on its wide submarine portions. Distribution of the most common coral species off Linosa Island was modelled under an SDM framework, relying on direct observations collected during two research cruises in 2016 and 2017 and a series of terrain parameters acquired through geophysical techniques. We used the so-called "ensemble of small models" approach to calibrate SDMs, which achieved fair-to-excellent results (AUC >0.7). In addition to identifying depth as the primary factor influencing coral distribution, our study also highlighted ruggedness as a significant terrain variable. Specifically, the depth range of 110-230 m emerged as the critical parameter determining habitat suitability for all modelled species, also highlighting peculiar and specie-specific habitat requirements.

2.
Nagoya J Med Sci ; 86(2): 189-200, 2024 May.
Article in English | MEDLINE | ID: mdl-38962413

ABSTRACT

Patients with acute coronary syndrome (ACS), frequently caused by plaque rupture (PR), often have vulnerable plaques in residual lesions as well as in culprit lesions. However, whether this occurs in patients with plaque erosion (PE) as well is unknown. We retrospectively analyzed the data of 88 patients with ACS who underwent both optimal coherence tomography (OCT) and intravascular ultrasound (IVUS). Based on plaque morphology of the culprit lesions identified using OCT, patients were classified into PE (n=23) and PR (n=35) groups. The tissue characteristics of residual lesions evaluated using integrated backscatter IVUS were compared between both groups after percutaneous coronary intervention. The PE group had a significantly lower percent lipid volume and a higher percent fibrous volume than the PR group (35.0±17.8% vs 49.2±13.4%, p<0.001; 63.2±17.1% vs 50.3±13.1%, p=0.002, respectively). Receiver operating characteristic curve analysis revealed that percent lipid volume in the residual lesions was a significant discriminant factor in estimating the plaque morphology of the culprit lesion (optimal cut-off value, <43.5%; sensitivity and specificity values were 73.9% and 68.6%, respectively). In conclusion, patients with PE had a significantly lower percent lipid volume and a significantly higher percent fibrous volume in the residual lesions than those with PR, suggesting that the nature of coronary plaques in patients with PE is different from that of those with PR.


Subject(s)
Acute Coronary Syndrome , Plaque, Atherosclerotic , Tomography, Optical Coherence , Ultrasonography, Interventional , Humans , Acute Coronary Syndrome/diagnostic imaging , Acute Coronary Syndrome/pathology , Retrospective Studies , Male , Female , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Middle Aged , Aged , Ultrasonography, Interventional/methods , Tomography, Optical Coherence/methods , Percutaneous Coronary Intervention , Rupture, Spontaneous , ROC Curve , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology
3.
Mar Pollut Bull ; 205: 116639, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964190

ABSTRACT

Oil spills, detected by SAR sensors as dark areas, are highly effective marine pollutants that affect the ocean surface. These spills change the water surface tension, attenuating capillary gravitational waves and causing specular reflections. We conducted a case study in the Persian Gulf (Arabian Sea to the Strait of Hormuz), where approximately 163,900 gal of crude oil spilled in March 2017. Our study examined the relationship between oil weathering processes and extracted backscatter values using zonal slices projected over SAR-detected oil spills. Internal backscatter values ranged from -22.5 to -23.5, indicating an oil chemical binding and minimal interaction with seawater. MEDSLIK-II simulations indicated increased oil solubilization and radar attenuation rates with wind, facilitating coastal dispersion. Higher backscatter at the spill edges compared to the core reflected different stages of oil weathering. These results highlight the complex dynamics of oil spills and their environmental impact on marine ecosystems.


Subject(s)
Environmental Monitoring , Petroleum Pollution , Remote Sensing Technology , Seawater , Water Pollutants, Chemical , Petroleum Pollution/analysis , Indian Ocean , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Seawater/chemistry , Petroleum/analysis , Models, Theoretical
4.
Materials (Basel) ; 17(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998271

ABSTRACT

This study investigates the effectiveness of combined thermal and athermal stimuli in mitigating the extremely high-density nature of dislocation networks in the form of low-angle grain boundaries in FeCrAl alloy. Electron wind force, generated from very low duty cycle and high current density pulses, was used as the athermal stimulus. The electron wind force stimulus alone was unable to remove the residual stress (80% low-angle grain boundaries) due to cold rolling to 25% thickness reduction. When the duty cycle was increased to allow average temperature of 100 °C, the specimen could be effectively annealed in 1 min at a current density of 3300 A/mm2. In comparison, conventional thermal annealing requires at least 750 °C and 1.5 h. For specimens with 50% thickness reduction (85% low-angle grain boundaries), the electron wind force was again unable to anneal the defects even at 3300 A/mm2 current density and average temperature of 100 °C. Intriguingly, allowing average concurrent temperature of 200 °C eliminated almost all the low-angle grain boundaries at a current density of 700 A/mm2, even lower than that required for the 25% thickness reduced specimens. Comprehensive electron and X-ray diffraction evidence show that alloys with extremely high defect density can be effectively annealed in less than a minute at approximately 200 °C, offering a substantial improvement over conventional high-temperature annealing.

5.
Ultrasonics ; 143: 107394, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39053241

ABSTRACT

Ultrasound backscatter coefficient (BSC) measurement is a method for assessing tissue morphology that can inform on pathologies such as cancer. The BSC measurement is, however, limited by the accuracy with which the investigator can normalise their results to account for frequency dependent effects of diffraction and attenuation whilst performing such measurements. We propose a simulation-based approach to investigate the potential sources of error in assessing the BSC. Presented is a tool for the 2D Finite Element (FE) simulation mimicking a BSC measurement using the planar reflector substitution method in reduced dimensionality. The results of this are verified against new derivations of BSC equations also in reduced dimensionality. These new derivations allow computation of BSC estimates based on the scattering from a 2D scattering area, a line reference reflector and a theoretical value for the BSC of a 2D distribution of scatterers. This 2D model was designed to generate lightweight simulations that allow rapid investigation of the factors associated with BSC measurement, allowing the investigator to generate large data sets in relatively short time scales. Under the conditions for an incoherent scattering medium, the simulations produced BSC estimates within 6% of the theoretical value calculated from the simulation domain, a result reproduced across a range of source f-numbers. This value of error compares well to both estimated errors from other simulation based approaches and to physical experiments. The mathematical and simulation models described here provide a theoretical and experimental framework for continued investigation into factors affecting the accuracy of BSC measurements.

6.
Abdom Radiol (NY) ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834778

ABSTRACT

PURPOSE: It has been reported that the estimate of ultrasound attenuation coefficient (AC) is affected by depth of measurement, with linear decrease of values with depth. It is unknown whether backscatter coefficient (BSC) has similar behavior. METHODS: This retrospective study was performed with Sequoia US system equipped with ultrasound derived fat fraction (UDFF) algorithm (Siemens Healthineers, Issaquah, WA, USA) that combines BSC with AC. UDFF was obtained positioning upper edge of the region of interest at 1.5,2,3,4,5 cm below liver capsule. BSC data were extracted from UDFF offline. A fractional polynomial regression, which selects the best model considering the polynomial development of the variables of interest, was used. Covariates included were age, sex, skin-to-liver-capsule distance, stiffness. Distance was included as linear factor or with a power ranging from - 2 to 3, and the best fitting model was chosen according to partial F test. Body mass index (BMI) was not included because of collinearity with skin-to-liver capsule distance. RESULTS: 104 individuals (56 females; age: 57.9 ± 13.0 years; BMI: 29.0 ± 6.5 kg/m2; skin-to-liver-capsule distance: 2.3 ± 0.7 cm; liver stiffness: 7.5 ± 5.5 kiloPascal) were studied. Best fitting model for BSC included a combination of depth as linear factor and square root. BSC showed a decrease of - 13.98 dB/cm-steradian for each logarithmic increase of 1 cm depth (coefficient: - 13.98; 95% CI: - 21.016; - 5.379; p = .001). Skin-to-liver-capsule distance and stiffness also were independent predictors of BSC. CONCLUSIONS: The estimation of the BSC in the liver exhibits a depth dependence that significantly affects results. A standardized acquisition protocol is needed to compare results and reliably assess changes over time.

7.
Sensors (Basel) ; 24(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38894070

ABSTRACT

To provide diverse in-home services like elderly care, versatile activity recognition technology is essential. Radio-based methods, including WiFi CSI, RFID, and backscatter communication, are preferred due to their minimal privacy intrusion, reduced physical burden, and low maintenance costs. However, these methods face challenges, including environmental dependence, proximity limitations between the device and the user, and untested accuracy amidst various radio obstacles such as furniture, appliances, walls, and other radio waves. In this paper, we propose a frequency-shift backscatter tag-based in-home activity recognition method and test its feasibility in a near-real residential setting. Consisting of simple components such as antennas and switches, these tags facilitate ultra-low power consumption and demonstrate robustness against environmental noise because a context corresponding to a tag can be obtained by only observing frequency shifts. We implemented a sensing system consisting of SD-WiFi, a software-defined WiFi AP, and physical switches on backscatter tags tailored for detecting the movements of daily objects. Our experiments demonstrate that frequency shifts by tags can be detected within a 2 m range with 72% accuracy under the line of sight (LoS) conditions and achieve a 96.0% accuracy (F-score) in recognizing seven typical daily living activities with an appropriate receiver/transmitter layout. Furthermore, in an additional experiment, we confirmed that increasing the number of overlaying packets enables frequency shift-detection even without LoS at distances of 3-5 m.


Subject(s)
Activities of Daily Living , Wireless Technology , Humans , Radio Waves , Radio Frequency Identification Device/methods
8.
Micromachines (Basel) ; 15(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38930705

ABSTRACT

With the proliferation of smart devices, the Internet of Things (IoT) is rapidly expanding. This study proposes a miniaturized controllable metamaterial with low control voltage for achieving low-power and compact designs in IoT node devices. Operating at a target frequency of 2.4 GHz, the proposed metamaterial requires only a 3.3 V control voltage and occupies approximately one-third of the wavelength in size. Experimental validation demonstrates its excellent reflective control performance, positioning it as an ideal choice for low-power IoT systems, particularly in the context of miniaturized and low-power IoT node applications.

9.
Ultrason Imaging ; : 1617346241256120, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873927

ABSTRACT

The Quantitative Ultrasound backscatter coefficient provides the capability to evaluate tissue microstructure parameters. Tissue-based scatterer parameters are extracted using ultrasound scattering models. It is challenging to correlate ultrasound scatterer parameters of tissue structures from optical-measured histology, possibly because of inappropriate scattering models or the presence of multiple scatterers. The objective of this study is to pursue the quantification of pertinent scatterer parameters with scattering models that consider ultrasound scattering from nuclei and cells. The concentric sphere model (CSM) and the structure factor model adapted for two types of scatterers (SFM2) are evaluated for cell-pellet biophantoms and ex vivo tumors of four cell lines: 4T1, JC, LMTK, and MAT. The structure factor model (SFM) was used for comparison. CSM and SFM2 provided scatterer parameters closer to histology (lower relative errors) for nucleus and cell radii and volume fractions than SFM but were not always accompanied by lower dispersion of the scatterer distribution (lower coefficient of variation). CSM and SFM2 quantified cell and nucleus radius and volume fraction parameters with lower relative error compared to SFM. For tumors, CSM provided better results than SFM2.

10.
Article in English | MEDLINE | ID: mdl-38918301

ABSTRACT

PURPOSE: This retrospective study was conducted to investigate the diagnostic accuracy of ultrasound-derived fat fraction (UDFF) for grading hepatic steatosis using liver histology as the reference standard. METHODS: Seventy-three patients with liver disease were assessed using UDFF and liver biopsy. Pearson's test and the Bland-Altman plot were used to assess the correlation between UDFF and histological fat content in liver sections. The UDFF cutoff values for histologically proven steatosis grades were determined using the area under the receiver operating characteristic curve (AUROC). RESULTS: The median age of the patients was 66 (interquartile range 54-74) years, and 33 (45%) were females. The UDFF values showed a stepwise increase with increasing steatosis grade (p < .001) and were strongly correlated with the histological fat content (r = .7736, p < .001). The Bland-Altman plot revealed a mean bias of 2.384% (95% limit of agreement, - 6.582 to 11.351%) between them. Univariate regression analysis revealed no significant predictors of divergence. The AUROCs for distinguishing steatosis grades of ≥ 1, ≥2, and 3 were 0.956 (95% confidence interval [CI], 0.910-1.00), 0.926 (95% CI, 0.860-0.993), and 0.971 (95% CI, 0.929-1.000), respectively. The UDFF cutoff value of > 6% had a sensitivity and specificity of 94.8% and 82.3%, respectively, for diagnosing steatosis grade ≥ 1. There was no association between UDFF and the fibrosis stage. CONCLUSION: UDFF shows strong agreement with the histological fat content and excellent diagnostic accuracy for grading steatosis. UDFF is a promising tool for detecting and quantifying hepatic steatosis in clinical practice.

11.
Sci Rep ; 14(1): 10150, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698090

ABSTRACT

We present a powerful method for the simultaneous detection of Au nanoparticles located on both sides of ultrathin sections. The method employs a high-resolution scanning electron microscope (HRSEM) operating in scanning transmission electron microscopy (STEM) mode in combination with the detection of backscattered electrons (BSE). The images are recorded simultaneously during STEM and BSE imaging at the precisely selected accelerating voltage. Under proper imaging conditions, the positions of Au nanoparticles on the top or bottom sides can be clearly differentiated, hence showing this method to be suitable for multiple immunolabelling using Au nanoparticles (NPs) as markers. The difference between the upper and lower Au NPs is so large that it is possible to apply common software tools (such as ImageJ) to enable their automatic differentiation. The effects of the section thickness, detector settings and accelerating voltage on the resulting image are shown. Our experimental results correspond to the results modelled in silico by Monte Carlo (MC) simulations.

12.
Phenomics ; 4(1): 72-80, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38605911

ABSTRACT

This study aims to introduce the protocol for ultrasonic backscatter measurements of musculoskeletal properties based on a novel ultrasonic backscatter bone diagnostic (UBBD) instrument. Dual-energy X-ray absorptiometry (DXA) can be adopted to measure bone mineral density (BMD) in the hip, spine, legs and the whole body. The muscle and fat mass in the legs and the whole body can be also calculated by DXA body composition analysis. Based on the proposed protocol for backscatter measurements by UBBD, ultrasonic backscatter signals can be measured in vivo, deriving three backscatter parameters [apparent integral backscatter (AIB), backscatter signal peak amplitude (BSPA) and the corresponding arrival time (BSPT)]. AIB may provide important diagnostic information about bone properties. BSPA and BSPT may be important indicators of muscle and fat properties. The standardized backscatter measurement protocol of the UBBD instrument may have the potential to evaluate musculoskeletal characteristics, providing help for promoting the application of the backscatter technique in the clinical diagnosis of musculoskeletal disorders (MSDs), such as osteoporosis and muscular atrophy.

13.
Bioengineering (Basel) ; 11(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38671772

ABSTRACT

Traumatic heterotopic ossification (HO) is frequently observed in Service Members following combat-related trauma. Estimates suggest that ~65% of wounded warriors who suffer limb loss or major extremity trauma will experience some type of HO formation. The development of HO delays rehabilitation and can prevent the use of a prosthetic. To date there are limited data to suggest a standard mechanism for preventing HO. This may be due to inadequate animal models not producing a similar bone structure as human HO. We recently showed that traumatic HO growth is possible in an ovine model. Within that study, we demonstrated that 65% of sheep developed a human-relevant hybrid traumatic HO bone structure after being exposed to a combination of seven combat-relevant factors. Although HO formed, we did not determine which traumatic factor contributed most. Therefore, in this study, we performed individual and various combinations of surgical/traumatic factors to determine their individual contribution to HO growth. Outcomes showed that the presence of mature biofilm stimulated a large region of bone growth, while bone trauma resulted in a localized bone response as indicated by jagged bone at the linea aspera. However, it was not until the combinatory factors were included that an HO structure similar to that of humans formed more readily in 60% of the sheep. In conclusion, data suggested that traumatic HO growth can develop following various traumatic factors, but a combination of known instigators yields higher frequency size and consistency of ectopic bone.

14.
Nanotechnology ; 35(29)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38588661

ABSTRACT

Cathodoluminescence and electron backscatter diffraction have been applied to exactly the same grain boundaries (GBs) in a Cu(In,Ga)S2solar absorber in order to investigate the influence of microstructure on the radiative recombination behaviour at the GBs. Two different types of GB with different microstructure were analysed in detail: random high angle grain boundaries (RHAGBs) and Σ3 GBs. We found that the radiative recombination at all RHAGBs was inhibited to some extent, whereas at Σ3 GBs three different observations were made: unchanged, hindered, or promoted radiative recombination. These distinct behaviours may be linked to atomic-scale grain boundary structural differences. The majority of GBs also exhibited a small spectral shift of about ±10 meV relative to the local grain interior (GI) and a few of them showed spectral shifts of up to ±40 meV. Red and blue shifts were observed with roughly equal frequency.

15.
Environ Res ; 252(Pt 3): 118858, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38609066

ABSTRACT

Crucial to the Earth's oceans, ocean currents dynamically react to various factors, including rotation, wind patterns, temperature fluctuations, alterations in salinity and the gravitational pull of the moon. Climate change impacts coastal ecosystems, emphasizing the need for understanding these currents. This study explores multibeam echosounder (MBES), specifically R2-Sonic 2020 instrument, offering detailed seabed information. Investigating coral reefs, rocky reefs and artificial reefs aimed to map seafloor currents movement and their climate change responses. MBES data viz. Bathymetry and backscatter were classified and acoustic doppler current profiler (ADCP) ground data were validated using random forest regression. Results indicated high precision in currents speed measurement i.e. coral reefs with 0.96, artificial reefs with 0.94 and rocky reefs with 0.97. Currents direction accuracy was notable in coral reefs with 0.85, slightly lower in rocky reefs with 0.72 and artificial reefs with 0.60. Random forest identified sediment and backscatter as key for speed prediction while direction relies on bathymetry, slope and aspect. The study emphasizes integrating sediment size, backscatter, bathymetry and ADCP data for seafloor current analysis. This multibeam data on sediments and currents support better marine spatial planning and determine biodiversity patterns planning in the reef area.


Subject(s)
Climate Change , Coral Reefs , Water Movements , Environmental Monitoring/methods , Acoustics , Doppler Effect
16.
Materials (Basel) ; 17(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673208

ABSTRACT

Sub-micro dislocation cellular structures formed during rapid solidification break the strength-ductility trade-off in laser powder bed fusion (LPBF)-processed 316L stainless steel through high-density dislocations and segregated elements or precipitates at the cellular boundaries. The high-density dislocation entangled at the cellular boundary accommodates solidification strains among the cellular structures and cooling stresses through elastoplastic deformation. Columnar grains with cellular structures typically form along the direction of thermal flux. However, the ultra-low misorientations between the adjacent cellular structures and their interactions with the cellular boundary formation remain unclear. In this study, we revealed the ultra-low misorientations between the cellular structures in LPBF-processed 316L stainless steel using conventional electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD), and transmission electron microscopy (TEM). The conventional EBSD and TKD analysis results could provide misorientation angles smaller than 2°, while the resolution mainly depends on the specimen quality and scanning step size, and so on. A TEM technique with higher spatial resolution provides accurate information between adjacent dislocation cells with misorientation angles smaller than 1°. This study presents evidence that the TEM method is the better and more precise analytical method for the misorientation measurement of the cellular structures and provides insights into measuring the small misorientation angles between adjacent dislocation cells and nanograins in nanostructured metals and alloys with ultrafine-grained microstructures.

17.
Materials (Basel) ; 17(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38541413

ABSTRACT

This study focuses on exploring the effects of niobium (Nb)-microalloying on the properties of steel for ultra-high-strength bridge cables during hot-rolling processes. We employed a combination of dual-pass compression tests, stress-strain curve analysis, and Electron Backscatter Diffraction (EBSD) techniques to investigate the influence of Nb-microalloying on the static recrystallization behavior and grain size of the steel. The key findings reveal that Nb-microalloying effectively inhibits static recrystallization, particularly at higher temperatures, significantly reducing the volume fraction of recrystallized grains, resulting in a finer grain size and enhanced deformation resistance. Secondly, at a deformation temperature of 975 °C, Nb-containing steel exhibited finer grain sizes compared to Nb-free steel when held for 10 to 50 s; however, the grain size growth accelerated when the hold time exceeded 50 s, likely linked to the increased deformation resistance induced by Nb. Lastly, this research proposes optimal hot-rolling process parameters for new bridge cable steel, recommending specific finishing rolling temperatures and inter-pass times for both Nb-containing and Nb-free steels during the roughing and finishing stages. This study suggests optimal hot-rolling parameters for both Nb-containing and Nb-free steels, providing essential insights for improving hot-rolling and microalloying processes in high-carbon steels for bridge cables.

18.
Microsc Microanal ; 30(2): 253-277, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38457212

ABSTRACT

Microstructure analysis via electron backscatter diffraction has become an indispensable tool in materials science and engineering. In order to interpret or predict the anisotropy in crystalline materials, the texture is assessed, e.g. via pole figure diagrams. To ensure a correct characterization, it is crucial to align the measured sample axes as closely as possible with the manufacturing process directions. However, deviations are inevitable due to sample preparation and manual measurement setup. Postprocessing is mostly done manually, which is tedious and operator-dependent. In this work, it is shown that the deviation can be calculated using the contour of the crystal orientations. This can also be utilized to define the axis symmetry of pole figure diagrams through an objective function, allowing for symmetric alignment by minimization. Experimental textures of extruded profiles and synthetically generated textures were used to demonstrate the general applicability of the method. It has proven to work excellently for deviations of up to 5∘, which are typical for careful manual sample preparation and mounting. While the performance of the algorithm is reduced with increasing misalignment, good results have also been obtained for deviations up to 15∘.

19.
Appl Radiat Isot ; 207: 111278, 2024 May.
Article in English | MEDLINE | ID: mdl-38442643

ABSTRACT

Ensuring the integrity, safety, and compliance of oil pipelines is crucial for operators. Two significant factors affecting pipeline integrity are metal loss due to corrosion or air gouging and the presence of cracks. This paper introduces an X-ray backscatter nondestructive testing model on a smart pig(an intelligent robot) for internal inspection of petroleum pipelines. The paper investigates the X-ray source and detection system, essential components of the backscatter imaging technology, to provide technical guidance for model design. The imaging system's layout is modeled using GEANT4, and its performance in detecting defects of various formats on pipe walls is studied. The research demonstrates the feasibility of using X-ray backscatter imaging for pipeline inspection and provides insights into different defect detection. The findings contribute to designing and optimizing the robot's scanning head for effective pipeline inspection.

20.
Micron ; 180: 103613, 2024 May.
Article in English | MEDLINE | ID: mdl-38428322

ABSTRACT

Sustainable TiC-Fe-based cermets have been fabricated by adopting an Additive Manufacturing route based on laser powder bed fusion technology (L-PBF). The objective is to produce crack-free cermet components by employing novel multiple laser scanning techniques with variations in laser process parameters. Electron backscatter diffraction analysis (EBSD) was used to study the microstructure and microtexture evolution with variations in laser process parameters. The investigation revealed that adjusting the preheating scan speed (PHS) and melting scan speed (MS) influenced the growth and nucleation of TiC phases. Lowering these speeds resulted in grain coarsening, while higher scan speeds led to grain refinement with larger sub-grain boundaries. Moreover, a high scanning speed increases the degree of dislocation density and internal stress in the fabricated cermet parts. Notably, it is revealed that decreasing the laser scan speed enhanced the proportion of high-angle grain boundaries in the cermet components, signifying an increase in material ductility.

SELECTION OF CITATIONS
SEARCH DETAIL
...