Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
1.
J Fish Biol ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385531

ABSTRACT

Astroblepus species, commonly known as Andean climbing catfish, exhibit a unique challenge in species delimitation, leading to ongoing taxonomic debates. Here we report data on Astroblepus mindoensis, a vulnerable species endemic to Ecuador, obtained by an integrative approach that includes cytogenetic analysis, molecular identification of the specimens, and recording of morphological and morphometric characters useful for species diagnosis. Thus, this study aimed to associate the karyotype data of the specimens analyzed with morphological and molecular characters, improving and expanding the existing taxonomic information, thus contributing to the systematics of the species. Our morphology results, unlike Regan's original description, which is brief and ambiguous, provide a more detailed morphometric and meristic description. Molecular phylogenetic reconstruction and genetic distance based on a fragment of the cytochrome c oxidase subunit I (COI) showed that our samples constitute a well-supported and monophyletic clade within the A. grixalvii species complex. The cytogenetic analysis identified distinct chromosomal markers, including a single cluster of major ribosomal genes (on chromosome pair 3) and of minor ribosomal genes (on chromosome pair 12) with their localization differing from those reported in other Astroblepus species analyzed. Additionally, the presence of a heteromorphic chromosome pair in males suggests the presence of an XX/XY sex-determination system that has not been identified in other congeneric species. Further investigation is necessary to determine if these chromosomes are associated with the accumulation of repeated sequences, as typically occurs with sex chromosomes, and to assess their presence in other species of the genus.

2.
Braz J Microbiol ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39384703

ABSTRACT

The Amazon rainforest is the world's most diverse ecosystem, full of fauna and flora. Among the trees that make up the forest are the rubber trees of the genus Hevea (H. brasiliensis and H. guianensis), which stand out for the industrial use of latex. It was previously shown that endophytic fungi colonize the leaves, stems, and roots of Hevea spp. In this study, 47 Penicillium spp. and three Talaromyces spp. isolates were analyzed using specific DNA barcodes: internal transcribed spacers region (ITS), ß-tubulin (BenA), calmodulin (CaM), and the DNA-dependent RNA polymerase II second largest subunit (RPB2) genes and additionally, for species delimitation, the genealogical concordance phylogenetic species recognition (GCPSR) criteria were applied. The phylogenetic analyses placed the Penicillium isolates into four sections Lanata-Divaricata, Sclerotiora, Citrina, and Fasciculata. The morphological and molecular characteristics resulted in the discovery of five new species (P. heveae sp. nov., P. acrean sp. nov., P. aquiri sp. nov., P. amazonense sp. nov., and P. pseudomellis sp. nov.). The five new species were also compared to closely related species, with observations on morphologically distinguishing features and colony appearances. Bayesian inference and maximum likelihood analysis have supported the placement of P. heveae sp. nov. as a sister group to P. globosum; P. acrean sp. nov. and P. aquiri sp. nov. as sister groups to P. sumatrense; P. amazonense sp. nov. closely related to isolates of P. rolfsii, and P. pseudomellis sp. nov. closely related to P. mellis. The study of endophytic Penicillium species of rubber trees and the description of five new taxa of Penicillium sect. Citrina, Lanata-Divaricata, and Sclerotiora as endophytes add to the fungal biodiversity knowledge in native rubber trees. Reports of fungi in native tropical plants may reveal taxonomic novelties, potential pathogen control agents, and producers of molecular bioactive compounds of medical and agronomic interest.

3.
Forensic Sci Int Genet ; 68: 102971, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39090851

ABSTRACT

Cannabis sativa can be classified in two main types, according to psychotropic cannabinoid ∆9-tetrahydrocannabinol (∆9-THC) content: the drug-type and the fiber-type. According to the European Monitoring Center for Drugs and Drug Addiction, most of the European Union countries consider the possession of cannabis, for personal use, a minor offense with possibility of incarceration. Despite of the model of legal supply (i.e., Spanish cannabis clubs, Netherlands coffee shops) or medical use (i.e., Italy), cannabis remains the most used and trafficked illicit plant in the European Union. Differentiating cannabis crops or tracing the biogeographical origin is crucial for law enforcement purposes. Chloroplast DNA (cpDNA) markers may assist to determine biogeographic origin and to differentiate hemp from marijuana. This research aims: to identify and to evaluate nine C. sativa cpDNA polymorphic SNP sites to differentiate crop type and to provide information about its biogeographical origin. Five SNaPshot™ assays for nine chloroplast markers were developed and conducted in marijuana samples seized in Chile, the USA-Mexico border and Spain, and hemp samples grown in Spain and in Italy. The SNapShot™ assays were tested on 122 cannabis samples, which included 16 blind samples, and were able to differentiate marijuana crop type from hemp crop type in all samples. Using phylogenetic analysis, genetic differences were observed between marijuana and hemp samples. Moreover, principal component analysis (PCA) supported the relationship among hemp samples, as well as for USA-Mexico border, Spanish, and Chilean marijuana samples. Genetic differences between groups based on the biogeographical origin and their crop type were observed. Increasing the number of genetic markers, including the most recently studied ones, and expanding the sample database will provide more accurate information about crop differentiation and biogeographical origin.


Subject(s)
Cannabis , DNA, Chloroplast , Polymorphism, Single Nucleotide , Cannabis/genetics , Genetic Markers , DNA, Chloroplast/genetics , Mexico , Polymerase Chain Reaction , Europe , Italy , Chile , Spain
4.
J Med Entomol ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39159937

ABSTRACT

A new sand fly species, Trichophoromyia jariensis n. sp. Cavalcante, Rodrigues, & Galati, from the state of Amapá, Brazil, is described based on both male and female morphology and cytochrome c oxidase subunit I DNA barcodes. The DNA barcoding analysis clearly associated males and females of this new species.

5.
Article in English | MEDLINE | ID: mdl-39161647

ABSTRACT

Background: Members of the genus Cupiennius Simon, 1891 are categorized as wandering spiders and are part of the family Trechaleidae. The genomics and proteomics of Cupiennius spiders from North America remain uncharacterized. The present study explores for the first time molecular data from the endemic species Cupiennius chiapanensis Medina, 2006, and also presents new data for Cupiennius salei (Keyserling, 1878), both collected in southern Mexico. Methods: In total, 88 Cupiennius specimens were collected from southern Mexico and morphologically identified. DNA was extracted and the mitochondrial COI fragment was amplified. COI sequences were analyzed, and a phylogenetic tree was inferred for species from the Americas. Genetic diversity was analyzed using haplotype networks and gene distances. Venom was obtained from C. chiapanensis and C. salei by electrostimulation. The venom was separated by HPLC, visualized using SDS-PAGE, and quantified for use in toxicity bioassays in mice and insects. Results: Analysis of COI sequences from C. chiapanensis showed 94% identity with C. salei, while C. salei exhibited 94-97% identity with sequences from Central and South American conspecifics. The venom from C. chiapanensis exhibited toxic activity against crickets. Venoms from C. chiapanensis and C. salei caused death in Anastrepha obliqua flies. Analysis of venom fractions from C. salei and C. chiapanensis revealed molecular masses of a similar size as some previously reported toxins and neurotoxic components. We determined the amino acid sequences of ChiaTx1 and ChiaTx2, toxins that are reported here for the first time and which showed toxicity against mice and insects. Conclusion: Our work is the first to report COI-based DNA barcoding sequences from southern Mexican Cupiennius spiders. Compounds with toxic activity were identified in venom from both species.

6.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766101

ABSTRACT

In October 2023, several colonies of an alien soft coral species were reported on shallow reefs in southwest Puerto Rico. The soft coral was identified as a xeniid octocoral (species undetermined), resembling the octocoral Unomia stolonifera, which has invaded and overgrown reefs in Venezuela in recent years. To conclusively characterize the species of the invading xeniid, we employed multilocus barcoding targeting four genes (ND2, mtMutS, COI, and 28S) of three separate colonies across three locations in southwest Puerto Rico. Sequence comparisons with xeniid sequences from GenBank, including those from the genera Xenia and Unomia, indicated a 100% sequence identity (>3,000 bp combined) with the species Xenia umbellata (Octocorallia : Malacalcyonacea : Xeniidae). Xenia umbellata is native to the Red Sea and to our knowledge, this represents the first confirmed case of this species as an invader on Caribbean reefs. Similar to U. stolonifera, X. umbellata is well known for its ability to rapidly overgrow substrate as well as tolerate environmental extremes. In addition, X. umbellata has recently been proposed as a model system for tissue regeneration having the ability to regenerate completely from a single tentacle. These characteristics greatly amplify X. umbellata's potential to adversely affect any reef it invades. Our findings necessitate continued collaborative action between local management agencies and stakeholders in Puerto Rico, as well as neighboring islands, to monitor and control this invasion prior to significant ecological perturbation.

7.
Curr Issues Mol Biol ; 46(5): 3810-3821, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38785505

ABSTRACT

French Guiana, located in the Guiana Shield, is a natural reservoir for many zoonotic pathogens that are of considerable medical or veterinary importance. Until now, there has been limited data available on the description of parasites circulating in this area, especially on protozoan belonging to the phylum Apicomplexa; conversely, the neighbouring countries describe a high parasitic prevalence in animals and humans. Epidemiological surveillance is necessary, as new potentially virulent strains may emerge from these forest ecosystems, such as Amazonian toxoplasmosis. However, there is no standard tool for detecting protozoa in wildlife. In this study, we developed Meat-Borne-Parasite, a high-throughput meta-barcoding workflow for detecting Apicomplexa based on the Oxford Nanopore Technologies sequencing platform using the 18S gene of 14 Apicomplexa positive samples collected in French Guiana. Sequencing reads were then analysed with MetONTIIME pipeline. Thanks to a scoring rule, we were able to classify 10 samples out of 14 as Apicomplexa positive and reveal the presence of co-carriages. The same samples were also sequenced with the Illumina platform for validation purposes. For samples identified as Apicomplexa positive by both platforms, a strong positive correlation at up to the genus level was reported. Overall, the presented workflow represents a reliable method for Apicomplexa detection, which may pave the way for more comprehensive biomonitoring of zoonotic pathogens.

8.
MycoKeys ; 105: 21-47, 2024.
Article in English | MEDLINE | ID: mdl-38694266

ABSTRACT

Four species of the genus Sticta are described as new from Bolivia, based on morphological examination and phylogenetic analysis of the fungal ITS barcoding marker. Additionally, two species are reported as new to Bolivia (their identification confirmed by molecular data) and one previously reported species is confirmed by molecular data for the first time. Detailed morphological and anatomical descriptions are provided for all new species. Two of the new species, S.isidiolobulata Ossowska, B. Moncada, Lücking & Kukwa and S.madidiensis Ossowska, B. Moncada, Lücking & Kukwa belong to clade I, as defined in previous studies. In contrast, S.montepunkuensis Ossowska, B. Moncada, Lücking & Kukwa and S.macrolobata Ossowska, B. Moncada, Lücking & Kukwa, also described here as new to science, belong to clade III. Stictaisidiolobulata has an irregular to suborbicular thallus of medium size, with isidia developing into spathulate lobules, cyanobacterial photobiont and apothecia with entire to weakly-crenate margins. The large irregular thallus of the cyanobacteria-associated S.macrolobata has broad lobes, apothecia with verrucous to tomentose margins and cyphellae with raised margins, whereas S.madidiensis has a medium-sized, palmate to irregular thallus with a stipe, but without vegetative propagules and apothecia. Stictamontepunkuensis has large and irregular thalli with green algae as photobiont, apothecia with crenate to verrucous margins and urceolate cyphellae with a wide pore and a scabrid basal membrane. Two species, S.beauvoisii Delise and S.riparia Merc.-Díaz are reported as new to Bolivia (the latter also as new to South America) and belong to clade III. Stictatomentosa (Sw.) Ach., species confirmed from Bolivia by molecular data, belongs to clade II. Stictabeauvoisii is characterised by a smooth yellowish-brown upper surface with darker apices and abundant, marginal isidia and a brown lower surface with golden-chocolate brown primary tomentum and sparse, golden-brown rhizines. Stictariparia has a strongly branched thallus, with undulate lobes and abundant, marginal, palmate, grey to dark brown phyllidia and greyish-brown lower surface with the primary tomentum absent towards the margins. Stictatomentosa has palmate, bluish thalli with white cilia and abundant, submarginal apothecia and creamy-white lower surface with a sparse, white primary tomentum.

9.
Neotrop Entomol ; 53(3): 461-468, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656593

ABSTRACT

We report the first record of the occurrence of the banana weevil, Cosmopolites sordidus (Germar, 1823) (Coleoptera: Curculionidae), an economically important pest of bananas (Musa spp.), from Fifa Mountains in Saudi Arabia. Moreover, we recorded the first observation of damage caused to bananas by C. sordidus in a banana farm in Jazan Province, southwestern Saudi Arabia, in March 2022. Molecular characterization using DNA sequences of the mitochondrial COI gene confirmed the morphological identification of C. sordidus. This discovery is considered a warning notice to prevent the potential establishment and spread of this dangerous pest in the banana cultivation regions in Saudi Arabia. Therefore, it is recommended that detection and monitoring of banana weevil should be undertaken in Saudi banana farms in order to restrict the dissemination of this weevil to other banana cultivation areas.


Subject(s)
Musa , Weevils , Animals , Weevils/classification , Saudi Arabia , Musa/parasitology , Female , Male
10.
PeerJ ; 12: e16828, 2024.
Article in English | MEDLINE | ID: mdl-38436023

ABSTRACT

A new labrid fish species, Halichoeres sanchezi n. sp., is described from eight specimens collected in the Revillagigedo Archipelago in the tropical eastern Pacific Ocean, off the coast of Mexico. The new species belongs to the Halichoeres melanotis species complex that is found throughout the region, differing by 2.4% in the mtDNA cytochrome c oxidase I sequence from its nearest relative, H. melanotis from Panama, and 2.9% from Halichoeres salmofasciatus from Cocos Island, off Costa Rica. The complex is distinguished from others in the region by having a black spot on the opercular flap and a prominent black area on the caudal fin of males. The juveniles and initial phase of the new species closely resemble those of H. salmofasciatus and Halichoeres malpelo from Malpelo Island of Colombia, differing in having an oblong black spot with a yellow dorsal margin on the mid-dorsal fin of initial-phase adults as well as on juveniles. In contrast, the terminal-phase male color pattern is distinct from other relatives, being vermilion to orangish brown with dark scale outlines, a white patch on the upper abdomen, and a prominent black band covering the posterior caudal peduncle and base of the caudal fin. The new species adds to the list of endemic fish species for the isolated archipelago and is an interesting case of island endemism in the region. The discovery was made during the joint 2022 collecting expedition to the archipelago, which featured a pioneering collaborative approach to an inventory of an island ichthyofauna, specifically including expert underwater photographers systematically documenting specimens in situ, before hand-collection, and then photographed fresh, tissue-sampled, and subsequently vouchered in museum collections.


Subject(s)
Abdominal Cavity , Perciformes , Male , Animals , Mexico , Pacific Ocean , Fishes/genetics
11.
Zookeys ; 1189: 327-336, 2024.
Article in English | MEDLINE | ID: mdl-38314115

ABSTRACT

Argyrotaeniasocoromaensissp. nov. (Lepidoptera, Tortricidae, Tortricinae, Archipini) from the arid Andes of northern Chile is described and illustrated. Adults are sexually dimorphic, with differences in wing size, shape and pattern. The larvae feed on Steviaphilippiana Hieron. (Asteraceae) and Lupinusoreophilus Phil. (Fabaceae). Genetic distance between DNA barcodes of male and female adults reared from larvae collected on the two hosts was 0-0.2% (K2P). The discovery of A.socoromaensissp. nov. represents the first record of the genus Argyrotaenia Stephens, 1852 and the tribe Archipini for the Chilean fauna of Tortricidae.

12.
Front Plant Sci ; 15: 1302047, 2024.
Article in English | MEDLINE | ID: mdl-38352648

ABSTRACT

Multiple Salmonella enterica serovars and strains have been reported to be able to persist inside the foliar tissue of lettuce (Lactuca sativa L.), potentially resisting washing steps and reaching the consumer. Intraspecies variation of the bacterial pathogen and of the plant host can both significantly affect the outcome of foliar colonization. However, current understanding of the mechanisms underlying this phenomenon is still very limited. In this study, we evaluated the foliar fitness of 14 genetically barcoded S. enterica isolates from 10 different serovars, collected from plant and animal sources. The S. enterica isolates were vacuum-infiltrated individually or in pools into the leaves of three- to four-week-old lettuce plants. To estimate the survival capacity of individual isolates, we enumerated the bacterial populations at 0- and 10- days post-inoculation (DPI) and calculated their net growth. The competition of isolates in the lettuce apoplast was assessed through the determination of the relative abundance change of barcode counts of each isolate within pools during the 10 DPI experimental period. Isolates exhibiting varying apoplast fitness phenotypes were used to evaluate their capacity to grow in metabolites extracted from the lettuce apoplast and to elicit the reactive oxygen species burst immune response. Our study revealed that strains of S. enterica can substantially differ in their ability to survive and compete in a co-inhabited lettuce leaf apoplast. The differential foliar fitness observed among these S. enterica isolates might be explained, in part, by their ability to utilize nutrients available in the apoplast and to evade plant immune responses in this niche.

13.
Med Vet Entomol ; 38(1): 83-98, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37867259

ABSTRACT

In this study, we analysed the molecular and morphometric differences of several populations of the putative sand fly vector Psychodopygus davisi (Root, 1934) (Diptera, Psychodidae, Phlebotominae) in Brazil. We amplified the 658 base pair fragments of the DNA barcoding region-cytochrome c oxidase subunit 1 (COI) gene-for 57 specimens of P. davisi and three specimens of Psychodopygus claustrei (Abonnenc, Léger & Fauran, 1979). We merged our data with public sequences of the same species available from GenBank. Then, the combined dataset-87 sequences and 20 localities-was analysed using population structure analysis and different species delimitation approaches. Geometric morphometry of wings was performed for 155 specimens of P. davisi populations from the North, Midwest and Southeast Brazilian regions, analysing the differences in centroid sizes and canonical variates. Molecular analysis indicated high intraspecific genetic distance values for P. davisi (maximum p distance = 5.52%). All algorithms identified P. davisi and P. claustrei as distinct molecular taxonomic units, despite the low interspecific distance (p distance to the nearest neighbour = 4.79%). P. davisi sequences were split into four genetic clusters by population structure analysis and at least five genetic lineages using intermediate scenarios of the species delimitation algorithms. The species validation analysis of BPP strongly supported the five-species model in our dataset. We found high genetic diversity in this taxon, which is in agreement with its wide geographic distribution in Brazil. Furthermore, the wing analysis showed that specimens from the Southeast Region of Brazil are different from those in the North and the Midwest. The evolutionary patterns of P. davisi populations in Brazil suggest the presence of candidate species, which need to be validated in future studies using a more comprehensive approach with both genomic data and morphological characters.


Subject(s)
Phlebotomus , Psychodidae , Animals , Brazil , Psychodidae/genetics , Biological Evolution , Algorithms , DNA Barcoding, Taxonomic/veterinary , Phylogeny
14.
Braz. j. biol ; 84: e268001, 2024. tab, ilus
Article in English | VETINDEX | ID: biblio-1420690

ABSTRACT

Molecular appraoch for identification of unknown species by using Cytochrome b gene is an effective and reliable as compared with morphological based identification. For DNA barcoding universal molecular genes were used to identify the species. Cytochrome b is a specific gene used for identification purpose. DNA barcoding is a reliable and effective method compared to the different traditional morphological methods of specie identification. So,in the present study which was conducted to identify the species, a total of 50 fish samples were collected from five different sites. DNA was extracted by using the Phenol Chloroform method from muscle tissue. Five sequences were sequenced (one from each site), analyzed, and identified specific species as Pangasius pangasius. Identified sequences were variable in length from 369 bp (Site 1), 364 bp (Site 2), 364 bp (Site 3), 352 bp (Site 4), and 334 bp (Site 5). Identity matches on the NCBI database confirmed the specific specie as P. pangasius. A distancing tree was drawn to show maximum likelihood among the same and different species. Yet, in many cases fishes on diverse development stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative tool for species identification and phylogenetic study. This work intends to provide an updated and extensive overview on the DNA based methods for fish species identification by using Cytochrome b gene as targeted markers for identification purpose.


A abordagem molecular para identificação de espécies desconhecidas usando o gene citocromo b é eficaz e confiável em comparação com a identificação baseada na morfologia. Códigos de barras de DNA de genes moleculares universais foram usados ​​para identificar as espécies. O citocromo b é um gene específico usado para fins de identificação. O código de barras de DNA é um método confiável e eficaz em comparação com os diferentes métodos morfológicos tradicionais de identificação de espécies. Assim, no presente estudo, que foi realizado para identificar as espécies, um total de 50 amostras de peixes foram coletadas em cinco locais diferentes. O DNA foi extraído usando o método Fenol Clorofórmio do tecido muscular. Cinco sequências foram sequenciadas (uma de cada local), analisadas e identificadas espécies específicas, como Pangasius pangasius. As sequências identificadas tinham comprimento variável de 369 bp (Local 1), 364 bp (Local 2), 369 bp (Local 1), 364 bp (Local 3), 352 bp (Local 4) e 334 bp (Local 5). As correspondências de identidade no banco de dados do NCBI confirmaram a espécie específica como P. pangasius. Uma árvore de distanciamento foi desenhada para mostrar a máxima probabilidade entre elas e diferentes espécies. No entanto, em muitos casos, peixes em diversos estágios de desenvolvimento são difíceis de identificar por caracteres morfológicos. Os métodos de identificação baseados em DNA oferecem uma adição analiticamente poderosa ou mesmo uma ferramenta alternativa para identificação de espécies e estudo filogenético. Este trabalho pretende fornecer uma visão geral atualizada e abrangente sobre os métodos baseados em DNA para identificação de espécies de peixes usando o gene citocromo b como marcadores direcionados para fins de identificação.


Subject(s)
Animals , Phylogeny , Cytochromes b , Biodiversity , Fishes
15.
Acta Trop ; 250: 107095, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097151

ABSTRACT

The sand fly fauna and the usefulness of the DNA barcoding fragment of the cytochrome c oxidase subunit I (COI) gene were accessed in a forest fragment in the municipality of Governador Newton Bello, state of Maranhão, Brazil. We performed entomological collections in three independent campaigns in May and October 2021, and January 2023. Sand flies were morphologically-identified and then DNA barcoded. Sequences were deposited and analyzed in the BOLD System Database, and various species delimitation algorithms, to assess whether DNA sequences merge into taxonomic units in accordance with nominal species. In total, 1,524 sand flies were collected, comprising 32 nominal species. Nyssomyia antunesi was the most abundant species (31.5 %), followed by Psychodopygus davisi (27 %). We reported for the first time in the state of Maranhão, the presence of Lutzomyia evangelistai, Lutzomyia sherlocki, Pressatia equatorialis, and Psathyromyia barrettoi. We amplified and analyzed 67 COI barcodes of 23 species, which were merged with conspecific sequences extracted from GenBank. The maximum intraspecific p distances ranged from 0.0 % to 14.74 %, while the distances to the nearest neighbor varied from 1.67 % to 13.64 %. The phylogenetic gene tree and species delimitation tools clustered sequences into well-supported clades/clusters for each nominal species, except for Pressatia choti/Pr. equatorialis, which have the lowest interspecific genetic distance (1.67 %). We sequenced for the first time COI barcodes of Brumptomyia brumpti, Evandromyia monstruosa, Micropygomyia rorotaensis, Micropygomyia pilosa, Pintomyia christenseni, Pintomyia pacae, Pr. equatorialis, Pa. barrettoi, and Psathyromyia hermanlenti, which will be useful for further molecular identification and classification proposals of Neotropical species. This study updated the current list of the sand fly fauna for the state of Maranhão to 97, and demonstrated that COI barcodes are useful for specific identification.


Subject(s)
Phlebotomus , Psychodidae , Animals , Psychodidae/genetics , DNA Barcoding, Taxonomic , Brazil , Phylogeny , DNA
16.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;30: e20230098, 2024. tab, graf, mapas, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1569330

ABSTRACT

Background: Members of the genus Cupiennius Simon, 1891 are categorized as wandering spiders and are part of the family Trechaleidae. The genomics and proteomics of Cupiennius spiders from North America remain uncharacterized. The present study explores for the first time molecular data from the endemic species Cupiennius chiapanensis Medina, 2006, and also presents new data for Cupiennius salei (Keyserling, 1878), both collected in southern Mexico. Methods: In total, 88 Cupiennius specimens were collected from southern Mexico and morphologically identified. DNA was extracted and the mitochondrial COI fragment was amplified. COI sequences were analyzed, and a phylogenetic tree was inferred for species from the Americas. Genetic diversity was analyzed using haplotype networks and gene distances. Venom was obtained from C. chiapanensis and C. salei by electrostimulation. The venom was separated by HPLC, visualized using SDS-PAGE, and quantified for use in toxicity bioassays in mice and insects. Results: Analysis of COI sequences from C. chiapanensis showed 94% identity with C. salei, while C. salei exhibited 94-97% identity with sequences from Central and South American conspecifics. The venom from C. chiapanensis exhibited toxic activity against crickets. Venoms from C. chiapanensis and C. salei caused death in Anastrepha obliqua flies. Analysis of venom fractions from C. salei and C. chiapanensis revealed molecular masses of a similar size as some previously reported toxins and neurotoxic components. We determined the amino acid sequences of ChiaTx1 and ChiaTx2, toxins that are reported here for the first time and which showed toxicity against mice and insects. Conclusion: Our work is the first to report COI-based DNA barcoding sequences from southern Mexican Cupiennius spiders. Compounds with toxic activity were identified in venom from both species.(AU)


Subject(s)
Animals , Phylogeny , Spiders/classification , Spiders/genetics , Spider Venoms/toxicity , Electron Transport Complex IV/analysis , DNA Barcoding, Taxonomic/veterinary , Mexico
17.
J Helminthol ; 97: e96, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38073427

ABSTRACT

The Isthmosacanthidae acanthocephalan species of the genus Serrasentis are parasites of marine teleosts and an elasmobranch. In this study, Serrasentis gibsoni n. sp. is described from the intestines of four flatfish species (Paralichthyidae), namely Ancyclopsetta quadrocellata, Cyclopsetta chittendeni, Syacium gunteri, and S. papillosum from 10 oceanic sites in the Gulf of Mexico (GoM). Twenty sequences of the 'barcoding' region of cytochrome C oxidase subunit I gene were obtained from 20 adults of Serrasentis gibsoni n. sp. Additionally, five sequences of the barcoding region were obtained from five adults of rhadinorhynchid Gorgorhynchus lepidus from C. chittendeni, S. papillosum and one species of Haemulidae, Haemulom aurolineatum, from five oceanic sites from the GoM. Two phylogenetic approaches were followed: Bayesian inference and maximum likelihood. In both phylogenetic reconstructions, the sequences of Serrasentis gibsoni n. sp. were recovered as a monophyletic group within the genus Serrasentis and placed as a sister group to G. lepidus. However, due to the lack of molecular data for species of the Isthmosacanthidae and Rhadinorhynchidea, these phylogenetic inferences must be taken with caution. Serrasentis gibsoni n. sp. is the first species of Serrasentis described from Paralichthyidae flatfish species from marine waters of the Americas and from the GoM. Based on the barcoding data set analyzed, Serrasentis gibsoni n. sp. appears to have high intraspecific genetic variation; thus, it is necessary to continue exploring the genetic diversity of this species to infer its intraspecific evolutionary patterns.


Subject(s)
Acanthocephala , Flatfishes , Animals , Acanthocephala/genetics , Flatfishes/genetics , Flatfishes/parasitology , Phylogeny , Gulf of Mexico , Bayes Theorem , Mexico
18.
Mol Biol Rep ; 50(12): 9985-9992, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898957

ABSTRACT

BACKGROUND: Elasmobranch populations are declining, predominantly driven by overfishing, and over a third of global sharks, rays, and chimeras are estimated to be threatened with extinction. In terms of trade, Brazil is ranked the eleventh-largest shark producer and the top importer of shark meat in the world. Research has shown that elasmobranchs are sold in Brazil under the name "cação" (a generic designation for cartilaginous fish) to overcome consumer resistance. METHODOLOGY AND RESULTS: This study used DNA barcoding to investigate the sale of sharks in the State of São Paulo during the COVID-19 lockdown. A total of 35 samples of "cação" were analysed, revealing six different shark species on sale, including Carcharhinus falciformis, Carcharhinus signatus, Carcharias taurus, Isurus oxyrinchus, and Isurus paucus, that are threatened with extinction according to the IUCN red list. This study demonstrates that vulnerable elasmobranchs are being commercialised under the label "cação" in the São Paulo State and Brazil. CONCLUSIONS: Comparison of shark products traded before and during the COVID-19 pandemic showed no significant difference, suggesting lockdown did not affect patterns of species commercialisation. Effective fisheries and sale monitoring, correct product labelling legislation and increased consumer awareness that "cação" is shark are needed for appropriate conservation and management of shark populations in Brazil.


Subject(s)
COVID-19 , Sharks , Animals , Humans , Endangered Species , Sharks/genetics , Conservation of Natural Resources/methods , Brazil/epidemiology , Pandemics , Fisheries , COVID-19/epidemiology , Communicable Disease Control , DNA
19.
Biomedica ; 43(Sp. 1): 288-311, 2023 08 31.
Article in English, Spanish | MEDLINE | ID: mdl-37721899

ABSTRACT

Fungi are multifaceted organisms found in almost all ecosystems on Earth, where they establish various types of symbiosis with other living beings. Despite being recognized by humans since ancient times, and the high number of works delving into their biology and ecology, much is still unknown about these organisms. Some criteria classically used for their study are nowadays limited, generating confusion in categorizing them, and even more, when trying to understand their genealogical relationships. To identify species within Fungi, phenotypic characters to date are not sufficient, and to construct a broad phylogeny or a phylogeny of a particular group, there are still gaps affecting the generated trees, making them unstable and easily debated. For health professionals, fungal identification at lower levels such as genus and species, is enough to select the most appropriate therapy for their control, understand the epidemiology of clinical pictures associated, and recognize outbreaks and antimicrobial resistance. However, the taxonomic location within the kingdom, information with apparently little relevance, can allow phylogenetic relationships to be established between fungal taxa, facilitating the understanding of their biology, distribution in nature, and pathogenic potential evolution. Advances in molecular biology and computer science techniques from the last 30 years have led to crucial changes aiming to establish the criteria to define a fungal species, allowing us to reach a kind of stable phylogenetic construction. However, there is still a long way to go, and it requires the joint work of the scientific community at a global level and support for basic research.


Los hongos son organismos polifacéticos presentes en casi todos los ecosistemas de la tierra, donde establecen diversos tipos de simbiosis con otros seres vivos. A pesar de ser reconocidos por los humanos desde la antigüedad -y de la cantidad de trabajos que han profundizado sobre su biología y ecología-, aún falta mucho por conocer sobre estos organismos. Algunos de los criterios que clásicamente se han utilizado para su estudio, hoy resultan limitados y hasta cierto punto permiten un agrupamiento de los aislamientos según algunas características, pero generan confusión en su clasificación y, más aún, cuando se pretende comprender sus relaciones genealógicas. Los caracteres fenotípicos no son suficientes para identificar una especie de hongos y, menos aún, para construir una filogenia amplia o de un grupo particular. Hay grandes vacíos que hacen que los árboles generados sean inestables y fácilmente debatidos. Para los profesionales de la salud, parece que la identificación de los hongos hasta niveles inferiores como género y especie es suficiente para elegir el tratamiento más adecuado para su control, comprender la epidemiología de los cuadros clínicos asociados y reconocer los brotes y los factores determinantes de la resistencia a los antimicrobianos. No obstante, la ubicación taxonómica dentro del reino permitiría establecer relaciones filogenéticas entre los taxones fúngicos, facilitando la comprensión de su biología, su distribución en la naturaleza y la evolución de su potencial patogénico.

20.
Integr Zool ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550887

ABSTRACT

Diet composition and its ecological drivers are rarely investigated in coexisting closely related species. We used a molecular approach to characterize the seasonal variation in diet composition in four spiny lizard species inhabiting a mountainous ecosystem. DNA metabarcoding revealed that the lizards Sceloporus aeneus, S. bicanthalis, S. grammicus, and S. spinosus mostly consumed arthropods of the orders Hemiptera, Araneae, Hymenoptera, and Coleoptera. The terrestrial lizards S. aeneus and S. bicanthalis mostly predated ants and spiders, whereas the arboreal-saxicolous S. grammicus and saxicolous S. spinosus largely consumed grasshoppers and leafhoppers. The taxonomic and phylogenetic diversity of the prey was higher during the dry season than the rainy season, likely because reduced prey availability in the dry season forced lizards to diversify their diets to meet their nutritional demands. Dietary and phylogenetic composition varied seasonally depending on the species, but only dietary composition varied with altitude. Seasonal dietary turnover was greater in S. spinosus than in S. bicanthalis, suggesting site-specific seasonal variability in prey availability; no other differences among species were observed. S. bicanthalis, which lives at the highest altitude in our study site, displayed interseasonal variation in diet breadth. Dietary differences were correlated with the species' feeding strategies and elevational distribution, which likely contributed to the coexistence of these lizard species in the studied geographic area and beyond.

SELECTION OF CITATIONS
SEARCH DETAIL