Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.303
Filter
2.
Biochem J ; 481(14): 903-922, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38985308

ABSTRACT

Programmed cell death via the both intrinsic and extrinsic pathways is regulated by interactions of the Bcl-2 family protein members that determine whether the cell commits to apoptosis via mitochondrial outer membrane permeabilization (MOMP). Recently the conserved C-terminal sequences (CTSs) that mediate localization of Bcl-2 family proteins to intracellular membranes, have been shown to have additional protein-protein binding functions that contribute to the functions of these proteins in regulating MOMP. Here we review the pivotal role of CTSs in Bcl-2 family interactions including: (1) homotypic interactions between the pro-apoptotic executioner proteins that cause MOMP, (2) heterotypic interactions between pro-apoptotic and anti-apoptotic proteins that prevent MOMP, and (3) heterotypic interactions between the pro-apoptotic executioner proteins and the pro-apoptotic direct activator proteins that promote MOMP.


Subject(s)
Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/chemistry , Humans , Apoptosis/physiology , Animals , Mitochondrial Membranes/metabolism , Protein Binding
3.
Heliyon ; 10(12): e32592, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952360

ABSTRACT

Background: Resveratrol is a natural phenolic compound widely found in plants. Previous studies have suggested its neuroprotective role in cerebral ischemia due to its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. Intranasal administration of resveratrol enhances its capacity to penetrate the blood-brain barrier, increasing therapeutic efficacy and safety. Objective: We aimed to examine the therapeutic potential of intranasal administration of resveratrol treatment in rats exposed to cerebral ischemia. Methods: Sixty-four male rats were divided into three groups: the sham group, which was exposed to only surgical stress; the vehicle and resveratrol groups, which received intranasal vehicle or 50 mg/kg resveratrol for 7 days following middle cerebral artery occlusion, respectively. We assessed the modified neurologic severity scores, wire hanging tests, blood-brain barrier disruption, brain water content, and infarct volume. Levels of matrix metalloproteinase-9, nuclear factor-kappa B, B-cell lymphoma protein 2, and B-cell lymphoma protein 2-associated X messenger RNA expression were examined. Results: At 3- and 7-days post-ischemia, rats receiving intranasal resveratrol had lower modified neurological severity scores and a smaller brain infarct volume than the rats receiving vehicle. Additionally, the intranasal resveratrol-treated rats showed significantly prolonged wire-hanging performance at the 7-day mark post-ischemia compared to the vehicle group. The blood-brain barrier disruption and brain water content were significantly lower in the resveratrol group than in the vehicle group. Furthermore, the resveratrol-treated group displayed lower expression of Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B in contrast to the vehicle group, while the difference in expression levels of B-cell lymphoma protein 2-associated X and B-cell lymphoma protein 2 were not significant. Conclusion: Intranasal administration of resveratrol showed neuroprotective effects on ischemic stroke by improving neurobehavioral function, reducing blood-brain barrier disruption, cerebral edema, and infarct volume. This treatment also downregulated Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B expression, indicating its potential as a therapeutic option for ischemic stroke.

4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1109-1116, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977340

ABSTRACT

OBJECTIVE: To investigate the effect of solasonine, an active component of Solanum nigrum, on proliferation and apoptosis of non-small cell lung cancer PC9 cells. METHODS: PC9 cells were treated with 2, 5, 10, 15, 20, or 25 µmol/L solasonine, and the changes in cell proliferation were examined using CCK-8 assay. Tetramethyl rhodamine ethyl ester (TMRE) was used to detect the changes in mitochondrial membrane potential, and caspase-3/7 detection kit and GreenNucTM caspase-3/Annexin V-mCherry kit for live cell were used to analyze the changes in caspase-3 of the cells. Annexin V-FITC/PI double staining was employed to analyze the apoptosis rate of the cells. The effect of PTEN inhibitors on solasonine-induced cell apoptosis was examined by detecting apoptosis-related protein expressions using Western blotting. RESULTS: Solasonine treatment for 24, 48, and 72 h significantly lowered the viability of PC9 cells. The cells treated with solasonine for 24 h showed significantly decreased mitochondrial membrane potential and increased cell apoptosis with enhanced caspase-3/7 and caspase-3 activities and expression of cleaved caspase-3. Solasonine treatment significantly decreased phosphorylation levels of PI3K and Akt, increased the protein expressions of PTEN and Bax, and lowered the expression of Bcl-2 protein in the cells. CONCLUSION: Solasonine inhibits proliferation and induces apoptosis of PC9 cells by regulating the Bcl-2/Bax/caspase-3 pathway and its upstream proteins.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Caspase 3 , Cell Proliferation , Lung Neoplasms , Membrane Potential, Mitochondrial , Proto-Oncogene Proteins c-bcl-2 , bcl-2-Associated X Protein , Humans , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Cell Proliferation/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism , Membrane Potential, Mitochondrial/drug effects , Solanaceous Alkaloids/pharmacology , Signal Transduction/drug effects , PTEN Phosphohydrolase/metabolism
5.
Mol Biol Rep ; 51(1): 732, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872006

ABSTRACT

BACKGROUND: The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS: P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3ß) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3ß and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3ß and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION: The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.


Subject(s)
Apoptosis , Colonic Neoplasms , Glycogen Synthase Kinase 3 beta , Harmine , Peganum , Seeds , Humans , Peganum/chemistry , HCT116 Cells , Apoptosis/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Seeds/chemistry , Harmine/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alkaloids/pharmacology , Harmaline/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Proliferation/drug effects
6.
J Pharm Bioallied Sci ; 16(Suppl 2): S1291-S1294, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882866

ABSTRACT

Diabetes mellitus is a persistent metabolic condition marked by elevated blood glucose levels due to compromised insulin secretion or functionality. The search for natural antidiabetic agents has gained attention due to their potential effectiveness and safety profiles. Sessuvium portulacastrum, a coastal plant, has been traditionally used for various medicinal purposes. This study investigates the antidiabetic potential of Sessuvium portulacastrum aqueous extract by analyzing its inhibitory effects on key enzymes involved in carbohydrate metabolism and exploring its molecular interactions with critical target proteins. The aqueous extract of Sessuvium portulacastrum was prepared and used for in vitro analysis. The reduced activity of the extract against α-amylase and α-glucosidase enzymes, crucial in glucose absorption and postprandial hyperglycemia, was assessed. Molecular docking techniques were employed to explore the potential interactions between active compounds in the extract and diabetes-related proteins, including BAX, GSK3ß, and CADH. The study revealed significant inhibition of both alpha-amylase and alpha-glucosidase enzymes by Sessuvium portulacastrum aqueous extract, indicating its potential to reduce glucose absorption and postprandial hyperglycemia. Moreover, the molecular docking analysis demonstrated strong binding interactions between active compounds in the extract and key proteins involved in diabetes-related pathways, namely apoptotic pathways, glycogen synthesis, and cell adhesion. The findings of this study highlight the promising antidiabetic potential of Sessuvium portulacastrum aqueous extract. Upcoming research should get an attention on isolating and characterizing the active compounds responsible for these effects on antidiabetic therapies from natural sources.

7.
Cells ; 13(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891043

ABSTRACT

BAX plays an essential role in retinal ganglion cell (RGC) death induced by optic nerve injury. Recently, we developed M109S, an orally bioactive and cytoprotective small compound (CPSC) that inhibits BAX-mediated cell death. We examined whether M109S can protect RGC from optic nerve crush (ONC)-induced apoptosis. M109S was administered starting 5 h after ONC for 7 days. M109S was orally administered in two groups (5 mg/kg twice a day or 7.5 mg/kg once a day). The retina was stained with anti-BRN3A and cleaved Caspase-3 (active Caspase-3) that are the markers of RGC and apoptotic cells, respectively. ONC decreased the number of BRN3A-positive RGC and increased the number of active Caspase-3-expressing apoptotic cells. In ONC-treated retina, there were cells that were double stained with anti-BRN3A and ant-cleaved Caspase-3, indicating that apoptosis in BRN3A-positive RGCs occurred. M109S inhibited the decrease of BRN3A-positive cells whereas it inhibited the increase of active Caspase-3-positive cells in the retina of ONC-treated mice, suggesting that M109S inhibited apoptosis in RGCs. M109S did not induce detectable histological damage to the lungs or kidneys in mice, suggesting that M109S did not show toxicities in the lung or kidneys when the therapeutic dose was used. The present study suggests that M109S is effective in rescuing damaged RGCs. Since M109S is an orally bioactive small compound, M109S may become the basis for a portable patient-friendly medicine that can be used to prevent blindness by rescuing damaged optic nerve cells from death.


Subject(s)
Apoptosis , Nerve Crush , Optic Nerve Injuries , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Mice , Optic Nerve Injuries/drug therapy , Optic Nerve Injuries/pathology , Apoptosis/drug effects , Male , Caspase 3/metabolism , Mice, Inbred C57BL , Cytoprotection/drug effects , Optic Nerve/drug effects , Optic Nerve/pathology
8.
New Phytol ; 243(3): 1172-1189, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38853429

ABSTRACT

IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP). There were more PlAMV-GFP infection foci in ire1a/b, ire1c, bzip60, and bi-1 knockout than wild-type (WT) plants. Cell-to-cell movement and systemic RNA levels were greater bzip60 and bi-1 than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression of AtIRE1b or StbZIP60 in ire1a/b or bzip60 mutant background reduced virus infection foci, while StbZIP60 expression influences virus movement. Transgenic overexpression of StbZIP60 also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER. This is the first demonstration of a potato bZIP transcription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI-1 contribute separately to virus cell-to-cell and systemic movement.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic-Leucine Zipper Transcription Factors , Plant Diseases , Plants, Genetically Modified , Potexvirus , Arabidopsis/virology , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Plant Diseases/virology , Plant Diseases/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Potexvirus/physiology , Gene Expression Regulation, Plant , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Mutation/genetics , Tunicamycin/pharmacology , Membrane Proteins , Protein Kinases
9.
Drug Des Devel Ther ; 18: 2461-2474, 2024.
Article in English | MEDLINE | ID: mdl-38915866

ABSTRACT

Objective: Insulin attaches insulin receptor to activate the PI3-kinase/Akt signaling to maintain glucose homeostasis and inhibit apoptosis. This study determined whether preconditioning with insulin and glucose protects the kidney against ischemia-reperfusion injury (IRI). Methods: Kidney IRI was performed in C57BL/6 mice by clamping the renal vessels for 30 min, followed by reperfusion for 24 h. A total subcutaneous 0.1 unit of insulin along with 10% glucose in drinking water was treated on the mice for 24 h before kidney IRI. The kidney function and injuries were investigated through the determination of BUN and Cr in blood plasma, as well as the apoptosis and the expression of P-AKT, BAX, and caspase-3 in the kidneys. The role of P-AKT in insulin-treated IRI kidneys was tested using an AKT inhibitor. The effects of the preconditional duration of insulin and glucose on IRI kidneys were investigated by expanding the treatment duration to 1, 3, and 6 days. Results: Preconditioning with insulin and glucose protected the kidney against IRI as manifested by a decrease in creatinine and BUN and a reduction of kidney tubular injury. The protection effect was mediated by P-AKT-BAX-caspase-3 signaling pathway resulting in suppression of apoptotic cell death. An AKT inhibitor partially reversed the protective effects of preconditional insulin. The preconditional duration for 1, 3, and 6 days had no differences in improving kidney functions and pathology. Conclusion: A short-term preconditioning with insulin and glucose protected the kidney from IRI through the activation of p-AKT and subsequent reduction of BAX-caspase-3-induced apoptosis. The short-term precondition provides a practicable strategy for protecting the kidney against predictable IRI, such as kidney transplant and major surgical operations with high risk of hypotension.


Subject(s)
Caspase 3 , Glucose , Insulin , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt , Reperfusion Injury , Signal Transduction , bcl-2-Associated X Protein , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice , Signal Transduction/drug effects , Insulin/pharmacology , Male , Caspase 3/metabolism , Glucose/metabolism , bcl-2-Associated X Protein/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Apoptosis/drug effects
10.
Acta Pharm Sin B ; 14(6): 2378-2401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828138

ABSTRACT

For over two decades, the development of B-cell lymphoma-2 (Bcl-2) family therapeutics has primarily focused on anti-apoptotic proteins, resulting in the first-in-class drugs called BH3 mimetics, especially for Bcl-2 inhibitor Venetoclax. The pro-apoptotic protein Bcl-2-associated X protein (BAX) plays a crucial role as the executioner protein of the mitochondrial regulated cell death, contributing to organismal development, tissue homeostasis, and immunity. The dysregulation of BAX is closely associated with the onset and progression of diseases characterized by pathologic cell survival or death, such as cancer, neurodegeneration, and heart failure. In addition to conducting thorough investigations into the physiological modulation of BAX, research on the regulatory mechanisms of small molecules identified through biochemical screening approaches has prompted the identification of functional and potentially druggable binding sites on BAX, as well as diverse all-molecule BAX modulators. This review presents recent advancements in elucidating the physiological and pharmacological modulation of BAX and in identifying potentially druggable binding sites on BAX. Furthermore, it highlights the structural and mechanistic insights into small-molecule modulators targeting diverse binding surfaces or conformations of BAX, offering a promising avenue for developing next-generation apoptosis modulators to treat a wide range of diseases associated with dysregulated cell death by directly targeting BAX.

11.
Aging Cell ; : e14229, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831635

ABSTRACT

Idiopathic pulmonary fibrosis is a progressive and age-related disease that results from impaired lung repair following injury. Targeting senescent myofibroblasts with senolytic drugs attenuates pulmonary fibrosis, revealing a detrimental role of these cells in pulmonary fibrosis. The mechanisms underlying the occurrence and persistence of senescent myofibroblasts in fibrotic lung tissue require further clarification. In this study, we demonstrated that senescent myofibroblasts are resistant to apoptosis by upregulating the proapoptotic protein BAX and antiapoptotic protein BCL-2 and BCL-XL, leading to BAX inactivation. We further showed that high levels of inactive BAX-mediated minority mitochondrial outer membrane permeabilization (minority MOMP) promoted DNA damage and myofibroblasts senescence after insult by a sublethal stimulus. Intervention of minority MOMP via the inhibition of caspase activity by quinolyl-valyl-O-methylaspartyl-[2,6-difluorophenoxy]-methyl ketone (QVD-OPH) or BAX knockdown significantly reduced DNA damage and ultimately delayed the progression of senescence. Moreover, the BAX activator BTSA1 selectively promoted the apoptosis of senescent myofibroblasts, as BTSA1-activated BAX converted minority MOMP to complete MOMP while not injuring other cells with low levels of BAX. Furthermore, therapeutic activation of BAX with BTSA1 effectively reduced the number of senescent myofibroblasts in the lung tissue and alleviated both reversible and irreversible pulmonary fibrosis. These findings advance the understanding of apoptosis resistance and cellular senescence mechanisms in senescent myofibroblasts in pulmonary fibrosis and demonstrate a novel senolytic drug for pulmonary fibrosis treatment.

12.
Reprod Toxicol ; 127: 108611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782144

ABSTRACT

The current study aimed to investigate the sensitivity of male testis parenchyma cells to chemotherapy agents and the protective effects and mechanisms of Morinda citrifolia (Noni) administration against structural and functional changes before and after chemotherapy (Paclitaxel (PTX)). For this purpose, rats were randomly assigned into four groups (Control = G1, PTX 5 mg/kg = G2; PTX + Noni 10 mg/kg = G3, PTX + Noni 20 mg/kg = G4). PTX was injected intraperitoneally for 4 consecutive weeks, at a dose of 5 mg/kg to all groups except the control group. Then noni was administrated in 10 (G3) and 20 (G4) mg/kg groups orally (gavage) for 14 days. Biochemical analyses, Real-Time Polymerase Chain Reaction (PCR), and immunohistochemical analyses were performed. According to our results, Total Oxidative Stress (TOS) and Malondialdehyde (MDA) were significantly increased in the PTX group (P < 0.01). Superoxide Dismutase (SOD) enzyme activity and Total Antioxidant Capacity (TAC) levels were decreased (P < 0.01). The changes in the rats treated with PTX + Noni 20 mg/kg were noteworthy. The increased levels of IL1-ß (Interleukin 1 beta) and TNFα (tumor necrosis factor-alpha) with PTX were down-regulated after treatment with PTX + Noni 20 mg/kg (P < 0.01) (9 % and 5 % respectively). In addition, Noni restored the testicular histopathological structure by reducing caspase-3 expression and significantly (61 %) suppressed oxidative DNA damage and apoptosis (by regulating the Bax (bcl-2-like protein 4)/Bcl-2 (B-cell lymphoma gene-2) ratio). In conclusion, Noni reduced cellular apoptosis and drastically changed Caspase 8 and Bax/Bcl-2 levels. Furthermore, it considerably decreases oxidative damage and can be used in testicular degeneration.


Subject(s)
Antineoplastic Agents, Phytogenic , Morinda , Oxidative Stress , Paclitaxel , Plant Extracts , Testis , Animals , Male , Morinda/chemistry , Paclitaxel/toxicity , Testis/drug effects , Testis/pathology , Testis/metabolism , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/toxicity , Antineoplastic Agents, Phytogenic/pharmacology , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Antioxidants/pharmacology , Apoptosis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Rats, Wistar , Caspase 3/metabolism , Interleukin-1beta/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Protective Agents/pharmacology , Rats
13.
Curr Alzheimer Res ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38766828

ABSTRACT

BACKGROUND: As individuals age, they may develop Alzheimer's disease (AD), which is characterized by difficulties in speech, memory loss, and other issues related to neural function. Cycloastragenol is an active ingredient of Astragalus trojanus and has been used to treat inflammation, aging, heart disease, and cancer. OBJECTIVES: This study aimed to explore the potential therapeutic benefits of cycloastragenol in rats with experimentally induced AD. Moreover, the underlying molecular mechanisms were also evaluated by measuring Nrf2 and HO-1, which are involved in oxidative stress, NFκB and TNF-α, which are involved in inflammation, and BCL2, BAX, and caspase-3, which are involved in apoptosis. METHODS: Sprague-Dawley rats were given 70 mg/kg of aluminum chloride intraperitoneally daily for six weeks to induce AD. Following AD induction, the rats were given 25 mg/kg of cycloastragenol daily by oral gavage for three weeks. Hippocampal sections were stained with hematoxylin/ eosin and with anti-caspase-3 antibodies. The Nrf2, HO-1, NFκB, TNF-α, BCL2, BAX, and caspase-3 gene expressions and protein levels in the samples were analyzed. RESULTS: Cycloastragenol significantly improved rats' behavioral test performance. It also strengthened the organization of the hippocampus. Cycloastragenol significantly improved behavioral performance and improved hippocampal structure in rats. It caused a marked decrease in the expression of NFκB, TNF-α, BAX, and caspase-3, which was associated with an increase in the expression of BCL2, Nrf2, and HO-1. CONCLUSION: Cycloastragenol improved the structure of the hippocampus in rats with AD. It enhanced the outcomes of behavioral tests, decreased the concentration of AChE in the brain, and exerted antioxidant and anti-inflammatory effects. Antiapoptotic effects were also noted, leading to significant improvements in cognitive function, memory, and behavior in treated rats.

14.
Heliyon ; 10(9): e30476, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711633

ABSTRACT

Qixue Shuangbu prescription (QSP) has been used for the treatment of chronic heart failure (CHF) with remarkable curative effect. Processed QSP (PQSP) could significantly improve the treatment of CHF after traditional Chinese medicine (TCM) processing. This study elucidated the underlying efficacy enhancement mechanism of QSP after TCM processing for treating CHF in vitro and in vivo. The injury of rat cardiomyoblast H9c2 cells was induced by anoxia/reoxygenation to mimic CHF state in vitro. Sixty Sprague-Dawley rats were used to established CHF model by intraperitoneally injecting doxorubicin (the accumulative dose 15 mg/kg). Biochemical examinations were performed in serum and cellular supernatant, respectively. Cardiac functions and histopathological changes were evaluated in CHF model rats. The protein and mRNA levels of ERK1/2, Bcl-2, Bax and Caspase-3 were evaluated by Western blot and RT-PCR, respectively. All above results of low dose crude QSP-treated group (L-CQSP), high dose CQSP-treated group (H-CQSP), low dose PQSP-treated group (L-PQSP), high dose PQSP-treated group (H-PQSP) were compared to systematically explore correlations between TCM processing and the efficacy enhancement for treating CHF of PQSP. Compared with the model group, the L-CQSP group showed significant improvement in cardiac function at 8th weeks, while no significant improvement in cardiomyocyte apoptosis and fibrosis. Both H-CQSP, L-PQSP and H-PQSP exerted beneficial therapeutic effects in injured H9c2 cardiomyocytes and CHF model rats. L-PQSP and H-PQSP significantly increased cell viability and the activity of SOD, decreased the activities of LDH, MDA and NO, up-regulated the expression of ERK1/2 and Bcl-2, down-regulated the expression of Bax and Caspase-3 compared to the same dosage of CQSP. The efficacy enhancement mechanism of PQSP after TCM processing for treating CHF was directly related to the regulation of ERK/Bcl-2/Bax/Caspases-3 signaling pathway.

15.
Curr Pharm Des ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38716546

ABSTRACT

BACKGROUND: To investigate the effect of raltitrexed + X-ray irradiation on esophageal cancer ECA109 cells and analyze the potential action mechanism. METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to analyze the inhibitory effect of raltitrexed on cell proliferation. The effect of raltitrexed on radiosensitivity was studied through a clone-forming experiment. The scratch assay and invasion test were performed to understand the cell migration and invasion abilities. The apoptosis rate change was measured using a flow cytometer, and Western Blotting was used to determine the expression of B cell lymphoma-2 (Bcl-2) and Bcl2-associated X protein (Bax) in each group. RESULTS: Raltitrexed significantly inhibited ECA109 proliferation in a time-dose-dependent manner; there were significant differences among different concentrations and times of action. The results of the clone-forming experiment showed a sensitization enhancement ratio of 1.65, and this demonstrated a radiosensitization effect. After the combination of raltitrexed with X-ray, the cell migration distance was shortened, and the number of cells penetrating the membrane was reduced. CONCLUSION: Raltitrexed can inhibit the growth of esophageal cancer ECA109 cells and has a radiosensitization effect.

16.
Nanotechnology ; 35(33)2024 May 28.
Article in English | MEDLINE | ID: mdl-38746972

ABSTRACT

Traditional therapies often struggle with specificity and resistance in case of cancer treatments. It is therefore important to investigate new approaches for cancer treatment based on nanotechnology. Zinc oxide nanoparticles (ZnONPs) are known to exhibit anti-cancer properties by inducing oxidative stress, apoptosis, and cell cycle arrest. Methotrexate (MTX) a known anti-folate shows specificity to folate receptors and interrupts healthy functioning of cells. This study proposes the use of previously characterized biocompatible Methotrexate loaded Zinc oxide nanoparticles (MTX-ZnONPs) as a dual action therapeutic strategy against breast cancer cell lines, MCF-7 (MTX-sensitive) and MDA-MB-231 (MTX-resistant). To elucidate the cytotoxicity mechanism of MTX-ZnONPs an in depthIn vitrostudy was carried out.In vitroassays, including cell cycle analysis, apoptosis assay, and western blot analysis to study the protein expression were performed. Results of these assays, further supported the anti-cancer activity of MTX-ZnONPs showing apoptotic and necrotic activity in MCF-7 and MDA-MB-231 cell line respectively.In vivoacute oral toxicity study to identify the LD50in animals revealed no signs of toxicity and mortality up to 550 mg kg-1body weight of animal, significantly higher LD50values than anticipated therapeutic levels and safety of the synthesized nanosystem. The study concludes that MTX-ZnONPs exhibit anti-cancer potential against breast cancer cells offering a promising strategy for overcoming resistance.


Subject(s)
Apoptosis , Breast Neoplasms , Methotrexate , Zinc Oxide , Methotrexate/pharmacology , Methotrexate/chemistry , Methotrexate/administration & dosage , Humans , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , MCF-7 Cells , Apoptosis/drug effects , Animals , Cell Line, Tumor , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects
17.
Cell Biochem Biophys ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809348

ABSTRACT

Bladder cancer stands as a prevailing neoplasm among men globally, distinguished for its pronounced malignancy attributed to invasiveness and metastatic proclivity. Tannic acid (TA), an organic compound in many plants, has garnered recent attention for its discernible anti-mutagenic attributes. This investigation endeavored to scrutinize the repercussions of TA on grade II bladder cancer, with a concerted focus on unraveling its anti-cancer mechanisms. The cytotoxic effects of TA on grade II bladder cancer cells were investigated using multiple techniques, including MTT assay, flow cytometry, TUNEL assay, and western blot. Our findings revealed that elevated concentrations of TA induced cytotoxic effects in grade II bladder cancer cells. Both flow cytometry and the TUNEL assay substantiated the dose-dependent capacity of TA to prompt apoptosis. Western blot analysis corroborated that TA treatment in bladder cancer cells resulted in the upregulation of cleaved caspase-3 expression and PARP. Furthermore, heightened TA dosage elicited an augmentation in the expression of pro-apoptotic proteins, namely Bax and Bak, alongside a reduction in the expression of the anti-apoptotic protein Bcl-2 within bladder cancer cells. This study confirms TA as a potential anticancer agent, demonstrably diminishing the viability of bladder cancer cells. TA exerts cytotoxicity through the activation of mitochondrial apoptotic pathways. Specifically, TA initiates the cleavage of PARP and caspase-3, concurrently augmenting the expression of pro-apoptotic proteins to facilitate apoptosis. Collectively, the present study indicates that TA effectively impedes the proliferation of bladder cancer cells by instigating apoptosis through the intrinsic mitochondrial pathway.

18.
Autophagy ; : 1-20, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752369

ABSTRACT

Macroautophagy/autophagy and apoptosis are pivotal interconnected host cell responses to viral infection, including picornaviruses. Here, the VP3 proteins of picornaviruses were determined to trigger autophagy, with the autophagic flux being triggered by the TP53-BAD-BAX axis. Using foot-and-mouth disease virus (FMDV) as a model system, we unraveled a novel mechanism of how picornavirus hijacks autophagy to bolster viral replication and enhance pathogenesis. FMDV infection induced both autophagy and apoptosis in vivo and in vitro. FMDV VP3 protein facilitated the phosphorylation and translocation of TP53 from the nucleus into the mitochondria, resulting in BAD-mediated apoptosis and BECN1-mediated autophagy. The amino acid Gly129 in VP3 is essential for its interaction with TP53, and crucial for induction of autophagy and apoptosis. VP3-induced autophagy and apoptosis are both essential for FMDV replication, while, autophagy plays a more important role in VP3-mediated pathogenesis. Mutation of Gly129 to Ala129 in VP3 abrogated the autophagic regulatory function of VP3, which significantly decreased the viral replication and pathogenesis of FMDV. This suggested that VP3-induced autophagy benefits viral replication and pathogenesis. Importantly, this Gly is conserved and showed a common function in various picornaviruses. This study provides insight for developing broad-spectrum antivirals and genetic engineering attenuated vaccines against picornaviruses.Abbreviations: 3-MA, 3-methyladenine; ATG, autophagy related; BAD, BCL2 associated agonist of cell death; BAK1, BCL2 antagonist/killer 1; BAX, BCL2 associated X, apoptosis regulator; BBC3/PUMA, BCL2 binding component 3; BCL2, BCL2 apoptosis regulator; BID, BH3 interacting domain death agonist; BIP-V5, BAX inhibitor peptide V5; CFLAR/FLIP, CASP8 and FADD like apoptosis regulator; CPE, cytopathic effects; CQ, chloroquine; CV, coxsackievirus; DAPK, death associated protein kinase; DRAM, DNA damage regulated autophagy modulator; EV71, enterovirus 71; FMDV, foot-and-mouth disease virus; HAV, hepatitis A virus; KD, knockdown; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MOI, multiplicity of infection; MTOR, mechanistic target of rapamycin kinase; PML, promyelocytic leukemia; PV, poliovirus; SVA, Seneca Valley virus; TCID50, 50% tissue culture infectious doses; TOR, target of rapamycin. TP53/p53, tumor protein p53; WCL, whole-cell lysate.

19.
Int J Biol Macromol ; 269(Pt 1): 131995, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692529

ABSTRACT

In the present work, a neutral polysaccharide (DHP-2W) with attenuating cognitive disorder was identified from Dendrobium huoshanense and its structure was clarified. The polysaccharide was successfully purified from D. huoshanense by column chromatography and its activity was evaluated. With a molecular weight of 508.934kDa, this polysaccharide is composed of mannose and glucose at a molar ratio of 75.81: 24.19. Structural characterization revealed that DHP-2W has a backbone consisting of 4)-ß-D-Manp-(1 and 4)-ß-D-Glcp-(1. In vivo experiments revealed that DHP-2W improved cognitive disorder in D-galactose treated mice and relieved oxidative stress and inflammation. DHP-2W attenuates D-galactose-induced cognitive disorder by inhibiting the BCL2/BAX/CASP3 pathway and activating the AMPK/SIRT pathway, thereby inhibiting apoptosis. Furthermore, DHP-2W had a significant effect on regulating the serum levels of Flavin adenine dinucleotide, Shikimic acid, and Kynurenic acid in aged mice. These, in turn, had a positive impact on AMPK/SIRT1 and BCL2/BAX/CASP3, resulting in protective effects against cognitive disorder.


Subject(s)
Aging , Dendrobium , Mannans , Animals , Dendrobium/chemistry , Mice , Mannans/pharmacology , Mannans/chemistry , Aging/drug effects , Oxidative Stress/drug effects , Cognition Disorders/drug therapy , Male , Apoptosis/drug effects , Galactose
20.
Anticancer Agents Med Chem ; 24(3): 185-192, 2024.
Article in English | MEDLINE | ID: mdl-38629154

ABSTRACT

BACKGROUND: In a previous work from the author of this study, the compound of 9IV-c, ((E)-2-(3,4- dimethoxystyryl)-6,7,8-trimethoxy-N-(3,4,5-trimethoxyphenyl)quinoline-4-amine) was synthesized, and the effects of potent activity on the multiple human tumor cell lines were evaluated considering the spindle formation together with the microtubule network. METHODS: Accordingly, cytotoxic activity, apoptotic effects, and the therapeutic efficiency of compound 9IV-c on A549 and C26 cell lines were investigated in this study. RESULTS: The compound 9IV-c demonstrated high cytotoxicity against A549 and C26 cell lines with IC50 = 1.66 and 1.21 µM, respectively. The flow cytometric analysis of the A549 cancer cell line treated with compound 9IVc showed that This compound induced cell cycle arrest at the G2/M phase and apoptosis. Western blotting analysis displayed that compound 9IV-c also elevated the Bax/Bcl-2 ratio and increased the activation of caspase-9 and -3 but not caspase-8. CONCLUSION: These data presented that the intrinsic pathway was responsible for 9IV-c -induced cell apoptosis. In vivo studies demonstrated that treatment with the compound of 9IV-c at 10 mg/kg dose led to a decrease in tumor growth compared to the control group. It was found that there was not any apparent body weight loss in the period of treatment. Also, in the vital organs of the BALB/c mice, observable pathologic changes were not detected.


Subject(s)
Apoptosis , Quinolines , Animals , Mice , Humans , A549 Cells , Mice, Inbred BALB C , Cell Line, Tumor , Quinolines/pharmacology , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...