Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 913: 169536, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38141986

ABSTRACT

Human activities have triggered biodiversity loss, often resulting in biotic homogenization, which poses a threat to human well-being. Nevertheless, the overall influence of diverse environmental stressors on intra- and inter-community diversity remains insufficiently elucidated. This study aimed to quantify and reveal the impact of environmental stressors on the alpha and beta diversities of benthic diatom communities in the Harbin urban river network during the summer and autumn of 2022 and spring of 2023. The marked seasonal variations observed in alpha and beta diversity indices highlighted the distinct community compositions. Nonetheless, varying types of urban water pollutants were the primary drivers of biotic homogenization in terms of both taxonomic and functional diversities and played a prominent role in steering diversity shifts. These pollutants indirectly led to biotic homogenization by altering water quality parameters and affecting the ecological dynamics of benthic diatom communities. Furthermore, diverse responses to stressors were identified in taxonomic and functional diversities, providing additional insights for understanding ecological shifts in communities. Taxonomic beta diversity was related to environmental filtering, whereas functional beta diversity resulted from stressor-spatial dimension interactions. Our study emphasises that relying solely on traditional water quality monitoring may not fully reveal the current state of river ecosystem protection, and the need to study the continuous changes in biodiversity across seasons in urban waterbodies from the perspective of various stressors is highlighted.


Subject(s)
Diatoms , Ecosystem , Humans , Environmental Monitoring , Biodiversity , Water Quality , Rivers
2.
Front Microbiol ; 14: 1241826, 2023.
Article in English | MEDLINE | ID: mdl-37720158

ABSTRACT

In polar regions, the microphytobenthos has important ecological functions in shallow-water habitats, such as on top of coastal sediments. This community is dominated by benthic diatoms, which contribute significantly to primary production and biogeochemical cycling while also being an important component of polar food webs. Polar diatoms are able to cope with markedly changing light conditions and prolonged periods of darkness during the polar night in Antarctica. However, the underlying mechanisms are poorly understood. In this study, five strains of Antarctic benthic diatoms were isolated in the field, and the resulting unialgal cultures were identified as four distinct species, of which one is described as a new species, Planothidium wetzelii sp. nov. All four species were thoroughly examined using physiological, cell biological, and biochemical methods over a fully controlled dark period of 3 months. The results showed that the utilization of storage lipids is one of the key mechanisms in Antarctic benthic diatoms to survive the polar night, although different fatty acids were involved in the investigated taxa. In all tested species, the storage lipid content declined significantly, along with an ultrastructurally observable degradation of the chloroplasts. Surprisingly, photosynthetic performance did not change significantly despite chloroplasts decreasing in thylakoid membranes and an increased number of plastoglobules. Thus, a combination of biochemical and cell biological mechanisms allows Antarctic benthic diatoms to survive the polar night.

3.
Sci Total Environ ; 900: 165849, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37516188

ABSTRACT

Consistency in ecological assessments is challenging across large diverse landscapes because natural geological, climatic, and hydrological factors vary greatly. As a result, large landscapes are often subdivided into ecoregions and assessments are based on ecoregion specific indices. In the present study, we developed and compared multimetric indices (MMIs) using benthic diatom data from the 2008-2009 dataset from the United States (US) National Rivers and Streams Assessment. Nationwide and separate ecoregion specific MMIs were developed with reference, moderately disturbed, and highly disturbed sites selected using criteria based on physicochemical condition of the habitat or based on watershed land use (% agriculture and % urban). Metrics were adjusted to account for variation in natural conditions when needed. We found only land use criteria selected reference sites with consistently low median % watershed disturbance (%WD) and large differences in %WD between reference and highly disturbed sites. <38 % of sites were identified as reference or highly disturbed by both physicochemical and land use criteria. All MMIs displayed substantial discrimination ability between reference and highly disturbed sites. At the national scale, MMIs based on land use outperformed MMIs based on physicochemical conditions for all performance attributes tested. When national scale MMIs were applied to ecoregions, MMIs based on land use were again better than MMIs based on physicochemical conditions for most performance attributes and even had better or comparable performance to the land use MMIs developed separately for each ecoregion. Our findings show that developing MMIs using land use criteria and adjusting metrics for natural variation could improve assessment consistency without losing MMI performance across large, diverse landscapes as in the US National Rivers and Streams Assessment.

4.
Microorganisms ; 11(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37110359

ABSTRACT

MOSE is a system of mobile gates engineered to temporarily isolate the Venice Lagoon from the Adriatic Sea and to protect the city from flooding during extreme high tides. Within the framework of the Venezia2021 program, we conducted two enclosure experiments in July 2019 (over 48 h) and October 2020 (over 28 h) by means of 18 mesocosms, in order to simulate the structural alterations that microphytobenthos (MPB) assemblages might encounter when the MOSE system is operational. The reduced hydrodynamics inside the mesocosms favored the deposition of organic matter and the sinking of cells from the water column towards the sediment. Consequently, MPB abundances increased over the course of both experiments and significant changes in the taxonomic composition of the community were recorded. Species richness increased in summer while it slightly decreased in autumn, this latter due to the increase in relative abundances of taxa favored by high organic loads and fine grain size. By coupling classical taxonomy with 18S rRNA gene metabarcoding we were able to obtain a comprehensive view of the whole community potential, highlighting the complementarity of these two approaches in ecological studies. Changes in the structure of MPB could affect sediment biostabilization, water turbidity and lagoon primary production.

5.
Mar Pollut Bull ; 171: 112780, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34343754

ABSTRACT

The physical functions of extracellular polymeric substances (EPS), viz., by-product of microphytobenthos (MPB), in tidal flat system are well documented, but some ecological aspects remain unknown. We investigated MPB biomass (Chl-a), EPS, diatom assemblage, and erodibility in two contrasting tidal flat environments (megatidal vs. macrotidal flat) in the Yellow Sea. Thick biofilms were observed when MPB bloomed, with high Chl-a and increased EPS concentrations. Among diatom genera, Navicula was the most dominant taxa found over the year (mean 41%) in both areas. Compared with non-bloom periods, the erodibility decreased by 54-73% as biofilm thickened during the blooms. It was attributed to the elevated abundance of large-sized (>40 µm) Navicula, which was expected to secrete large amounts of EPS. Overall, we successfully demonstrated spatiotemporal differences of sediment stabilization that significantly related to ecological variations of MPB, and identified the key diatom genus as a "sediment stabilizer" in the typical tidal flats of the Yellow Sea.


Subject(s)
Diatoms , Extracellular Polymeric Substance Matrix , Biofilms , Biomass , Ecosystem
6.
Protist ; 172(3): 125816, 2021 07.
Article in English | MEDLINE | ID: mdl-34271527

ABSTRACT

Hyalosira gene sequences are divided into two clades within different families. We examined authentic material of Hyalosira (isotype material of H. obtusangula, synonymous with H. delicatula) and voucher specimens of published sequences, and pooled our observations of Hyalosira-like taxa from benthic and epizoic habitats in several parts of the globe. The two molecular clades corresponded to two morphological groups, with Hyalosira obtusangula associated with Grammatophoraceae. We emend the description and provide lectotypification for Hyalosira and propose Placosira to encompass the taxa in the other clade, associated with Rhabdonemataceae. We propose that Hyalosira has uniseriate to triseriate striae, sometimes different on valve face and mantle. Copulae in most species had shallow septa, though in one they were moderately deep. All species had girdle bands bearing two rows of areolae separated by a midrib. We name five new species of Hyalosira. Morphologies of taxa in the Placosira clade were superficially similar to Hyalosira but differed in having areolae with ricae, a single row of areolae on the girdle bands, and tubular rimoportulae on the valve-face-mantle junction. Hyalosira hustedtiana Patrick should revert to its original position in Striatella until the appropriate genus can be determined. We emend Rhabdonematales to encompass Rhabdonemataceae, Grammatophoraceae and Tabellariaceae.


Subject(s)
Diatoms , Aprepitant , Diatoms/genetics , Ecosystem , Humans , Phylogeny
7.
Water Environ Res ; 93(7): 1107-1115, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33484623

ABSTRACT

Membrane distillation (MD) frequently deals with membrane biofouling caused by deposition of algal organic matter (AOM) from algal blooms, hampering the treatment efficiency. In this study, AOMs, which are soluble extracellular polymeric substance (sEPS), bounded EPS (bEPS), and internal organic matter (IOM) from three benthic species (Amphora coffeaeformis, Cylindrotheca fusiformis, and Navicula incerta) were exposed to a temperature range to resemble the MD process. Results showed that EPS had higher polysaccharide fraction than protein with 85.71%, 68.26%, and 71.91% for A. coffeaeformis, N. incerta, and C. fusiformis, respectively. Both the EPS polysaccharide and protein concentration linearly increase with temperature, but the opposite was true for IOM and high-molecular-weight (HMW) polysaccharide. At 80°C, 5812.94 µg/g out of 6304.28 µg/g polysaccharide in A. coffeaeformis was of low molecular weight (LMW); hence, these findings suggested that they were the major foulants to clog the narrow pores within virgin hydrophobic membrane, forming a conditioning layer followed by deposition of HMW and hydrophilic polysaccharides onto the macropores to cause irreversible fouling. Cell lysis occurring at higher temperature increases the total protein content about 25% within the EPS matrix, inducing membrane plugging via hydrophobic-hydrophobic interactions. Overall, the AOM composition at different temperatures will likely dictate the fouling severity in MD. PRACTITIONER POINTS: EPS production of three benthic diatoms was the highest at 80°C. EPS from diatoms consists of at least 75.29% of polysaccharides. Small molecular weight carbohydrates (<12 kDa) were potential foulants. Proteins of internal organic matter (>56%) give irreversible attachment towards membranes. A. coffeaeformis was considered as the most fouling diatoms with highest EPS amount of 6304.28 µg/g.


Subject(s)
Biofouling , Microalgae , Distillation , Extracellular Polymeric Substance Matrix , Membranes, Artificial , Temperature
8.
Sci Total Environ ; 755(Pt 1): 142534, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33035979

ABSTRACT

Benthic diatoms constitute keystone assemblages in riverine ecosystems, and their structure is used to support regulatory water quality assessment. However, no standard ecotoxicological tests exist using integrated responses of the benthic diatom assemblages. This work aimed to assess whether benthic diatom assemblages are responsive to different riverine contaminants through a previously developed rapid toxicity test, supporting future attempts towards its standardization and integration in both prospective and retrospective Environmental Risk Assessment (ERA) schemes. We selected two benthic diatoms assemblages likely responding similarly to pollution (similar IPS diatom index score), collected from two rivers in Northern-Central Portugal (sites: Palhal and Cabreia). Fresh whole diatom assemblages were exposed for 48 h to five model contaminants (glyphosate, imidacloprid, SDS, CuSO4, and Pb). At the end of the test, changes induced by the exposures in overall yield and in the yield of each diatom genus were assessed. The assemblage collected at Palhal was invariably more responsive and sensitive than that collected at Cabreia, both considering overall and genus-specific yields, regardless of the tested contaminant. Achnanthes, Fragilaria and Navicula were the most responsive genus, regardless of the tested contaminant or assemblage. The distinct response profiles observed for the two assemblages to the same contaminants at the same concentration ranges suggest that using this test method to support prospective ERA is inadequate. However, the method can be an asset supporting retrospective ERA, as the responses seem to be shaped by the interplay of resilience drivers promoted by the local conditions, e.g. adaptive changes in assemblage structure.


Subject(s)
Diatoms , Ecosystem , Environmental Monitoring , Portugal , Prospective Studies , Retrospective Studies , Rivers
9.
Sci Total Environ ; 727: 138445, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32334210

ABSTRACT

Our study of 164 diatom samples from Catalonia (NE Spain) is the first to evaluate the applicability of DNA metabarcoding, based on high throughput sequencing (HTS) using a 312-bp rbcL marker, for biomonitoring Mediterranean rivers. For this, we compared the values of a biotic index (IPS) and the ecological status classes derived from them, between light microscope-based (LM) and HTS methods. Very good correspondence between methods gives encouraging results concerning the applicability of DNA metabarcoding for Catalan rivers for the EU Water Framework Directive (WFD). However, in 10 sites, the ecological status class was downgraded from "Good"/"High" obtained by LM to "Moderate"/"Poor"/"Bad" by HTS; these "critical" sites are especially important, because the WFD requires remedial action by water managers for any river with Moderate or lower status. We investigated the contribution of each species to the IPS using a "leave-one-out" sensitivity analysis, paying special attention to critical sites. Discrepancies in IPS between LM and HTS were mainly due to the misidentification and overlooking in LM of a few species, which were better recovered by HTS. This bias was particularly important in the case of Fistulifera saprophila, whose clear underrepresentation in LM was important for explaining 8 out of the 10 critical sites and probably reflected destruction of weakly-silicified frustules during sample preparation. Differences between species in the rbcL copy number per cell affected the relative abundance obtained by HTS for Achnanthidium minutissimum, Nitzschia inconspicua and Ulnaria ulna, which were also identified by the sensitivity analysis as important for the WFD. Only minor IPS discrepancies were attributed to the incompleteness of the reference library, as most of the abundant and influential species (to the IPS) were well represented there. Finally, we propose that leave-one-out analysis is a good method for identifying priority species for isolation and barcoding.


Subject(s)
Diatoms , Rivers , DNA Barcoding, Taxonomic , Environmental Monitoring , Spain , Water
10.
PeerJ ; 7: e8092, 2019.
Article in English | MEDLINE | ID: mdl-31799075

ABSTRACT

River impoundment constitutes one of the most important anthropogenic impacts on the World's rivers. An increasing number of studies have tried to quantify the effects of river impoundment on riverine ecosystems over the past two decades, often focusing on the effects of individual large reservoirs. This study is one of the first to use a large-scale, multi-year diatom dataset from a routine biomonitoring network to analyse sample sites downstream of a large number of water supply reservoirs (n = 77) and to compare them with paired unregulated control sites. We analysed benthic diatom assemblage structure and a set of derived indices, including ecological guilds, in tandem with multiple spatio-temporal variables to disclose patterns of ecological responses to reservoirs beyond the site-specific scale. Diatom assemblage structure at sites downstream of water supply reservoirs was significantly different to control sites, with the effect being most evident at the regional scale. We found that regional influences were important drivers of differences in assemblage structure at the national scale, although this effect was weaker at downstream sites, indicating the homogenising effect of river impoundment on diatom assemblages. Sites downstream of reservoirs typically exhibited a higher taxonomic richness, with the strongest increases found within the motile guild. In addition, Trophic Diatom Index (TDI) values were typically higher at downstream sites. Water quality gradients appeared to be an important driver of diatom assemblages, but the influence of other abiotic factors could not be ruled out and should be investigated further. Our results demonstrate the value of diatom assemblage data from national-scale biomonitoring networks to detect the effects of water supply reservoirs on instream communities at large spatial scales. This information may assist water resource managers with the future implementation of mitigation measures such as setting environmental flow targets.

11.
Article in English | MEDLINE | ID: mdl-31731686

ABSTRACT

Twenty-three water dams located in the Iberian Pyrite Belt were studied during March 2012 (early spring) in order to carry out an environmental assessment based on diatom communities and to define the relationships between these biological communities and the physico-chemical characteristics of the dam surface water. This is the first time that a diatom inventory has been done for dams affected by acid mine drainage (AMD) in the Spanish part of the Iberian Pyrite Belt (IPB). It was found that the pH was the main factor influencing the behaviour of the diatom communities. Then, using a dbRDA approach it was possible to organize the aggrupation of diatoms into four groups in response to the physico-chemical conditions of the ecosystem, especially pH: (1) Maris, Aac, Gos, Cmora (pH 2-3); (2) Andc, San, And, Dpin (pH 3-4.5); (3) Gran, Pleon, Oliv, Lagu, Chan, SilI, SilII, Joya, Gar, Agrio, Camp, Corum (pH 4.5-6); (4) Herr, Diq I, Diq II (pH 6-7). The obtained results confirmed the response of benthic diatom communities to changes in the physico-chemical characteristics of surface water, and helped to understand the role of diatoms as indicators of the degree of AMD contamination in those 23 dams. Special attention was given to those that have an acidophilic or acid-tolerant profile (pH 2-3 and pH 3-4.5) such as Pinnularia aljustrelica, Pinnularia acidophila, Pinnularia acoricola and Eunotia exigua, which are the two groups found in the most AMD contaminated dams.


Subject(s)
Acids/analysis , Diatoms/growth & development , Mining , Rivers/chemistry , Rivers/microbiology , Water Pollutants, Chemical/analysis , Ecosystem , Environmental Monitoring/methods , Hydrogen-Ion Concentration , Iron/chemistry , Seasons , Spain , Sulfides/chemistry
12.
Sci Total Environ ; 694: 133773, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31756832

ABSTRACT

Phytoplankton is the main indicator group for eutrophication in coastal ecosystems, however its high dispersal potential does not enable the assessment of localized effects of coastal nutrient enrichment. Benthic diatoms are sessile microalgae associated with sandy substrates and have the potential to reflect more localized pollution impacts. Although benthic diatoms are widely used bioindicators in freshwater systems, they have rarely been used for assessing the eutrophication status of oligotrophic environments such as the eastern Mediterranean Sea. In the present study, we assess the efficiency of benthic diatoms as bioindicators of nutrient enrichment in oligotrophic coastal systems, by investigating the effect of different physicochemical conditions and nutrient concentrations on the assemblage composition, diversity and individual species populations. To do this, we sampled along a eutrophication gradient formed by anthropogenic nutrient inputs from a metropolitan area. The main driver of assemblage composition, diversity and biomass of diatoms was nitrogen concentration and its temporal and spatial changes. Nitrogen loadings were positively correlated with increased biomass of Cocconeis spp. and negatively correlated with Mastogloia spp. Our findings suggest that in coastal ecosystems of oligotrophic marine ecoregions, benthic diatom assemblage structure and specific taxonomic groups can be reliable predictors of coastal eutrophication offering higher spatial resolution compared to phytoplankton.


Subject(s)
Diatoms/physiology , Ecosystem , Nitrogen/metabolism , Biomass , Environmental Monitoring , Eutrophication , Fresh Water , Mediterranean Sea , Microalgae , Phytoplankton , Rivers
13.
Harmful Algae ; 86: 64-73, 2019 06.
Article in English | MEDLINE | ID: mdl-31358278

ABSTRACT

Diatoms are often the dominating group of benthic microalgae living on different types of bottom substrates. Their effects on invertebrate consumers is not well-documented. We here investigate the effects of feeding on another two benthic diatoms, Cocconeis scutellum and Diploneis sp., isolated from leaves of the seagrass Posidonia oceanica, on the sea urchin Paracentrotus lividus. Our results indicate a noxious effect on sea urchin embryos spawned from adults fed on Diploneis sp., with an increasing number of malformed embryos with respect to those spawned from adults fed on Ulva rigida (used as a feeding control). In contrast C. scutellum did not induce any morphological effect on embryos, similar to control non-diatom diets. Moreover, de novo obtained transcriptome indicated that oxidation-reduction process, translation, proton and electron transmembrane transport, ATP/RNA/GTP/heme/calcium and metal ion binding, NADH dehydrogenase activity, cytochrome c oxidase were affected by feeding of sea urchins on Diploneis sp. Our findings have considerable ecological significance considering that diatom biomass ingested by the sea urchin in these experiments is within the range of cell densities characterizing P. oceanica leaves where sea urchins live and spawn.


Subject(s)
Alismatales , Diatoms , Paracentrotus , Animals , Gene Expression Profiling , Transcriptome
14.
Mar Environ Res ; 149: 50-66, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31153060

ABSTRACT

Meiofauna can play an important role in the carbon fluxes of soft-bottom coastal habitats. Investigation of their feeding behavior and trophic position remains challenging due to their small size. In this study, we determine and compare the food sources used by nematodes and benthic copepods by using stable isotope compositions, fatty acid profiles and compound specific isotope analyses of fatty acids in the mudflats, seagrass beds and a sandflat of the Marennes-Oléron Bay, France, and the Sylt-Rømø Bight, Germany. Suspended particulate organic matter was much more 13C-depleted than other food sources and meiofauna, highlighting its poor role in the different studied habitats. The very low proportions of vascular plant fatty acid markers in meiofauna demonstrated that these consumers did not rely on this food source, either fresh or detrital, even in seagrass beds. The combined use of stable isotopes and fatty acids emphasized microphytobenthos and benthic bacteria as the major food sources of nematodes and benthic copepods. Compound specific analyses of a bacteria marker confirmed that bacteria mostly used microphytobenthos as a substrate.


Subject(s)
Aquatic Organisms/metabolism , Copepoda/metabolism , Food Chain , Geologic Sediments/analysis , Nematoda/metabolism , Animals , Aquatic Organisms/chemistry , Bacteria/chemistry , Bacteria/metabolism , Bays , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Diatoms/chemistry , Diatoms/metabolism , Ecosystem , Fatty Acids/analysis , Fatty Acids/metabolism , Feeding Behavior , France , Geologic Sediments/chemistry , Germany , Microalgae/chemistry , Microalgae/metabolism , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Seasons , Tracheophyta/chemistry , Tracheophyta/metabolism
15.
Ecology ; 100(9): e02765, 2019 09.
Article in English | MEDLINE | ID: mdl-31162636

ABSTRACT

The current decrease in biodiversity affects all ecosystems, and the impacts of diversity on ecosystem functioning need to be resolved. So far, marine studies about diversity-ecosystem productivity-relationships have concentrated on small-scale, controlled experiments, with often limited relevance to natural ecosystems. Here, we provide a real-world study on the effects of microorganismal diversity (measured as the diversity of benthic diatom communities) on ecosystem productivity (using chlorophyll a concentration as a surrogate) in a heterogeneous marine coastal archipelago. We collected 78 sediment cores at 17 sites in the northern Baltic Sea and found exceptionally high diatom diversity (328 observed species). We used structural equation models and quantile regression to explore relationships between diatom diversity and productivity. Previous studies have found contradictory results in the relationship between microorganismal diversity and ecosystem productivity, but we showed a linear and positive basal relationship between diatom diversity and productivity, which indicates that diatom diversity most likely forms the lowest boundary for productivity. Thus, although productivity can be high even when diatom diversity is low, high diatom diversity supports high productivity. The trait composition was more effective than taxonomical composition in showing such a relationship, which could be due to niche complementarity. Our results also indicated that environmental heterogeneity leads to substantial patchiness in the diversity of benthic diatom communities, mainly induced by the variation in sediment organic matter content. Therefore, future changes in precipitation and river runoff and associated changes in the quality and quantity of organic matter in the sea, will also affect diatom communities and, hence, ecosystem productivity. Our study suggests that benthic microorganisms are vital for ecosystem productivity, and together with the substantial heterogeneity of coastal ecosystems, they should be considered when evaluating the potential productivity of coastal areas.


Subject(s)
Diatoms , Ecosystem , Biodiversity , Chlorophyll A , Rivers
16.
Sci Total Environ ; 659: 1242-1255, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31096337

ABSTRACT

Freshwater diatom communities are known to respond to a wide range of environmental factors, however, the depth gradient is usually neglected and few studies are available, especially in large reservoirs. During the ALqueva hydro-meteorological EXperiment (ALEX) field campaign, diatom communities were studied in the margins and in three platforms (from the surface to the bottom of the reservoir) located in the limnetic zone of the Alqueva reservoir, one of the largest artificial lakes in western Europe. A detailed meteorological and physico-chemical characterization of the reservoir was carried out from June to September in Summer 2014, when the reservoir was stratified, to relate these variables with diatom assemblages. Despite the large dimensions of the reservoir, no differences in the water physico-chemical characteristics and diatom descriptors were detected among platforms. Small changes in diatom assemblages, ecological guilds, taxa richness and Shannon diversity index were observed between sampling campaigns. Nevertheless, differences in diatoms were detected along a depth gradient, both in terms of diatom assemblages and ecological guilds. Taxa richness, Shannon diversity index, Pielou's evenness and Specific Pollution sensitivity Index (SPI) also differed with depth, with the lowest values of all indices detected at surface samples, increasing with depth, reaching the highest values at 20 m for taxa richness, Shannon diversity and Pielou's evenness indices.


Subject(s)
Diatoms/growth & development , Ecosystem , Environmental Monitoring , Fresh Water , Portugal
17.
Sci Total Environ ; 651(Pt 1): 357-366, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30240919

ABSTRACT

Changes in land use, climate and flow diversion are key drivers of river flow regime change that may eventually affect freshwater biodiversity and ecosystem functions. However, our knowledge is limited on how the functional features of stream organisms vary along the gradient of hydrological disturbance (i.e. flow regime changes) and how flow regimes mediate the functional features in lowland streams. We analyzed the functional traits of benthic diatoms (unicellular siliceous algae) that are most sensitive and tolerant to flow regime changes along a nationwide scale of 246 sites in Denmark. We combined RLQ and fourth-corner analyses to explore the co-variation between hydrological variables (R table) and species traits (Q table), constrained by the relative abundance of each species (L table) as observed in each of the sampling sites. Further, we examine the relationships between functional features (i.e., functional redundancy and diversity) and hydrological variables by multivariate statistical analyses. Results show that species turnover with displacement of sensitive species by tolerant species was the dominating process in benthic diatom communities during high flow disturbances. Functional features, as indicated by functional diversity and redundancy indices, were mediated mainly by high and low flow magnitude. Median daily flow magnitude shows a consistent positive relationship with functional redundancy and richness indices indicating that larger streams are more resilient to flow perturbations. In addition flow regime changes are less important than median daily flow magnitude and show inconsistent correlation to functional features likely due to the interaction of multiple environmental stressors. Our study highlights the robustness of trait-based approaches for identifying flow regime changes in streams, and strongly suggests that biodiversity conservation and water resource management should focus on protecting natural base flow in headwater streams and generally reduce flow regulation for sustaining stream ecosystems under future global changes.


Subject(s)
Biodiversity , Diatoms/physiology , Rivers , Water Movements , Denmark
18.
Phytochemistry ; 142: 85-91, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28697398

ABSTRACT

The production of polyunsaturated aldehydes (PUAs) has been reported by many planktonic diatoms, where they have been implicated in deleterious effects on copepod reproduction and growth of closeby microbes or suggested as infochemicals in shaping plankton interactions. This study investigates the production of PUAs by diatoms commonly occurring in the microphytobenthic communities in temperate regions: Tabularia affinis, Proschkinia complanatoides and Navicula sp. Results highlight the production of PUAs by the three benthic diatoms during stationary and decline phases, with intracellular concentrations from 1.8 to 154.4 fmol cell-1, which are within the range observed for planktonic species. The existence of a large family of PUAs, including some with four unsaturations, such as decatetraenal, undecatetraenal and tridecatetraenal, was observed. Since particulate and dissolved PUAs were positively correlated, together with cell lysis, equivalent concentrations may be released during late growth stages, which may affect benthic invertebrates grazing on them and other microalgae.


Subject(s)
Aldehydes/chemistry , Aldehydes/pharmacology , Diatoms/chemistry , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/chemistry , Gas Chromatography-Mass Spectrometry , Molecular Structure , Oceans and Seas
19.
Sci Total Environ ; 605-606: 874-883, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28686991

ABSTRACT

The Sava River Basin is a major drainage basin of southeastern Europe, significantly influenced by anthropogenic activities. Our study was focused on diatom communities as an indicator of the ecological status of running waters. We investigated over 937km of the Sava River at 19 sampling sites. Benthic diatom communities and 17 diatom indices were analyzed along with a large set of environmental parameters. CCA revealed that the most important elements along the spatial gradient were As and Si. Our results show that the species Navicula recens (Lange-Bert.) Lange-Bertalot and Eolimna minima (Grunow) Lange-Bertalot are very abundant at downstream localities where the highest concentrations of As were measured. The number of motile diatoms increased along the nutrient gradient, i.e. with Si availability. Correlations between diatom indices and selected environmental factors showed that temperature, As, Si and Fe are in significant negative correlation with most diatom indices. Analysis revealed the influence of As and metals in water on diatoms, although their concentrations did not exceed environmental standards. While our findings do not confirm that diatom indices reveal the intensity of pressures solely caused by nutrient and/or organic pollutants, they suggest that in moderately polluted large rivers benthic diatoms are good bioindicators of multiple pressures, and that diatom indices could serve as indicators of the level of overall degradation of an ecosystem.

20.
Aquat Toxicol ; 189: 200-208, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28651182

ABSTRACT

Diffuse agricultural runoff into rivers can result in contamination with herbicides for prolonged periods of time. Chronic exposure to herbicides has the potential to alter toxic impacts in primary producers such as benthic diatoms. Determining how individual diatom taxa respond to herbicide exposure over varied exposure durations is essential for assessing herbicide impacts. This study investigated the responses of various benthic diatom taxa and effects at the community level over 12days of atrazine exposure. Diatom communities were collected from two sites with differing exposure histories; a relatively unpolluted site (Alligator Creek) and an agricultural stream (Barratta Creek) known to be polluted by atrazine and other herbicides. Diatom community composition and the proportion of healthy cells per taxon were assessed at 0, 2, 3, 6, 9 and 12days of atrazine exposure. Pollution history altered the response of the diatom community to atrazine exposure. In the Alligator Creek diatom community there was a shift in composition towards more tolerant taxa and the loss of sensitive taxa in atrazine exposed treatments. The sensitive taxon (Gomphonema truncatum) was consistently affected by atrazine toxicity. Conversely, the polluted Barratta Creek diatom community was not strongly affected by atrazine exposure. Our study shows that during chronic atrazine exposure some taxa demonstrated the ability to recover despite initial toxicity response. Recovery could be an important trait for understanding the ecological effect of herbicide exposure on diatom species in nature and in applied circumstances such as biomonitoring indices.


Subject(s)
Atrazine/toxicity , Diatoms/drug effects , Environmental Monitoring/methods , Herbicides/toxicity , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Dose-Response Relationship, Drug , Queensland , Time Factors , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...