Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
JACS Au, v. 7, n. 2, p. 847-854, fev. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5293

ABSTRACT

Visceral leishmaniasis and Chagas disease are neglected tropical diseases (NTDs) that severely impact the developing world. With current therapies suffering from poor efficacy and safety profiles as well as emerging resistance, new drug leads are direly needed. In this work, 26 alkaloids (9 natural and 17 synthetic) belonging to the benzyltetrahydroisoquinoline (BI) family were evaluated against both the pro/trypomastigote and amastigote forms of the parasites Leishmania infantum and Trypanosoma cruzi, the causative agents of these diseases. These alkaloids were synthesized via an efficient and modular enantioselective approach based on Bischler-Napieralski cyclization/Noyori asymmetric transfer hydrogenation to build the tetrahydroisoquinoline core. The bis-benzyltetrahydroisoquinoline (BBI) alkaloids were prepared using an Ullmann coupling of two BI units to form the biaryl ether linkage, which enabled a comprehensive survey of the influence of BI stereochemistry on bioactivity. Preliminary studies into the mechanism of action against Leishmania mexicana demonstrate that these compounds interfere with the cell cycle, potentially through inhibition of kinetoplast division, which may offer opportunities to identify a new target/mechanism of action. Three of the synthesized alkaloids showed promising druglike potential, meeting the Drugs for Neglected Disease initiative (DNDi) criteria for a hit against Chagas disease.

2.
Fitoterapia ; 153: 104994, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34273439

ABSTRACT

Three new pairs of benzyltetrahydroisoquinoline (BIQ) alkaloid epimers, Seco-neferine A-F (1-6), were isolated from an EtOH extract of Plumula Nelumbinis. The structures of these compounds were identified by a combination of NMR, HR-ESI-MS, circular dichroism, UV spectroscopic analyses and specific rotations. The structure of compounds 1-6 possesses high similarity with neferine, because these three pairs of epimers have the same skeleton as neferine. Compounds 1,2 and 5,6 are open-loop compounds of position 1' and 1 of neferine respectively. The H connects with position 2' N of compounds 1,2 is replaced by methyl, forming the structure of compounds 3,4. Moreover, six compounds were tested for cytotoxicity against MDA-MB-231 breast cancer cell. Compound 6 displayed moderate inhibitory effects on breast cancer with IC50 of 38.96 µM, while compounds 2,3,4 show certain inhibitory effects.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Benzylisoquinolines/pharmacology , Nelumbo/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Benzylisoquinolines/isolation & purification , Cell Line, Tumor , Drugs, Chinese Herbal/chemistry , Humans , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...