Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Sci Rep ; 14(1): 15287, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961106

ABSTRACT

Cervical cancer is still the leading cause of cancer mortality worldwide even after introduction of vaccine against Human papillomavirus (HPV), due to low vaccine coverage, especially in the developing world. Cervical cancer is primarily treated by Chemo/Radiotherapy, depending on the disease stage, with Carboplatin/Cisplatin-based drug regime. These drugs being non-specific, target rapidly dividing cells, including normal cells, so safer options are needed for lower off-target toxicity. Natural products offer an attractive option compared to synthetic drugs due to their well-established safety profile and capacity to target multiple oncogenic hallmarks of cancer like inflammation, angiogenesis, etc. In the current study, we investigated the effect of Bergenin (C-glycoside of 4-O-methylgallic acid), a natural polyphenol compound that is isolated from medicinal plants such as Bergenia crassifolia, Caesalpinia digyna, and Flueggea leucopyrus. Bergenin has been shown to have anti-inflammatory, anti-ulcerogenic, and wound healing properties but its anticancer potential has been realized only recently. We performed a proteomic analysis of cervical carcinoma cells treated with bergenin and found it to influence multiple hallmarks of cancers, including apoptosis, angiogenesis, and tumor suppressor proteins. It was also involved in many different cellular processes unrelated to cancer, as shown by our proteomic analysis. Further analysis showed bergenin to be a potent-angiogenic agent by reducing key angiogenic proteins like Galectin 3 and MMP-9 (Matrix Metalloprotease 9) in cervical carcinoma cells. Further understanding of this interaction was carried out using molecular docking analysis, which indicated MMP-9 has more affinity for bergenin as compared to Galectin-3. Cumulatively, our data provide novel insight into the anti-angiogenic mechanism of bergenin in cervical carcinoma cells by modulation of multiple angiogenic proteins like Galectin-3 and MMP-9 which warrant its further development as an anticancer agent in cervical cancer.


Subject(s)
Benzopyrans , Cell Proliferation , Galectin 3 , Matrix Metalloproteinase 9 , Uterine Cervical Neoplasms , Humans , Matrix Metalloproteinase 9/metabolism , Benzopyrans/pharmacology , Female , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Galectin 3/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Molecular Docking Simulation , Galectins/metabolism , Galectins/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects , HeLa Cells , Blood Proteins
2.
Article in English | MEDLINE | ID: mdl-38850305

ABSTRACT

Originally sourced from plants, Bergenin has been used as a medicinal compound in traditional medicine for centuries, and anecdotal reports suggest a wide range of therapeutic uses. Naturally-occurring and lab-synthesized Bergenin, as well as some of its related compounds, have been shown in in vivo and in vitro studies to alter activity of several enzymes and proteins critical in cellular functioning, including reelin, GSK-3ß, Lingo-1, Ten-4, GP-43, Aß 1-42, P-tau, SOD1,2, GPx, Glx1, NQO1, HO1, PPAR-É£, BDNF, VEGF, and STAT6. Additionally, Bergenin alters levels of several cytokines, such as IL-6, IL-1ß, TNF-α, and TGF-ß. Behavioral and cellular effects of Bergenin have been shown to involve PI3K/Akt, NF-κB, PKC, Nrf2, and Sirt1/FOXO3a pathways. These pathways, enzymes, and proteins have been shown to be important in normal neurological functioning, and/or dysfunctions in these pathways and proteins have been shown to be important in several neuro-based disorders or diseases, which suggests that Bergenin could be therapeutic in management of neuropsychiatric conditions or neurological disorders. In preclinical studies, Bergenin has been shown to be useful for the management of Alzheimer's disease, Parkinson's disease, anxiety, depression, addiction, epilepsy, insomnia, stroke, and potentially, state control. Our review aims to summarize current evidence supporting the conclusion that Bergenin could play a role in treating various neuro-based disorders and that future studies should be conducted to evaluate the mechanisms by which Bergenin could exert its therapeutic effects.

3.
BMC Chem ; 18(1): 89, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702755

ABSTRACT

In this study, we firstly established and verified a method by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for the analysis of vilazodone and its metabolite M10 in rat plasma, then this method was used to explore the pharmacokinetics of vilazodone and M10 present or absence of 80 mg/kg bergenin in rats. Protein precipitation with acetonitrile was used to prepare the samples in this research. The mobile phase for liquid chromatography was consisted of 0.1% formic acid aqueous solution and acetonitrile. Brexpiprazole was used as the internal standard (IS), and the multiple reaction monitoring (MRM) mode was used for detection. The verification items required by the US Food and Drug Administration (FDA) guidelines such as selectivity, sensitivity, linearity, stability, recovery and matrix effect of this method were all met the standards. Besides, rats were used to explore the drug-drug interaction between vilazodone and bergenin, which were divided into two groups, and separately gavaged with the same-volume of carboxymethyl cellulose sodium (CMC-Na) solution and 80 mg/kg bergenin, respectively. The results showed that bergenin significantly affected the metabolism of vilazodone. It suggested that there was a potential drug-drug interaction between bergenin and vilazodone in rats. In clinical application, we should pay attention to the dose of vilazodone when in combination with bergenin.

4.
Reprod Toxicol ; 126: 108608, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735593

ABSTRACT

Tripterygium wilfordii (TW) preparations have been utilized in China for treating rheumatoid arthritis and autoimmune diseases. However, their clinical use is limited due to reproductive toxicity, notably premature ovarian failure (POF). Our study aimed to investigate the effect and mechanism of bergenin in attenuating POF induced by triptolide in mice. POF was induced in female ICR mice via oral triptolide administration (50 µg/kg) for 60 days. Mice received bergenin (25, 50, 100 mg/kg, i.g.) or estradiol valerate (EV) (0.1 mg/kg, i.g.) daily, 1 h before triptolide treatment. In vitro, ovarian granulosa cells (OGCs) were exposed to triptolide (100 nM) and bergenin (1, 3, 10 µM). Antioxidant enzyme activity, protein expression, apoptosis rate, and reactive oxygen species (ROS) levels were assessed. The results showed that triptolide-treated mice exhibited evident atrophy, along with an increase in atretic follicles. Bergenin (50, 100 mg/kg) and EV (0.1 mg/kg), orally administered, exerted significant anti-POF effect. Bergenin and EV also decreased apoptosis in mouse ovaries. In vitro, bergenin (1, 3, 10 µM) attenuated triptolide-induced OGCs apoptosis by reducing levels of apoptosis-related proteins. Additionally, bergenin reduced oxidative stress through downregulation of antioxidant enzymes activity and overall ROS levels. Moreover, the combined use with Sh-Nrf2 resulted in a reduced protection of bergenin against triptolide-induced apoptosis of OGCs. Together, bergenin counteracts triptolide-caused POF in mice by inhibiting Nrf2-mediated oxidative stress and preventing OGC apoptosis. Combining bergenin with TW preparations may effectively reduce the risk of POF.


Subject(s)
Antioxidants , Apoptosis , Benzopyrans , Diterpenes , Epoxy Compounds , Granulosa Cells , Mice, Inbred ICR , Phenanthrenes , Primary Ovarian Insufficiency , Reactive Oxygen Species , Animals , Female , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Primary Ovarian Insufficiency/prevention & control , Diterpenes/pharmacology , Phenanthrenes/toxicity , Phenanthrenes/pharmacology , Epoxy Compounds/toxicity , Antioxidants/pharmacology , Apoptosis/drug effects , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Reactive Oxygen Species/metabolism , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Mice , Cells, Cultured
5.
Eur J Pharm Biopharm ; 200: 114307, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685438

ABSTRACT

Herein, we report the properties of nanostructured lipid carriers (NLCs) prepared with a gradient concentration of Bergenin (BGN) isolated from Pentaclethra macrophylla stem bark powder. A gradient concentration of BGN (BGN 0, 50, 100, 150, and 200 mg) was prepared in a 5 % lipid matrix consisting of Transcutol HP (75 %), Phospholipon 90H (15 %), and Gelucire 43/01 (10 %) to which a surfactant aqueous phase consisting of Tween 80, sorbitol, and sorbic acid was dissolved. The NLCs were evaluated by size, polydispersity index (PDI), zeta potential, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), encapsulation efficiency, and in vitro drug release. The result shows polydispersed nanoparticles with high drug encapsulation (94.26-99.50 %). The nanoparticles were mostly spherical, but those from the 50 mg BGN batch were more cuboidal than spherical. The drug release was highest from the latter to the tune of 40 % compared to the pure BGN solution, which released about 15 % BGN. The anti-inflammatory activity of the BGN-NLC and total plant extract was studied on lipopolysaccharide (LPS)-inflamed macrophages. The cell study showed that BGN and plant extract had low cytotoxicity on macrophages and exhibited a dose-dependent anti-inflammatory effect on the LPS-induced inflammatory process in macrophages.


Subject(s)
Anti-Inflammatory Agents , Benzopyrans , Drug Carriers , Lipids , Lipopolysaccharides , Macrophages , Nanoparticles , Lipopolysaccharides/pharmacology , Animals , Mice , Macrophages/drug effects , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Drug Carriers/chemistry , Benzopyrans/pharmacology , Benzopyrans/administration & dosage , Benzopyrans/chemistry , Nanoparticles/chemistry , Lipids/chemistry , RAW 264.7 Cells , Drug Liberation , Nanostructures/chemistry , Saxifragaceae/chemistry , Particle Size , Inflammation/drug therapy , Inflammation/chemically induced , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry
6.
Phytomedicine ; 129: 155592, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608597

ABSTRACT

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation and phenotypic switching are key mechanisms in the development of proliferative arterial diseases. Notably, reprogramming of the glucose metabolism pattern in VSMCs plays an important role in this process. PURPOSE: The aim of this study is to investigate the therapeutic potential and the mechanism underlying the effect of bergenin, an active compound found in Bergenia, in proliferative arterial diseases. METHODS: The effect of bergenin on proliferative arterial disease was evaluated using platelet-derived growth factor (PDGF)-stimulated VSMCs and a mouse model of carotid artery ligation. VSMC proliferation and phenotypic switching were evaluated in vitro using cell counting kit-8, 5-ethynyl-2-deoxyuridine incorporation, scratch, and transwell assays. Carotid artery neointimal hyperplasia was evaluated in vivo using hematoxylin and eosin staining and immunofluorescence. The expression of proliferation and VSMC contractile phenotype markers was evaluated using PCR and western blotting. RESULTS: Bergenin treatment inhibited PDGF-induced VSMC proliferation and phenotypic switching and reduced neointimal hyperplasia in the carotid artery ligation model. Additionally, bergenin partially reversed the PDGF-induced Warburg-like glucose metabolism pattern in VSMCs. RNA-sequencing data revealed that bergenin treatment significantly upregulated Ndufs2, an essential subunit of mitochondrial complex I. Ndufs2 knockdown attenuated the inhibitory effect of bergenin on PDGF-induced VSMC proliferation and phenotypic switching, and suppressed neointimal hyperplasia in vivo. Conversely, Ndufs2 overexpression enhanced the protective effect of bergenin. Moreover, Ndufs2 knockdown abrogated the effects of bergenin on the regulation of glucose metabolism in VSMCs. CONCLUSION: These findings suggest that bergenin is effective in alleviating proliferative arterial diseases. The reversal of the Warburg-like glucose metabolism pattern in VSMCs during proliferation and phenotypic switching may underlie this therapeutic mechanism.


Subject(s)
Benzopyrans , Cell Proliferation , Glucose , Muscle, Smooth, Vascular , Animals , Muscle, Smooth, Vascular/drug effects , Glucose/metabolism , Benzopyrans/pharmacology , Cell Proliferation/drug effects , Male , Mice , Mice, Inbred C57BL , Platelet-Derived Growth Factor/pharmacology , Platelet-Derived Growth Factor/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Disease Models, Animal , Cells, Cultured , Carotid Arteries/drug effects , Neointima/drug therapy
7.
J Agric Food Chem ; 72(7): 3606-3621, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38324392

ABSTRACT

Ulcerative colitis is closely associated with the dysregulation of gut microbiota. There is growing evidence that natural products may improve ulcerative colitis by regulating the gut microbiota. In this research, we demonstrated that bergenin, a naturally occurring isocoumarin, significantly ameliorates colitis symptoms in dextran sulfate sodium (DSS)-induced mice. Transcriptomic analysis and Caco-2 cell assays revealed that bergenin could ameliorate ulcerative colitis by inhibiting TLR4 and regulating NF-κB and mTOR phosphorylation. 16S rRNA sequencing and metabolomics analyses revealed that bergenin could improve gut microbiota dysbiosis by decreasing branched-chain amino acid (BCAA) levels. BCAA intervention mediated the mTOR/p70S6K signaling pathway to exacerbate the symptoms of ulcerative colitis in mice. Notably, bergenin greatly decreased the symbiotic bacteria Bacteroides vulgatus (B. vulgatus), and the gavage of B. vulgatus increased BCAA concentrations and aggravated the symptoms of ulcerative colitis in mice. Our findings suggest that gut microbiota-mediated BCAA metabolism plays a vital role in the protective effect of bergenin on ulcerative colitis, providing novel insights for ulcerative colitis prevention through manipulation of the gut microbiota.


Subject(s)
Bacteroides , Benzopyrans , Colitis, Ulcerative , Colitis , Animals , Mice , Humans , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Caco-2 Cells , RNA, Ribosomal, 16S , Colitis/chemically induced , Colitis/drug therapy , Amino Acids, Branched-Chain , TOR Serine-Threonine Kinases/genetics , Dextran Sulfate/adverse effects , Disease Models, Animal , Mice, Inbred C57BL , Colon
8.
BMC Chem ; 18(1): 13, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218834

ABSTRACT

This study describes methodologies for extracting and isolating bergenin, a C-glucoside of 4-O-methylgallic acid found in some plants and it presents various in vitro and in vivo biological activities. Bergenin was previously obtained from the Pelthophorum dubim (Fabaceae) roots with a good yield. Conventional chromatographic procedures of the CHCl3 soluble fraction of the MeOH extract gave 3.62% of this glucoside. An HPLC/DAD method was also developed and validated for bergenin and its precursor, gallic acid quantifications. Microwave extractions with different solvents were tested to optimize the extraction of bergenin, varying the temperature and time. MAE (Microwave Assisted Extraction) was more efficient than conventional extraction procedures, giving a higher yield of bergenin per root mass (0.45% vs. 0.0839%). Molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) based on bergenin as the template molecule, methacrylic acid, and ethylene glycol dimethacrylate were synthesized and characterized by FTIR and SEM (Scanning Electron Microscopy). Bergenin adsorption experiments using MIP and NIP followed by molecular imprinted solid phase extraction (MISPE) showed that MIP had a higher selectivity for bergenin than NIP. A dendrochronological study using the proposed method for detection and quantification of gallic acid and bergenin in five P. dubium growth rings of a 31-year-old heartwood and in the phelloderm and barks indicated that bergenin was more abundant in the 11-14th growth rings of the heartwood and decreased from the heartwood to the barks.

9.
Chem Biol Interact ; 387: 110797, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37949422

ABSTRACT

In light of the current industrial evolution, exposure to cadmium has become a significant public health concern. Cadmium accumulates in the renal tubular cells and causes nephrotoxicity largely through disruption of the redox homeostasis, induction of inflammation, and suppression of the histone deacetylase SIRT1 expression. The current work aimed at exploring the protective capability of bergenin, a naturally-occurring methyl gallic acid derivative, against the cadmium-evoked nephrotoxicity. Male Wistar rats were treated either with cadmium alone or with cadmium and bergenin for a 7-day experimental period followed by collection of kidney and blood specimens that were subjected to biochemical, molecular, and histological investigations. The results revealed the ability of bergenin to improve the renal functions in the cadmium-intoxicated rats as evidenced by increased glomerular filtration rate, and decreased serum creatinine and blood urea nitrogen. Equally important, bergenin reduced the renal tissue injury and enhanced its redox homeostasis as indicated by decreased protein expression of the kidney injury marker KIM-1, reduced lipid peroxidation, and improved antioxidant potential and histopathological picture of the renal tissues. Mechanistically, bergenin reduced the renal tissue cadmium content, markedly up-regulated protein expression of SIRT1 that regulates inflammation and the redox status of the renal tissues. Additionally, it improved the expression of the major antioxidant transcription factor Nrf2 and its responsive gene products heoxygenase-1 and NAD(P)H quinone dehydrogenase 1 in the cadmium-intoxicated rats. In the same context, bergenin down-regulated the acetylation and the nuclear translocation of the inflammatory transcription factor NF-κB and reduced levels of its responsive gene products TNF-α and IL-1ß, as well as the activity of the inflammatory cell infiltration biomarker myeloperoxidase. Collectively, the current study underscores the ameliorating activity of bergenin against the cadmium-evoked nephrotoxicity and highlights modulation of SIRT1, Nrf2, and NF-κB signaling as potential underlining molecular mechanisms.


Subject(s)
Benzopyrans , Cadmium , Kidney , Animals , Male , Rats , Cadmium/toxicity , Inflammation/metabolism , Kidney/drug effects , Kidney/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Rats, Wistar , Signal Transduction , Sirtuin 1/metabolism , Benzopyrans/pharmacology
10.
Int Immunopharmacol ; 125(Pt A): 111100, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149571

ABSTRACT

Chemotherapy-induced neuropathic pain (CINP) is one of the most prominent and incapacitating complication associated with chemotherapeutic regimens. The exact mechanisms underlying CINP are not fully understood yet, which hampers the development of effective therapeutics. The current study has been designed to investigate the effect of bergenin on CINP and dissect the underlying cellular and molecular mechanisms. Behavioural responsiveness assays were conducted in rats before and after CINP induction and at different time points post-bergenin treatment. We also measured alterations in tight junction proteins, pro-inflammatory cytokines, microglia activity, transient receptor potential (TRP) channels (TRPV1, TRPA1 and TRPM8) and N-methyl-D-aspartate receptor subtype 2 (NR2B) in dorsal root ganglion (DRG) and spinal tissues of neuropathic rats. Bergenin treatment leads to a significant and dose-dependent reduction in evoked and spontaneous ongoing pain without causing central side effects in neuropathic rats. Furthermore, treatment with bergenin and gabapentin did not affect the baseline pain threshold in healthy, non-chemotherapy-treated rats, as evaluated through tail-flick and tail-clip assays. Chemotherapy administration leads to a significant activation of TRP channels, concurrent with microglial activation, disruption of spinal cord tight junction proteins, and subsequent infiltration of pro-inflammatory cytokines, as well as NR2B activation. Notably, bergenin treatment effectively reversed all of these alterations, with the exception of TRPM8, in both the DRG and spinal cord of neuropathic rats. Findings from the present study suggests that bergenin mitigates neuropathic pain by modulating the TRPA1/TRPV1/NR2B signalling and presents a promising therapeutic avenue for the treatment of chemotherapy-induced neuropathic pain.


Subject(s)
Antineoplastic Agents , Neuralgia , Rats , Animals , Rats, Sprague-Dawley , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/metabolism , Antineoplastic Agents/therapeutic use , Cytokines/therapeutic use , Tight Junction Proteins , Hyperalgesia/drug therapy
11.
Lipids Health Dis ; 22(1): 203, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001454

ABSTRACT

OBJECTIVE: The goal of this study was to explore the hypolipidemic effects of bergenin extracted from Saxifraga melanocentra Franch (S. melanocentra), which is a frequently utilized Tibetan medicinal plant known for its diverse bioactivities. Establishing a quality control system for black stem saxifrage is crucial to ensure the rational utilization of its medicinal resources. METHODS: A one-step polyamide medium-pressure liquid chromatography technique was applied to isolate and prepare bergenin from a methanol extract of S. melanocentra. A zebrafish model of hyperlipidemia was used to investigate the potential hypolipidemic effects of bergenin. RESULTS: The results revealed that bergenin exhibited substantial hypo efficacy in vivo. Specifically, bergenin significantly reduced the levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) while simultaneously increasing high-density lipoprotein cholesterol (HDL-c) levels. At the molecular level, bergenin exerted its effects by inhibiting the expression of FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-1ß, and TNF while promoting the expression of IL-4 at the transcriptional level. Molecular docking analysis further demonstrated the strong binding affinity of bergenin to proteins such as FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-4, IL-1ß, and TNF. CONCLUSIONS: Findings indicate that bergenin modulates lipid metabolism by regulating lipid and cholesterol synthesis as well as inflammatory responses through signaling pathways associated with FASN, SREBF1, and RORα. These results position bergenin as a potential candidate for the treatment of hyperlipidemia.


Subject(s)
Hyperlipidemias , Saxifragaceae , Animals , Hyperlipidemias/drug therapy , Hyperlipidemias/genetics , Interleukin-4 , Molecular Docking Simulation , Zebrafish , Triglycerides , Cholesterol, LDL , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use
12.
J Funct Biomater ; 14(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37754887

ABSTRACT

The poor quality of life associated with the loss of teeth can be improved by the placing of dental implants. However, successful implantation relies on integration with soft tissues or peri-implant inflammatory disease that can lead to the loss of the implant. Pharmacological agents, such as antibiotics and antiseptics, can be used as adjunct therapies to facilitate osseointegration; however, they can have a detrimental effect on cells, and resistance is an issue. Alternative treatments are needed. Hence, this study aimed to examine the safety profile of bergenin (at 2.5 µM and 5 µM), a traditional medicine, towards human gingival fibroblasts cultured on acid-etched zirconia implant surfaces. Cellular responses were analysed using SEM, resazurin assay, and scratch wound healing assay. Qualitative assessment was conducted for morphology (day 1) and attachment (early and delayed), and quantitative evaluation for proliferation (day 1, 3, 5 and 7), and migration (0 h, 6 h and 24 h). The concentrations of bergenin at 2.5 µM and 5 µM did not demonstrate a statistically significant effect with regard to any of the cellular responses (p > 0.05) tested. In conclusion, bergenin is non-cytotoxic and is potentially safe to be used as a local pharmacological agent for the management of peri-implant inflammatory diseases.

13.
Am J Chin Med ; 51(7): 1905-1925, 2023.
Article in English | MEDLINE | ID: mdl-37646142

ABSTRACT

Hexokinase 2 (HK2), the first glycolytic rate-limiting enzyme, is closely correlated with the occurrence and progression of tumors. Effective therapeutic agents targeting HK2 are urgently needed. Bergenin has exhibited various pharmacological activities, such as antitumor properties. However, the effects of bergenin on the abnormal glucose metabolism of cancer cells are yet unclear. In this study, HK2 was overexpressed in OSCC tissues, and the depletion of HK2 inhibited the growth of OSCC cells in vitro and in vivo. Moreover, these results showed that the natural compound, bergenin, exerted a robust antitumor effect on OSCC cells. Bergenin inhibited cancer cell proliferation, suppressed glycolysis, and induced intrinsic apoptosis in OSCC cells by downregulating HK2. Notably, bergenin restored the antitumor efficacy of irradiation in the radioresistant OSCC cells. A mechanistic study revealed that bergenin upregulated the protein level of phosphatase and the tensin homolog deleted on chromosome 10 (PTEN) by enhancing the interaction between PTEN and ubiquitin-specific protease 13 (USP13) and stabilizing PTEN; this eventually inhibited AKT phosphorylation and HK2 expression. Bergenin was identified as a novel therapeutic agent against glycolysis to inhibit OSCC and overcome radioresistance. Targeting PTEN/AKT/HK2 signaling could be a promising option for clinical OSCC treatment.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Glycolysis/genetics , Cell Line, Tumor , Cell Proliferation , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/pharmacology
14.
Cell Oncol (Dordr) ; 46(6): 1837-1853, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37542022

ABSTRACT

PURPOSE: Chemoresistance is a primary factor for treatment failure and tumor recurrence in non-small cell lung cancer (NSCLC) patients. The oncoprotein survivin is commonly upregulated in human malignancies and is associated with poor prognosis, but its effect on carcinogenesis and chemoresistance in NSCLC is not yet evident, and to explore an effective inhibitor targeting survivin expression is urgently needed. METHODS: The protumor characteristics of survivin and antitumor activities of bergenin in NSCLC cells were examined by MTS, colony formation assays, immunoblot, immunohistochemistry, and in vivo xenograft development. RESULTS: Survivin was upregulated in non-small cell lung cancer (NSCLC) tissues, while its depletion inhibited NSCLC tumorigenesis. The current study focused on bergenin, identifying its effective antitumor effect on NSCLC cells both in vivo and in vitro. The results showed that bergenin could inhibit cell proliferation and induce the intrinsic pathway of apoptosis via downregulating survivin. Mechanistically, bergenin reduced the phosphorylation of survivin via inhibiting the Akt/Wee1/CDK1 signaling pathway, thus resulting in enhanced interaction between survivin and E3 ligase Fbxl7 to promote survivin ubiquitination and degradation. Furthermore, bergenin promoted chemoresistance in NSCLC cells re-sensitized to pemetrexed treatment. CONCLUSIONS: Survivin overexpression is required for maintaining multiple malignant phenotypes of NSCLC cells. Bergenin exerts a potent antitumor effect on NSCLC via targeting survivin, rendering it a promising agent for the treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Survivin , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Pemetrexed/pharmacology , Inhibitor of Apoptosis Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis , Cell Proliferation , Cell Line, Tumor
15.
Toxicol Appl Pharmacol ; 475: 116633, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37482253

ABSTRACT

Bergenin (BG) is a polyphenolic substance which has therapeutic potential in the treatment of diabetic nephropathy (DN), a common complication of type II diabetes. However, the mechanisms underlying these effects remain unclear. We studied the protective effects and mechanisms of BG in DN mice, focusing on the TLR4/MyD88/NF-κB signalling pathway. C57BL/6 J mice were used as experiments (n=60), and 10 animals were randomly selected as normal control. The DN model was developed by administering an intraperitoneal injection of streptozotocin (40 mg/kg BW for three days) and a high-fat diet (n=50). BG (20, 40, and 80 mg/kg BW, once a day) was administered orally for four weeks. After BG treatment, the food and water intake of DN mice decreased, blood glucose levels decreased, and insulin resistance reduced. As a result, serum LDL-C, TC, and TG levels decreased; HDL-C levels increased; SOD, CAT, and GSH-Px levels decreased; and MDA levels increased. BG administration reduced AST, ALT, BUN, and CRE levels and inflammatory factors (including TNF-α, MCP-1, IL-1ß, and IL-6). Histopathology revealed a significant improvement in pathological damage to the liver, kidney, and spleen of mice treated with BG, and TLR4, MyD88, and NF-κB p65 were down-regulated at both mRNA and protein levels in the BG-treated group. Based on these results, BG therapeutic type II DN by hypoglycaemia, improving liver and kidney function, and anti-oxidative stress; reducing inflammation; and inhibiting the TLR4/MyD88/NF-κB signalling pathway. The results of this study suggest that BG can be used as an effective treatment for type II DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Rats , Mice , Animals , NF-kappa B/metabolism , Diabetic Nephropathies/pathology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental/complications , Mice, Inbred C57BL
16.
Molecules ; 28(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513369

ABSTRACT

Bergenin (BER), a natural component of polyphenols, has a variety of pharmacological activities, especially in improving drug metabolism, reducing cholestasis, anti-oxidative stress and inhibiting inflammatory responses. The aim of this study was to investigate the effects of BER on liver injury induced by isonicotinic acid hydrazide (INH) and rifampicin (RIF) in mice. The mice model of liver injury was established with INH (100 mg/kg)+RIF (100 mg/kg), and then different doses of BER were used to intervene. The pathological morphology and biochemical indicators of mice were detected. Meanwhile, RNA sequencing was performed to screen the differentially expressed genes and signaling pathways. Finally, critical differentially expressed genes were verified by qRT-PCR and Western blot. RNA sequencing results showed that 707 genes were significantly changed in the INH+RIF group compared with the Control group, and 496 genes were significantly changed after the BER intervention. These differentially expressed genes were mainly enriched in the drug metabolism, bile acid metabolism, Nrf2 pathway and TLR4 pathway. The validation results of qRT-PCR and Western blot were consistent with the RNA sequencing. Therefore, BER alleviated INH+RIF-induced liver injury in mice. The mechanism of BER improving INH+RIF-induced liver injury was related to regulating drug metabolism enzymes, bile acid metabolism, Nrf2 pathway and TLR4 pathway.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Mice , Animals , Isoniazid/adverse effects , Rifampin/adverse effects , Chemical and Drug Induced Liver Injury, Chronic/metabolism , NF-E2-Related Factor 2/metabolism , Toll-Like Receptor 4/metabolism , Liver , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism
17.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-37259388

ABSTRACT

Myeloid leukemia 1 (Mcl-1) is frequently overexpressed in human malignancies and emerged as a promising drug target. In this study, we verified the inhibitory effect of bergenin on colorectal cancer cells both in vivo and in vitro. In an in vitro setting, bergenin significantly reduced the viability and colony formation and promoted apoptosis of CRC cells dose-dependently. Bergenin decreased the activity of Akt/GSK3ß signaling and enhanced the interaction between FBW7 and Mcl-1, which eventually induced Mcl-1 ubiquitination and degradation. Using the HA-Ub K48R mutant, we demonstrated that bergenin promotes Mcl-1 K48-linked polyubiquitination and degradation. In vivo studies showed that bergenin significantly reduced tumor size and weight without toxicity to vital organs in mice. Overall, our results support the role of bergenin in inhibiting CRC cells via inducing Mcl-1 destruction, suggesting that targeting Mcl-1 ubiquitination could be an alternative strategy for antitumor therapy.

18.
Biomolecules ; 13(3)2023 02 21.
Article in English | MEDLINE | ID: mdl-36979338

ABSTRACT

Bergenin is a glycosidic derivative of trihydroxybenzoic acid that was discovered in 1880 by Garreau and Machelart from the rhizomes of the medicinal plant Bergenia crassifolia (currently: Saxifraga crassifolia-Saxifragaceae), though was later isolated from several other plant sources. Since its first report, it has aroused interest because it has several pharmacological activities, mainly antioxidant and anti-inflammatory. In addition to this, bergenin has shown potential antimalarial, antileishmanial, trypanocidal, antiviral, antibacterial, antifungal, antinociceptive, antiarthritic, antiulcerogenic, antidiabetic/antiobesity, antiarrhythmic, anticancer, hepatoprotective, neuroprotective and cardioprotective activities. Thus, this review aimed to describe the sources of isolation of bergenin and its in vitro and in vivo biological and pharmacological activities. Bergenin is distributed in many plant species (at least 112 species belonging to 34 families). Both its derivatives (natural and semisynthetic) and extracts with phytochemical proof of its highest concentration are well studied, and none of the studies showed cytotoxicity for healthy cells.


Subject(s)
Plant Extracts , Plants, Medicinal , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Antioxidants/chemistry , Benzopyrans/chemistry
19.
Appl Biochem Biotechnol ; 195(9): 5299-5311, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35622274

ABSTRACT

Diabetic retinopathy (DR) is the key cause of blindness and visual impairment in diabetes patients around the world. The high levels of oxidative stress in diabetes patients cause diabetic retinopathy. In addition to being an antioxidant, Bergenin also works as an immunosuppressant, an anti-inflammatory, and anticarcinogenic against hepatocarcinoma. This study examined the effects of Bergenin on diabetic retinopathy rats, using Streptozotocin (STZ) intraperitoneally to induce diabetes in rats. The animals were divided into four groups (n = 6), including a normal control (Group I), diabetic control (Group II), Bergenin (25 mg/kg) (Group III), and metformin (350 mg/kg) (Group IV). As previously mentioned, each animal received treatment for 60 days. To induce DR, rats were administered STZ (60 mg/kg) intraperitoneally for 60 days. Standard methods were utilized to measure the body weight of rats, blood glucose levels. We measured lipid profiles (Triglycerides, cholesterol, LDL, and HDL), inflammatory markers, and antioxidant levels with their respective kits. Analysis of retinal tissue morphometry and MMP-9, VEGF, and MCP-1 levels in serum was performed. Our research examined the expression levels of target genes (TNF-α, IL-1ß, and IL-6) using RT-PCR analysis. STZ-induced animals that were treated with Bergenin had less food intake, lower blood glucose, and improved body weight. Bergenin significantly suppressed levels of pro-inflammatory cytokines, cholesterol, TG, LDL, AI, MMP-9, VEGF, and MCP-1 and increased the level of HDL and antioxidant enzymes in STZ-induced DR rats. As well as increasing antioxidant levels, reducing retinal thickness, and increasing cell numbers, Bergenin also lessened DR remarkably. The results of this study demonstrated that Bergenin effectively inhibited STZ-induced DR in rats.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Rats , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Streptozocin/pharmacology , Antioxidants/pharmacology , Matrix Metalloproteinase 9 , Rats, Sprague-Dawley , Blood Glucose/analysis , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/pharmacology , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Oxidative Stress , Body Weight
20.
J Ethnopharmacol ; 304: 115993, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36509257

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: People of all ages experience injuries, whether mild or severe. The most available option to treat wounds as an alternative to allopathic care in both urban and rural populations is traditional medicine, which is mostly target inflammation. Bergenia ciliata (Haw.) Sternb rhizome and leaf powder are used in Ayurveda and local communities for various ailments including healing of wounds and burns. Owing to this property it is traditionally known as "Zakham-e-hayat" (wound healer). AIM OF THE STUDY: In the present study, we compared biological activity and wound healing potential of B. ciliata rhizome (R) extract and bergenin, a glycoside isolated from B. ciliata. MATERIALS AND METHODS: Reverse-phase high performance liquid chromatography (RP-HPLC) was performed to analyze polyphenols and bergenin in B. ciliata R extract. Samples were subjected to in vitro antioxidant assays including free radical scavenging, ferric chloride reducing power and total antioxidant capacity. Micro-broth dilution method, brine shrimp lethality assay and isolated RBC hemolysis assay were conducted to assess in vitro antibacterial and cytotoxic activities. Moreover, in vivo wound healing potential was determined by an excision wound model in mice. RESULTS: RP-HPLC showed significant content of polyphenols and bergenin (6.05 ± 0.12 µg/mg) in B. ciliata R extract. Crude extract possesses higher overall antioxidant and antibacterial capacities than bergenin due to presence of multiple phytoconstituents in extract. Both samples showed low hemolytic activity indicating their safe profile. Furthermore, mice treated with B. ciliata R extract depicted substantial decrease in wound area (99.3%; p < 0.05) as compared to bergenin, which showed 88.8% of wound closure after 12 days of treatment. Additionally, both treatments reduced epithelization duration by 1.6- and 1.4-fold in B. ciliata R extract (12.0 ± 0.6 days) and bergenin (14.2 ± 0.8 days) treated mice, respectively. This was supported by histopathological examination that showed greater epithelization, fibroblast proliferation, collagen synthesis, and revascularization in mice treated with B. ciliata R. CONCLUSION: Concisely, it is evident that B. ciliata R contains phytoconstituents in addition to bergenin, which potentiated wound healing activity of the extract. Hence, B. ciliata R is good source of compounds for treating wounds.


Subject(s)
Antioxidants , Saxifragaceae , Mice , Animals , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Saxifragaceae/chemistry , Polyphenols , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...