Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Protein Sci ; 33(10): e5164, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39276008

ABSTRACT

This review aims to provide an overview of the progress in protein-based artificial photosystem design and their potential to uncover the underlying principles governing light-harvesting in photosynthesis. While significant advances have been made in this area, a gap persists in reviewing these advances. This review provides a perspective of the field, pinpointing knowledge gaps and unresolved challenges that warrant further inquiry. In particular, it delves into the key considerations when designing photosystems based on the chromophore and protein scaffold characteristics, presents the established strategies for artificial photosystems engineering with their advantages and disadvantages, and underscores the recent breakthroughs in understanding the molecular mechanisms governing light-harvesting, charge separation, and the role of the protein motions in the chromophore's excited state relaxation. By disseminating this knowledge, this article provides a foundational resource for defining the field of bio-hybrid photosystems and aims to inspire the continued exploration of artificial photosystems using protein design.


Subject(s)
Photosynthesis , Protein Engineering , Protein Engineering/methods , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Models, Molecular
2.
Pharmaceutics ; 14(8)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36015364

ABSTRACT

In drug delivery, the development of nanovesicles that combine both synthetic and cellular components provides added biocompatibility and targeting specificity in comparison to conventional synthetic carriers such as liposomes. Produced through the fusion of U937 monocytes' membranes and synthetic lipids, our nano-cell vesicle technology systems (nCVTs) showed promising results as targeted cancer treatment. However, no investigation has been conducted yet on the immunogenic profile and the uptake mechanisms of nCVTs. Hence, this study was aimed at exploring the potential cytotoxicity and immune cells' activation by nCVTs, as well as the routes through which cells internalize these biohybrid systems. The endocytic pathways were selectively inhibited to establish if the presence of cellular components in nCVTs affected the internalization route in comparison to both liposomes (made up of synthetic lipids only) and nano-cellular membranes (made up of biological material only). As a result, nCVTs showed an 8-to-40-fold higher cellular internalization than liposomes within the first hour, mainly through receptor-mediated processes (i.e., clathrin- and caveolae-mediated endocytosis), and low immunostimulatory potential (as indicated by the level of IL-1α, IL-6, and TNF-α cytokines) both in vitro and in vivo. These data confirmed that nCVTs preserved surface cues from their parent U937 cells and can be rationally engineered to incorporate ligands that enhance the selective uptake and delivery toward target cells and tissues.

3.
Angew Chem Int Ed Engl ; 61(23): e202202457, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35344620

ABSTRACT

The use of predesigned bioengineered proteins for self-grown nanomaterials is a promising strategy that opens new scientific directions for biotic-abiotic nano-bio hybrid configurations. The unique properties of nanomaterials can alter the original biological paradigm to allow novel metabolic routes or new activation triggers. In this work, we present a synthetic methodology for self-grown cadmium sulfide quantum dots in a 12-mer bioengineered stable protein 1 under ambient conditions. The sized controlled crystalline QDs are characterized and utilized for NADPH regeneration that is in turn used for the activation of the imine reductase enzyme. The presented nano-bio hybrid system enables the production of a single enantiomeric product that is required for the pharmaceutical industry. Our designed system presents superior activity and can continuously operate for at least 22 hrs with 82 % conversion efficiency. The obtained results may lay the foundations for future nano-bio hybrid systems that can operate both in vitro and in vivo.


Subject(s)
Nanostructures , Quantum Dots , Amines , NAD/metabolism , Quantum Dots/chemistry , Regeneration
4.
Front Chem ; 6: 278, 2018.
Article in English | MEDLINE | ID: mdl-30050897

ABSTRACT

The Keggin-type polyoxometalate [γ-SiW10O36]8- was covalently modified to obtain a bis-biotinylated conjugate able to bind avidin. Spectroscopic studies such as UV-vis, fluorimetry, circular dichroism, coupled to surface plasmon resonance technique were used to highlight the unique interplay of supramolecular interactions between the homotetrameric protein and the bis-functionalized polyanion. In particular, the dual recognition mechanism of the avidin encompasses (i) a complementary electrostatic association between the anionic surface of the polyoxotungstate and each positively charged avidin subunit and (ii) specific host-guest interactions between each biotinylated arm and a corresponding pocket on the tetramer subunits. The assembly exhibits peroxidase-like reactivity and it was used in aqueous solution for L-methionine methyl ester oxidation by H2O2. The recognition phenomenon was then exploited for the preparation of layer-by-layer films, whose structural evolution was monitored in situ by ATR-FTIR spectroscopy. Finally, cell tracking studies were performed by exploiting the specific interactions with a labeled streptavidin.

5.
Nanomaterials (Basel) ; 7(3)2017 Mar 18.
Article in English | MEDLINE | ID: mdl-28336902

ABSTRACT

Although paraquat has been banned in European countries, this herbicide is still used all over the world, thanks to its low-cost, high-efficiency, and fast action. Because paraquat is highly toxic to humans and animals, there is interest in mitigating the consequences of its use, namely by implementing removal procedures capable of curbing its environmental and health risks. This research describes new magnetic nanosorbents composed of magnetite cores functionalized with bio-hybrid siliceous shells, that can be used to uptake paraquat from water using magnetically-assisted procedures. The biopolymers κ-carrageenan and starch were introduced into the siliceous shells, resulting in two hybrid materials, Fe3O4@SiO2/SiCRG and Fe3O4@SiO2/SiStarch, respectively, that exhibit a distinct surface chemistry. The Fe3O4@SiO2/SiCRG biosorbents displayed a superior paraquat removal performance, with a good fitting to the Langmuir and Toth isotherm models. The maximum adsorption capacity of paraquat for Fe3O4@SiO2/SiCRG biosorbents was 257 mg·g-1, which places this sorbent among the best systems for the removal of this herbicide from water. The interesting performance of the κ-carrageenan hybrid, along with its magnetic properties and good regeneration capacity, presents a very efficient way for the remediation of water contaminated with paraquat.

6.
Biosensors (Basel) ; 5(4): 712-35, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26610583

ABSTRACT

Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Fullerenes/chemistry , Nanostructures/chemistry , Animals , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes , Humans , Models, Molecular
7.
Chemistry ; 21(25): 9008-13, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25959990

ABSTRACT

The synthesis and confinement of graphitic nanoparticles (carbon dots) in the nanoscale solvent channels of cross-linked lysozyme single crystals is used to prepare novel biohybrid luminescent materials. Co-sequestration of acridine orange within the biohybrid crystals from acidic or neutral solutions yields FRET-mediated phosphors emitting white or green light, respectively. The results offer a route to new types of tuneable multicolour luminescent materials based on microcrystalline host-guest energy-transfer systems.


Subject(s)
Carbon/chemistry , Luminescent Agents/chemical synthesis , Muramidase/chemistry , Nanoparticles/chemistry , Quantum Dots/chemistry , Light , Luminescence , Luminescent Agents/chemistry
8.
Small ; 10(19): 3831-51, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24895215

ABSTRACT

As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.


Subject(s)
Bacteria/metabolism , Miniaturization/instrumentation , Nanotechnology/methods , Robotics/instrumentation , Chemotactic Factors/chemistry , Drug Delivery Systems/instrumentation , Equipment Design , Humans , Motion , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL