Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.345
Filter
1.
Parasit Vectors ; 17(1): 310, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030647

ABSTRACT

BACKGROUND: The Centers for Disease Control and Prevention (CDC) bottle bioassay is a commonly used susceptibility test for measuring insect response to insecticide exposure. However, inconsistencies and high variability in insect response when conducting CDC bottle bioassays have been reported in previous publications. We hypothesized that the CDC bottle bioassay results may be compromised when expected and actual insecticide concentrations in the bottles are not equivalent and that inadequate bottle cleaning and/or loss during insecticide introduction and bottle storage steps could be responsible. We explored this hypothesis by quantifying insecticides using gas chromatography tandem mass spectrometry (GC-MS/MS) in bottles that had been cleaned, prepared, and stored according to the CDC guidelines. METHODS: We investigated the bottle cleaning, preparation, and storage methods outlined in the CDC bottle bioassay procedure to identify sources of irreproducibility. We also investigated the effectiveness of cleaning bottles by autoclaving because this method is commonly used in insecticide assessment laboratories. The two insecticides used in this study were chlorpyrifos and lambda-cyhalothrin (λ-cyhalothrin). Insecticides were removed from glass bioassay bottles by rinsing with ethyl-acetate and n-hexane and then quantified using GC-MS/MS. RESULTS: The CDC bottle bioassay cleaning methods did not sufficiently remove both insecticides from the glass bottles. The cleaning methods removed chlorpyrifos, which has higher water solubility, more effectively than λ-cyhalothrin. Chlorpyrifos experienced significant loss during the bottle-coating process whereas λ-cyhalothrin did not. As for bottle storage, no significant decreases in insecticide concentrations were observed for 6 h following the initial drying period for either insecticide. CONCLUSIONS: The CDC bottle bioassay protocol is susceptible to producing inaccurate results since its recommended bottle cleaning method is not sufficient and semi-volatile insecticides can volatilize from the bottle during the coating process. This can lead to the CDC bottle bioassay producing erroneous LC50 values. High levels of random variation were also observed in our experiments, as others have previously reported. We have outlined several steps that CDC bottle bioassay users could consider that would lead to improved accuracy and reproducibility when acquiring toxicity data.


Subject(s)
Biological Assay , Centers for Disease Control and Prevention, U.S. , Gas Chromatography-Mass Spectrometry , Insecticides , Nitriles , Pyrethrins , Insecticides/analysis , Biological Assay/methods , Animals , United States , Gas Chromatography-Mass Spectrometry/methods , Pyrethrins/analysis , Nitriles/analysis , Reproducibility of Results , Chlorpyrifos/analysis , Tandem Mass Spectrometry
2.
Biosensors (Basel) ; 14(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39056595

ABSTRACT

Gold nanoparticles (AuNPs) play a vital role in biotechnology, medicine, and diagnostics due to their unique optical properties. Their conjugation with antibodies, antigens, proteins, or nucleic acids enables precise targeting and enhances biosensing capabilities. Functionalized AuNPs, however, may experience reduced stability, leading to aggregation or loss of functionality, especially in complex biological environments. Additionally, they can show non-specific binding to unintended targets, impairing assay specificity. Within this work, citrate-stabilized and silica-coated AuNPs (GNPs and SiGNPs, respectively) have been coated using N,N-dimethylacrylamide-based copolymers to increase their stability and enable their functionalization with biomolecules. AuNP stability after modification has been assessed by a combination of techniques including spectrophotometric characterization, nanoparticle tracking analysis, transmission electron microscopy and functional microarray tests. Two different copolymers were identified to provide a stable coating of AuNPs while enabling further modification through click chemistry reactions, due to the presence of azide groups in the polymers. Following this experimental design, AuNPs decorated with ssDNA and streptavidin were synthesized and successfully used in a biological assay. In conclusion, a functionalization scheme for AuNPs has been developed that offers ease of modification, often requiring single steps and short incubation time. The obtained functionalized AuNPs offer considerable flexibility, as the functionalization protocol can be personalized to match requirements of multiple assays.


Subject(s)
Gold , Metal Nanoparticles , Polymers , Gold/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Biosensing Techniques , Biological Assay , Acrylamides/chemistry , Silicon Dioxide/chemistry , Streptavidin/chemistry
3.
Toxins (Basel) ; 16(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39057924

ABSTRACT

Botulism is one of the most serious food intoxications, manifesting as prolonged paralytic conditions. This disease is usually the result of the consumption of poor quality canned or smoked foods, so the inhabitants of many countries of the world are exposed to the risk of this kind of poisoning every year. In view of the severity of poisonings caused by botulinum neurotoxins, monoclonal antibodies (mAbs) show great promise because of their targeting action, lack of allergic reactions and serum sickness. The use of a cocktail of mAbs increases the "functional specificity" of their mixture, allowing them to bind to the active domains of different toxin chains and block their action. In this work, we obtained 14 murine mAbs to the catalytic and receptor-binding domain of botulinum toxin type A. The Sp2/0-Ag14 murine myeloma cell line and splenocytes from immunized mice of the BALB/c line were used as fusion partners. We have shown that the selected cocktail of three antibodies neutralizes native toxin more effectively than antibodies separately-complete neutralization is achieved at a toxin dose of 3LD50 and partial neutralization at 5LD50. We presume that this cocktail may be promising as a prototype for the creation of a therapeutic drug capable of neutralizing the toxin in the blood of patients.


Subject(s)
Antibodies, Monoclonal , Botulinum Toxins, Type A , Mice, Inbred BALB C , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Botulinum Toxins, Type A/immunology , Botulinum Toxins, Type A/toxicity , Botulism/drug therapy , Botulism/immunology , Mice , Cell Line, Tumor , Female , Antibodies, Neutralizing/immunology
4.
Toxins (Basel) ; 16(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39057940

ABSTRACT

Envenoming resulting from snakebites is recognized as a priority neglected tropical disease by The World Health Organization. The Bothrops genus, consisting of different pitviper species, is considered the most medically significant taxa in Central and South America. Further research into Bothrops venom composition is important to aid in the development of safer and more effective snakebite treatments. In addition, the discovery of Bothrops toxins that could potentially be used for medical or diagnostic purposes is of interest to the pharmaceutical industry. This study aimed to employ high-throughput (HT) venomics to qualitatively analyze venom composition while utilizing coagulation bioassays for identifying coagulopathic toxins and characterizing coagulopathic activity in various Bothrops venoms. Using the recently demonstrated HT venomics workflow in combination with post-column coagulopathic bioassaying, focus was placed at anticoagulant toxins. Well-known procoagulant toxins were also investigated, taking into account that using the HT venomics workflow, procoagulant toxins are especially prone to denaturation during the reversed-phase chromatographic separations performed in the workflow. The findings revealed that the venoms of B. atrox and B. jararaca harbored procoagulant toxins, whereas those of B. alternatus and B. neuwiedi contained both procoagulant and anticoagulant toxins. In general, anticoagulation was associated with phospholipases A2s, while procoagulation was associated with snake venom metalloproteinases and snake venom serine proteases. These results showed the identification of coagulopathic venom toxins in the Bothrops venoms analyzed using multiple analytical methods that complement each other. Additionally, each venom underwent qualitative characterization of its composition.


Subject(s)
Blood Coagulation , Bothrops , Crotalid Venoms , High-Throughput Screening Assays , Animals , Crotalid Venoms/chemistry , Blood Coagulation/drug effects , Biological Assay , Anticoagulants/pharmacology , Anticoagulants/chemistry , Anticoagulants/analysis , Humans
5.
Environ Toxicol Chem ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031710

ABSTRACT

Tire and road wear particles (TRWP) contain complex mixtures of chemicals and release them to the environment, and potential toxic effects of these chemicals still need to be characterized. We used a standardized surrogate for TRWP, cryogenically milled tire tread (CMTT), to isolate and evaluate effects of tire-associated chemicals. We examined organic chemical mixtures extracted and leached from CMTT for the toxicity endpoints genotoxicity, estrogenicity, and inhibition of bacterial luminescence. The bioassays were performed after chromatographic separation on high-performance thin-layer chromatography (HPTLC) plates. Extracts of CMTT were active in all three HPTLC bioassays with two estrogenic zones, two genotoxic zones, and two zones inhibiting bacterial luminescence. Extracts of CMTT artificially aged with thermooxidation were equally bioactive in each HPTLC bioassay. Two types of aqueous leachates of unaged CMTT, simulating either digestion by fish or contact with sediment and water, contained estrogenic chemicals and inhibitors of bacterial luminescence with similar profiles to those of CMTT extracts. Of 11 tested tire-associated chemicals, two were estrogenic, three were genotoxic, and several inhibited bacterial luminescence. 1,3-Diphenylguanidine, transformation products of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, and benzothiazoles were especially implicated through comparison to HPTLC retention factors in the CMTT samples. Other bioactive bands in CMTT samples did not correspond to any target chemicals. Tire particles clearly contain and can leach complex mixtures of toxic chemicals to the environment. Although some known chemicals contribute to estrogenic, genotoxic, and antibacterial hazards, unidentified toxic chemicals are still present and deserve further investigation. Overall, our study expands the understanding of potential adverse effects from tire particles and helps improve the link between those effects and the responsible chemicals. Environ Toxicol Chem 2024;00:1-11. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

6.
Article in English | MEDLINE | ID: mdl-39028731

ABSTRACT

CONTEXT: Bioassays provide information on the functionality of thyrotropin receptor antibodies (TSH-R-Ab) and thus may offer more clinical utility than binding assays. OBJECTIVE: In this prospective, blinded, US-based study, the clinical performance of several TSH-R-Ab assays was compared. SETTING: US endocrinology clinic. SUBJECTS: One hundred sixty-two unselected, consecutive, well-documented patients with various thyroid diseases and healthy controls. INTERVENTION(S): Blinded TSH-R-Ab measurements. MAIN OUTCOME MEASURE(S): Sensitivity and specificity of 4 TSH-R-Ab assays. RESULTS: The 4 TSH-R-Ab assays were negative in all 42 patients without autoimmune thyroid disease (AITD). In 104 patients with Graves' disease (GD), irrespective of the disease duration, TSH-R-Ab positivity was present in 65 (63%), 67 (65%), and 87 (84%) for the Cobas and Immulite binding assays and stimulatory TSH-R-Ab [thyroid-stimulating immunoglobin (TSI)] bioassay, respectively (TSI vs Immulite P < .0025, TSI vs Cobas P < .0009). Fifteen newly diagnosed GD patients were all positive in the TSI bioassay, but only 11 (73%) were positive in the Cobas and Immulite binding assays. Nine GD patients with biochemical subclinical hyperthyroidism were TSI-positive but Immulite- and Cobas-negative. Two GD patients were blocking TSH-R-Ab [thyroid-blocking immunoglobin (TBI)]-positive and TSI-negative, and the Immulite and Cobas were positive in both. Additional serum samples from AITD patients that consisted of 30 TBI-positive and 10 TSI-positive samples were blindly tested in the binding assays. Only 6 of the 10 TSI-positive samples were positive in both binding assays, and 30 and 28 of the TBI-positive samples were positive in the Cobas and Immulite assays, respectively. CONCLUSION: Binding TSH-R-Ab assays are less sensitive than TSI bioassays and are not specific for stimulating antibodies. Measuring the function of TSH-R-Ab in a bioassay can provide useful information to clinicians.

7.
Sci Rep ; 14(1): 16590, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025896

ABSTRACT

Aflatoxins (AFs) are hazardous carcinogens and mutagens produced by some molds, particularly Aspergillus spp. Therefore, the purpose of this study was to isolate and identify endophytic bacteria, extract and characterize their bioactive metabolites, and evaluate their antifungal, antiaflatoxigenic, and cytotoxic efficacy against brine shrimp (Artemia salina) and hepatocellular carcinoma (HepG2). Among the 36 bacterial strains isolated, ten bacterial isolates showed high antifungal activity, and thus were identified using biochemical parameters and MALDI-TOF MS. Bioactive metabolites were extracted from two bacterial isolates, and studied for their antifungal activity. The bioactive metabolites (No. 4, and 5) extracted from Bacillus cereus DSM 31T DSM, exhibited strong antifungal capabilities, and generated volatile organic compounds (VOCs) and polyphenols. The major VOCs were butanoic acid, 2-methyl, and 9,12-Octadecadienoic acid (Z,Z) in extracts No. 4, and 5 respectively. Cinnamic acid and 3,4-dihydroxybenzoic acid were the most abundant phenolic acids in extracts No. 4, and 5 respectively. These bioactive metabolites had antifungal efficiency against A. flavus and caused morphological alterations in fungal conidiophores and conidiospores. Data also indicated that both extracts No. 4, and 5 reduced AFB1 production by 99.98%. On assessing the toxicity of bioactive metabolites on A. salina the IC50 recorded 275 and 300 µg/mL, for extracts No. 4, and 5 respectively. Meanwhile, the effect of these extracts on HepG2 revealed that the IC50 of extract No. 5 recorded 79.4 µg/mL, whereas No. 4 showed no cytotoxic activity. It could be concluded that bioactive metabolites derived from Bacillus species showed antifungal and anti-aflatoxigenic activities, indicating their potential use in food safety.


Subject(s)
Antifungal Agents , Artemia , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Animals , Humans , Artemia/drug effects , Hep G2 Cells , Bacillus/metabolism , Aflatoxins/metabolism , Aflatoxins/toxicity , Secondary Metabolism , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Bacillus cereus/drug effects , Bacillus cereus/metabolism , Microbial Sensitivity Tests
8.
Harmful Algae ; 137: 102681, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39003025

ABSTRACT

In May-June 2019, the microalga Chrysochromulina leadbeateri caused a massive fish-killing event in several fjords in Northern Norway, resulting in the largest direct impact ever on aquaculture in northern Europe due to toxic algae. Motivated by the fact that no algal toxins have previously been described from C. leadbeateri, we set out to investigate the chemical nature and toxicity of secondary metabolites in extracts of two strains (UIO 393, UIO 394) isolated from the 2019 bloom, as well as one older strain (UIO 035) isolated during a bloom in Northern Norway in 1991. Initial LC-DAD-MS/MS-based molecular networking analysis of the crude MeOH extracts of the cultivated strains showed that their profiles of small organic molecules, including a large number of known lipids, were very similar, suggesting that the same class of toxin(s) were likely the causative agents of the two harmful algal bloom (HAB) events. Next, bioassay-guided fractionation using the RTgill-W1 cell line and metabolomics analysis pointed to a major compound affording [M + H]+ ions at m/z 1399.8333 as a possible toxin, corresponding to a compound with the formula C67H127ClO27. Moreover, our study unveiled a series of minor analogues exhibiting distinct patterns of chlorination and sulfation, together defining a new family of compounds, which we propose to name leadbeaterins. Remarkably, these suspected toxins were detected in situ in samples collected during the 2019 bloom close to Tromsø, thereby consistent with a role in fish kills. The elemental compositions of the putative C. leadbeateri ichthyotoxins strongly indicate them to be long linear polyhydroxylated polyketides, structurally similar to sterolysins reported from a number of dinoflagellates.


Subject(s)
Harmful Algal Bloom , Marine Toxins , Norway , Marine Toxins/toxicity , Marine Toxins/chemistry , Marine Toxins/analysis , Estuaries , Animals , Tandem Mass Spectrometry , Haptophyta/chemistry
9.
Plant Cell Environ ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965879

ABSTRACT

Thrips, Frankliniella intonsa, is a highly polyphagous pest with a worldwide distribution. F. intonsa-infested sunflower seeds show marked visual damage. The study findings revealed that significantly more F. intonsa infested confection sunflower compared to oilseed sunflower, via olfactometer bioassay studies, we found that compared with the flower and pollen of oilseed sunflowers, those of confection sunflowers attract F. intonsa. Considering this discrepancy in the preference of F. intonsa on oilseed and confection sunflowers, the volatiles of the flower and pollens of two sunflowers were analysed by gas chromatography-mass spectroscopy. The behavioural responses of F. intonsa were assessed for these compounds using Y-tube bioassays. Geranyl bromide, a unique volatile component of oilseed sunflowers, induced an assertive approach-avoidance behaviour in F. intonsa, whereas the unique component ethyl isovalerate in confection sunflowers attracted F. intonsa. F. intonsa adults demonstrated significant attraction to the blends of confection sunflowers. Furthermore, field verification revealed that intercropping confection and oilseed sunflowers could effectively control F. intonsa. The study provided insights into the chemical cues used by F. intonsa in locating hosts. Therefore, oilseed sunflowers can be used as repellent plants to prevent F. intonsa invasion.

10.
Pharm Stat ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978387

ABSTRACT

During the drug development process, testing potency plays an important role in the quality assessment required for the manufacturing and marketing of biologics. Due to multiple operational and biological factors, higher variability is usually observed in bioassays compared with physicochemical methods. In this paper, we discuss different sources of bioassay variability and how this variability can be statistically estimated. In addition, we propose an algorithm to estimate the variability of reportable results associated with different numbers of runs and their corresponding OOS rates under a given specification. Numerical experiments are conducted on multiple assay formats to elucidate the empirical distribution of bioassay variability.

11.
Mar Environ Res ; 199: 106630, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38964247

ABSTRACT

Harmful algal blooms (HABs) of Alexandrium pacificum have affected the Marlborough Sounds in New Zealand since 2010, posing a threat to green-lipped mussel (GLM, Perna canaliculus) farming. Previous studies have shown A. pacificum has negative effects GLM embryos and larvae. To further investigate these toxic mechanisms, in vitro bioassays were conducted on GLM spermatozoa, hemocytes, and the diatom, Chaetoceros muelleri. The three cell types were exposed to several treatments of A. pacificum for 2 h and responses were measured using flow cytometry and pulse amplitude-modulated fluorometry. Significant spermatozoa mortality was recorded in treatments containing A. pacificum cells or fragments, while hemocyte and C. muelleri mortality was recorded in cell-free treatments of A. pacificum which contained paralytic shellfish toxins (PSTs). Variation in sensitivity between cell types as well as the sublethal effects observed, emphasise the diverse toxic mechanisms of A. pacificum on co-occurring species in the environment.


Subject(s)
Diatoms , Dinoflagellida , Hemocytes , Spermatozoa , Animals , Dinoflagellida/physiology , Diatoms/physiology , Diatoms/drug effects , Hemocytes/drug effects , Male , Spermatozoa/drug effects , Spermatozoa/physiology , Perna/physiology , Perna/drug effects , Harmful Algal Bloom , New Zealand , Marine Toxins/toxicity
12.
Micromachines (Basel) ; 15(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39064404

ABSTRACT

With the rapid development of biotechnology, the importance of microfluidic bioseparation and bioassay in biomedicine, clinical diagnosis, and other fields has become increasingly prominent. Microfluidic technology, with its significant advantages of high throughput, automated operation, and low sample consumption, has brought new breakthroughs in the field of biological separation and bioassay. In this paper, the latest research progress in microfluidic technology in the field of bioseparation and bioassay is reviewed. Then, we focus on the methods of bioseparation including active separation, passive separation, and hybrid separation. At the same time, the latest research results of our group in particle separation are introduced. Finally, some application examples or methods for bioassay after particle separation are listed, and the current challenges and future prospects of bioseparation and bioassay are discussed.

13.
Int J Biol Macromol ; 277(Pt 1): 134075, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39043285

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant bacterium that causes a wide range of illnesses, necessitating the development of new technologies for its detection. Herein, we propose a graphene oxide (GO)-based sensing platform for the detection of mecA gene in MRSA using flap endonuclease 1 (FEN1)-assisted target recycling and Klenow fragment (KF)-triggered signal amplification. Without the target, all the DNA probes were adsorbed onto GO, resulting in fluorescence quenching of the dye. Upon the addition of the target, a triple complex was formed that triggered FEN1-assisted target recycling and initiated two polymerization reactions with the assistance of KF polymerase, generating numerous dsDNA that were repelled by GO. These dsDNAs triggered fluorescence enhancement when SYBR Green I was added. Therefore, the target DNA was quantified by measuring the fluorescence at excitation and emission wavelengths of 480/526 nm. This mecA gene assay showed a good linear range from 1 to 50 nM with a lower limit of detection of 0.26 nM, and displayed good applicability to the analysis of real samples. Thus, a new method for monitoring MRSA has been developed that has great potential for early clinical diagnosis and treatment.

14.
Int J Biol Macromol ; 276(Pt 2): 133970, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029816

ABSTRACT

Chitinase plays a vital role in the virulence of entomopathogenic fungi (EPF) when it infects host insects. We used gene recombination technology to express chitinase of three strains of Lecanicillium lecanii: Vl6063, V3450, and Vp28. The ORF of ChitVl6063, ChitV3450 and ChitVp28 were inserted into the fungal expression vector pBARGPE-1, which contained strong promoter and terminator, respectively, to construct a chitinase overpressing plasmid, then transformed the wild-type strain with blastospore transformation method. The virulence of the three recombinant strains against Toxoptera aurantii was improved by overproduction of ChitVl6063, ChitV3450, and ChitVp28, as demonstrated by significantly lower 3.43 %, 1.72 %, and 1.23 % fatal doses, respectively, according to an insect bioassay. Similarly, lethal times of recombinants (ChitVl6063, ChitV3450 and ChitVp28) were also decreased up to 29.51 %, 30.46 % and 33.90 %, respectively, compared to the wild-type strains. Improving the expression of chitinase is considered as an effective method for the enhancement of the EPF value. The efficacy could be enhanced using recombinant technology, which provides a prospecting view for future insecticidal applications.

15.
Carcinogenesis ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046922

ABSTRACT

Welding fumes are a Group 1 (carcinogenic to humans) carcinogen as classified by the International Agency for Research on Cancer. The process of welding creates inhalable fumes rich in iron (Fe) that may also contain known carcinogenic metals such as chromium (Cr) and nickel (Ni). Epidemiological evidence has shown that both mild-steel (Fe-rich) and stainless steel (Fe-rich + Cr + Ni) welding fume exposure increase lung cancer risk, and experimental animal data support these findings. Copper-nickel (CuNi) welding processes have not been investigated in the context of lung cancer. Cu is intriguing, however, given the role of Cu in carcinogenesis and cancer therapeutics. This study examines the potential for a CuNi fume to induce mechanistic key characteristics of carcinogenesis in vitro and to promote lung tumorigenesis, using a two-stage mouse bioassay, in vivo. Male A/J mice, initiated with 3-methylcholanthrene (MCA; 10 µg/g), were exposed to CuNi fumes or air by whole-body inhalation for nine weeks (low-deposition-LD and high deposition-HD) then sacrificed at 30 weeks. In BEAS-2B cells, the CuNi fume induced micronuclei and caused DNA damage as measured by γ-H2AX. The fume exhibited high reactivity and a dose response in cytotoxicity and oxidative stress. In vivo, MCA/CuNi HD and LD significantly decreased lung tumor size and adenomas. MCA/CuNi HD exposure significantly decreased gross-evaluated tumor number. In summary, the CuNi fume in vitro exhibited characteristics of a carcinogen, but in vivo the exposure resulted in smaller tumors, fewer adenomas, less hyperplasia severity, and with the HD exposure, less overall lung lesion/tumors.

16.
Harm Reduct J ; 21(1): 127, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951904

ABSTRACT

BACKGROUND: Since late 2019, fortification of 'regular' cannabis plant material with synthetic cannabinoid receptor agonists (SCRAs) has become a notable phenomenon on the drug market. As many SCRAs pose a higher health risk than genuine cannabis, recognizing SCRA-adulterated cannabis is important from a harm reduction perspective. However, this is not always an easy task as adulterated cannabis may only be distinguished from genuine cannabis by dedicated, often expensive and time-consuming analytical techniques. In addition, the dynamic nature of the SCRA market renders identification of fortified samples a challenging task. Therefore, we established and applied an in vitro cannabinoid receptor 1 (CB1) activity-based procedure to screen plant material for the presence of SCRAs. METHODS: The assay principle relies on the functional complementation of a split-nanoluciferase following recruitment of ß-arrestin 2 to activated CB1. A straightforward sample preparation, encompassing methanolic extraction and dilution, was optimized for plant matrices, including cannabis, spiked with 5 µg/mg of the SCRA CP55,940. RESULTS: The bioassay successfully detected all samples of a set (n = 24) of analytically confirmed authentic Spice products, additionally providing relevant information on the 'strength' of a preparation and whether different samples may have originated from separate batches or possibly the same production batch. Finally, the methodology was applied to assess the occurrence of SCRA adulteration in a large set (n = 252) of herbal materials collected at an international dance festival. This did not reveal any positives, i.e. there were no samples that yielded a relevant CB1 activation. CONCLUSION: In summary, we established SCRA screening of herbal materials as a new application for the activity-based CB1 bioassay. The simplicity of the sample preparation, the rapid results and the universal character of the bioassay render it an effective and future-proof tool for evaluating herbal materials for the presence of SCRAs, which is relevant in the context of harm reduction.


Subject(s)
Cannabinoid Receptor Agonists , Cannabis , Cannabis/chemistry , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Humans , Drug Contamination , Biological Assay , Cannabinoids/analysis
17.
Front Oncol ; 14: 1394584, 2024.
Article in English | MEDLINE | ID: mdl-38868530

ABSTRACT

Cancer arises from multiple genetic errors occurring in a single stem cell (clonality). Every time DNA replicates, mistakes occur. Thus, agents can increase the risk of cancer either by directly damaging DNA (DNA-reactive carcinogens) or increasing the number of DNA replications (increased cell proliferation). Increased cell proliferation can be achieved either by direct mitogenesis or cytotoxicity with regenerative proliferation. Human carcinogens have a mode of action of DNA reactivity, immunomodulation (mostly immunosuppression), increased estrogenic activity (mitogenesis), or cytotoxicity and regeneration. By focusing on screening for these four effects utilizing in silico, in vitro, and short-term in vivo assays, a biologically based screening for human chemical carcinogens can be accomplished with greater predictivity than the traditional 2-year bioassay with considerably less cost, less time, and the use of fewer animals.

18.
Arch Toxicol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877156

ABSTRACT

2-Benzylbenzimidazole 'nitazene' opioids are presenting a growing threat to public health. Although various nitazenes were previously studied, systematic comparisons of the effects of different structural modifications to the 2-benzylbenzimidazole core structure on µ-opioid receptor (MOR) activity are limited. Here, we assessed in vitro structure-activity relationships of 9 previously uncharacterized nitazenes alongside known structural analogues. Specifically, we focused on MOR activation by 'ring' substituted analogues (i.e., N-pyrrolidino and N-piperidinyl modifications), 'desnitazene' analogues (lacking the 5-nitro group), and N-desethyl analogues. The results from two in vitro MOR activation assays (ß-arrestin 2 recruitment and inhibition of cAMP accumulation) showed that 'ring' modifications overall yield highly active drugs. With the exception of 4'-OH analogues (which are metabolites), N-pyrrolidino substitutions were generally more favorable for MOR activation than N-piperidine substitutions. Furthermore, removal of the 5-nitro group on the benzimidazole ring consistently caused a pronounced decrease in potency. The N-desethyl modifications showed important MOR activity, and generally resulted in a slightly lowered potency than comparator nitazenes. Intriguingly, N-desethyl isotonitazene was the exception and was consistently more potent than isotonitazene. Complementing the in vitro findings and demonstrating the high harm potential associated with many of these compounds, we describe 85 forensic cases from North America and the United Kingdom involving etodesnitazene, N-desethyl etonitazene, N-desethyl isotonitazene, N-pyrrolidino metonitazene, and N-pyrrolidino protonitazene. The low-to-sub ng/mL blood concentrations observed in most cases underscore the drugs' high potencies. Taken together, by bridging pharmacology and case data, this study may aid to increase awareness and guide legislative and public health efforts.

19.
Pest Manag Sci ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847522

ABSTRACT

BACKGROUND: Flystrike, primarily caused by Lucilia cuprina, is a major health and welfare issue for sheep wool industries. Current chemical-based controls can have limited effectiveness due to the emergence of resistance in the parasite. RNA interference (RNAi), which uses double-stranded RNA (dsRNA) as a trigger molecule, has been successfully investigated for the development of innovative pest control strategies. Although RNAi offers great potential, the efficient identification, selection of target genes and delivery of dsRNA represent challenges to be overcome for the successful application of RNAi for control of L. cuprina. RESULTS: A primary L. cuprina (blowfly) embryo cell line (BFEC) was established and confirmed as being derived from L. cuprina eggs by PCR and amplicon sequencing. The BFECs were successfully transfected with plasmids and messenger RNA (mRNA) expressing fluorescent reporter proteins and dsRNA using lipid-based transfection reagents. The transfection of dsRNA into BEFC in this study suggested decreased mRNA levels of target gene expression, which suggested RNAi-mediated knockdown. Three of the dsRNAs identified in this study resulted in reductions of in target gene mRNA levels in BFEC and loss of biological fitness by L. cuprina larvae in a feeding bioassay. CONCLUSION: This study confirms that the novel BFEC cell line can be used to improve the efficacy of dsRNA-mediated screening to accelerate the identification of potential target genes in the development of RNAi mediated control approaches for L. cuprina. The research models established in this study are encouraging with respect to the use of RNAi as a blowfly control method, however further improvement and validation are required for field applicationsnot prefect, and could be ongoing developing. © 2024 Society of Chemical Industry.

20.
Chemosphere ; 362: 142601, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880263

ABSTRACT

In response to the need for the diversification of regulatory bioassays to screen estrogen-like endocrine disrupting chemical (EEDC) in the environment, we propose the use of a reporter gene assay involving all nuclear estrogen receptors from Dicentrarchus labrax (i.e., sbEsr1, sbEsr2a, or sbEsr2b). Named DLES test (D. labrax estrogen screen), it aims at complementing existing standardized in vitro tests by implementing more estrogen receptors notably those that do not originate from humans. Positive responses were obtained with all three estrogen receptors, and-consistently with observations from other species-variations in sensitivity to E2 were measured. Sensitivity and EC50 values could be classified as follows: sbEsr2b < sbEsr2a < sbEsr1. The pharmacological characterization with a human estrogen receptor antagonist (fulvestrant) successfully validated the specific involvement of each sbEsr and evidenced the capacity of the DLES test to highlight antagonist interactions. The DLES test was applied to WWTP contaminant extracts. A positive response was detected in the inflow sample in accordance with the YES test, but not in the outflow sample. Notwithstanding, the DLES test (sbEsr2b) exhibited greater sensitivity for the screening of those samples. This study demonstrates the need for more comprehensive testing including representatives of marine species for a better detection of EEDCs. The DLES test appears as a pertinent tool to predict adverse effects and to widen the scope of screening and hazard assessment of EEDCs in the environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...