Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.000
Filter
1.
J Environ Sci (China) ; 148: 174-187, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095155

ABSTRACT

Cost-effective CO2 adsorbents are gaining increasing attention as viable solutions for mitigating climate change. In this study, composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate (CuBTC). Among the different composites synthesized, the ratio of 1:1 between biochar and CuBTC (B 1:1) demonstrated the highest CO2 adsorption capacity. Under controlled laboratory conditions (0°C, 1 bar, without the influence of ambient moisture or CO2 diffusion limitations), B 1:1 achieved a CO2 adsorption capacity of 9.8 mmol/g, while under industrial-like conditions (25°C, 1 bar, taking into account the impact of ambient moisture and CO2 diffusion limitations within a bed of adsorbent), it reached 6.2 mmol/g. These values surpassed those reported for various advanced CO2 adsorbents investigated in previous studies. The superior performance of the B 1:1 composite can be attributed to the optimization of the number of active sites, porosity, and the preservation of the full physical and chemical surface properties of both parent materials. Furthermore, the composite exhibited a notable CO2/N2 selectivity and improved stability under moisture conditions. These favorable characteristics make B 1:1 a promising candidate for industrial applications.


Subject(s)
Carbon Dioxide , Metal-Organic Frameworks , Carbon Dioxide/chemistry , Adsorption , Metal-Organic Frameworks/chemistry , Air Pollutants/chemistry , Charcoal/chemistry
2.
J Environ Sci (China) ; 147: 1-10, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003031

ABSTRACT

Dibromoethane is a widespread, persistent organic pollutant. Biochars are known mediators of reductive dehalogenation by layered FeII-FeIII hydroxides (green rust), which can reduce 1,2-dibromoethane to innocuous bromide and ethylene. However, the critical characteristics that determine mediator functionality are lesser known. Fifteen biochar substrates were pyrolyzed at 600 °C and 800 °C, characterized by elemental analysis, X-ray photo spectrometry C and N surface speciation, X-ray powder diffraction, specific surface area analysis, and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions. A statistical analysis was performed to determine the biochar properties, critical for debromination kinetics and total debromination extent. It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane, that the highest first order rate constant was 0.082/hr, and the highest debromination extent was 27% in reactivity experiments with 0.1 µmol (20 µmol/L) 1,2-dibromoethane, ≈ 22 mmol/L FeIIGR, and 0.12 g/L soybean meal biochar (7 days). Contents of Ni, Zn, N, and P, and the relative contribution of quinone surface functional groups were significantly (p < 0.05) positively correlated with 1,2-dibromoethane debromination, while adsorption, specific surface area, and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.


Subject(s)
Charcoal , Charcoal/chemistry , Halogenation , Oxidation-Reduction , Ethylene Dibromide/chemistry , Models, Chemical
3.
J Environ Sci (China) ; 147: 165-178, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003037

ABSTRACT

In this study, two wheat-derived cadmium (Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions. Then, the impacts of the biochar (BC), M14+R27 (MR), and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing, heading, and mature stages of wheat plants under field-plot conditions. A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with the M14 or R27 treatment. The BC+MR treatment reduced the grain Cd content by 51.5%-67.7% and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75% in the rhizosphere soils compared with the BC or MR treatment. Compared with the BC or MR treatment, the relative abundances of the biomarkers associated with Gemmatimonas, Altererythrobacter, Gammaproteobacteria, Xanthomonadaceae, Phenylobacterium, and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents. In the BC+MR-treated root interior microbiome, the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor, while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor. Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes, leading to decreased wheat grain Cd uptake in the contaminated soil.


Subject(s)
Cadmium , Charcoal , Soil Microbiology , Soil Pollutants , Triticum , Triticum/metabolism , Triticum/microbiology , Cadmium/metabolism , Soil Pollutants/metabolism , Endophytes/physiology , Rhizosphere , Soil/chemistry , Biodegradation, Environmental , Microbiota/drug effects
4.
J Environ Sci (China) ; 147: 259-267, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003045

ABSTRACT

Arsenic (As) pollution in soils is a pervasive environmental issue. Biochar immobilization offers a promising solution for addressing soil As contamination. The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar. However, the influence of a specific property on As immobilization varies among different studies, and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge. To enhance immobilization efficiency and reduce labor and time costs, a machine learning (ML) model was employed to predict As immobilization efficiency before biochar application. In this study, we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models. The results demonstrated that the random forest (RF) model outperformed gradient boost regression tree and support vector regression models in predictive performance. Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization. These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils. Furthermore, the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization. These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.


Subject(s)
Arsenic , Charcoal , Machine Learning , Soil Pollutants , Soil , Charcoal/chemistry , Arsenic/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Soil/chemistry , Models, Chemical
5.
J Environ Sci (China) ; 147: 474-486, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003063

ABSTRACT

Nano zero-valent iron (nZVI) is widely used in soil remediation due to its high reactivity. However, the easy agglomeration, poor antioxidant ability and passivation layer of Fe-Cr coprecipitates of nZVI have limited its application scale in Cr-contaminated soil remediation, especially in high concentration of Cr-contaminated soil. Herein, we found that the carboxymethyl cellulose on nZVI particles could increase the zeta potential value of soil and change the phase of nZVI. Along with the presence of biochar, 97.0% and 96.6% Cr immobilization efficiency through CMC-nZVI/BC were respectively achieved in high and low concentrations of Cr-contaminated soils after 90-days remediation. In addition, the immobilization efficiency of Cr(VI) only decreased by 5.1% through CMC-nZVI/BC treatment after 10 weeks aging in air, attributing to the strong antioxidation ability. As for the surrounding Cr-contaminated groundwater, the Cr(VI) removal capacity of CMC-nZVI/BC was evaluated under different reaction conditions through column experiments and COMSOL Multiphysics. CMC-nZVI/BC could efficiently remove 85% of Cr(VI) in about 400 hr when the initial Cr(VI) concentration was 40 mg/L and the flow rate was 0.5 mL/min. This study demonstrates that uniformly dispersed CMC-nZVI/BC has an excellent remediation effect on different concentrations of Cr-contaminated soils.


Subject(s)
Carboxymethylcellulose Sodium , Charcoal , Chromium , Environmental Restoration and Remediation , Iron , Soil Pollutants , Soil Pollutants/chemistry , Charcoal/chemistry , Environmental Restoration and Remediation/methods , Iron/chemistry , Chromium/chemistry , Carboxymethylcellulose Sodium/chemistry , Soil/chemistry , Metal Nanoparticles/chemistry
6.
J Environ Sci (China) ; 147: 630-641, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003078

ABSTRACT

Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.


Subject(s)
Arsenic , Cadmium , Charcoal , Magnesium , Oryza , Soil Pollutants , Soil , Oryza/chemistry , Cadmium/analysis , Cadmium/chemistry , Charcoal/chemistry , Soil Pollutants/analysis , Arsenic/analysis , Soil/chemistry , Magnesium/chemistry , Iron/chemistry , Environmental Restoration and Remediation/methods
7.
Front Microbiol ; 15: 1470930, 2024.
Article in English | MEDLINE | ID: mdl-39360319

ABSTRACT

Introduction: Humus can be formed during composting through biological pathways, nonetheless, the mechanisms through which bacterial and fungal communities govern the development of humus in compost with the addition of biochar remain uncertain. Methods: In this study, compost with cow dung and maize stover as feedstock was employed as a control group, and compost with 10% biochar added on top of the feedstock was adopted as a treatment group to investigate the effect of bacterial and fungal communities on humus formation during biochar composting. Results and Discussion: The results demonstrated that the humic acid content increased by 24.82 and 25.10% at the cooling and maturation stages, respectively, after adding biochar. Besides, the degree of polymerization content in the maturation stage was elevated by 90.98%, which accelerated the humification process of the compost. During the thermophilic and maturity stages, there was a respective increase of 51.34 and 31.40% in reducing sugar content, suggesting that the inclusion of biochar could furnish ample reducing sugar substrate for the Maillard reaction. The addition of biochar reduced the number of humus precursor-associated genera by 35, increased the number of genera involved in humus synthesis by two, and enhanced the stability of the cross-domain network between bacteria and fungi, which confirms that microorganisms contribute to the humification process by decreasing humus precursor consumption as well as increasing humus synthesis with the addition of biochar. Additionally, adding biochar could enhance the humification capacity of the compost pile by dominating the Maillard reaction with reducing sugars as the substrate and strengthening the function of humus synthesis-associated genera. This study enhances our comprehension of the regulatory pathways of biochar in the humification process during composting.

8.
Article in English | MEDLINE | ID: mdl-39379656

ABSTRACT

In this study, Zn-Al-SO42- LDH-functionalized biochar was fabricated using the co-precipitation method. The biochar was synthesized from waste cow dung using a low-temperature pyrolysis process (300 °C). The materials were fully characterized by TGA, FTIR, EDS, SEM, and XRD analysis. Then, a comparative study was performed to investigate the adsorption capacity of the materials against an anionic dye (i.e., methyl orange (MO)). The LDH-functionalized biochar demonstrated high adsorption capacity (400 mg/g in 120 min, at pH 5) compared to the raw biochar (212 mg/g in 120 min, at pH 5). The effect of various adsorption parameters (e.g., pH of the dye solution, temperature, initial concentration, adsorbent dosage, and contact time) was investigated. The adsorption of MO on LDH-functionalized biochar followed the Freundlich isotherm and pseudo-second-order kinetics, while the raw biochar followed the Langmuir isotherm and pseudo-second-order kinetics. The thermodynamic data indicated the endothermic nature of adsorption and an increase in the degree of randomness during adsorption. The enhanced adsorption capacity of the Zn-Al LDH-functionalized char was attributed to the synergistic effect of the surface adsorption into the porous biochar matrix, interlayer adsorption, and ion exchange capacity of the LDHs. Therefore, modification of waste cow dung-derived biochar with Zn-Al LDH can be a promising approach to fabricate a highly efficient adsorbent for toxic dyes from wastewater.

9.
Article in English | MEDLINE | ID: mdl-39352640

ABSTRACT

This study investigates the adsorption mechanisms of pine bark biochar (BC) and modified pine bark biochar (MBC) in the removal of polyvinyl chloride (PVC) microplastics from aqueous solutions, with a significant focus on resource recovery from pine residues which is one of the key Himalayan Forest byproducts. The research findings highlighted the optimal adsorption capacity of biochar at 131.5 mg/g achieved after 6 h of contact time, with a pH of 10 and a PVC microplastic concentration of 200 mg/L. The primary mechanisms of PVC microplastic adsorption involved ion exchange and physical adsorption, driven by forces such as Vander-Waals, London forces, and electrostatic forces. Thermodynamic analysis showed the exothermic nature of the PVC and BC/MBC interaction, with spontaneous adsorption occurring within the temperature range of 10 to 40 °C. Isotherm and kinetic models fit well with Temkin model and PSO kinetics, as indicated by R2 values exceeding 0.9. Particularly, MBC exhibited superior removal efficiency and adsorption capacity compared to its precursor, reaching an optimum adsorption capacity of 156.08 mg/g with a removal efficiency of 78%, surpassing the performance of BC. This research contributes valuable insights into potential applications of BC for PVC removal and underscores the effectiveness of MBC in achieving enhanced adsorption outcomes.

10.
J Environ Manage ; 370: 122801, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383751

ABSTRACT

Regulating the coupled relationship among water, nitrogen, and biochar is an effective strategy for increasing production and reducing emissions in greenhouse agriculture. However, a comprehensive evaluation model remains lacking. Toward this end, we aimed to evaluate the emission patterns of greenhouse gases and greenhouse tomato yield during the spring and autumn cultivation seasons as influenced by irrigation water use efficiency, nitrogen fertilizer partial productivity, and soil organic carbon (SOC). We applied three irrigation levels: 100% (W1), 80% (W2), and 60% (W3) of the reference crop evapotranspiration; three nitrogen application levels: 240, 192, and 144 kg ha-1, representing 100% (N1), 80% (N2), and 60% (N3) of the actual local application amount; and four biochar application gradients: B0, B1, B2, and B3 corresponding to 0, 30, 50, and 70 t ha-1, respectively. Interaction experiments were conducted based on the implementation the incomplete multifactorial design, using W1N1B0 as the control. The entropy weight method was used to calculate the main and sub-weights of the evaluation indicators. During the growing season, greenhouse gas emissions have a significant impact. The cumulative emissions of CO2, N2O, and CH4 from soil in spring are 24.4%, 42.18%, and 13.9% higher than those in autumn, respectively. Soil temperature was a key environmental factor influencing soil CO2 emissions, while soil moisture content and nitrogen fertilizer input efficiency were the main factors affecting soil N2O emissions, and the correlation between soil CH4 emissions and soil organic carbon content was most significant. Water-nitrogen-biochar interaction significantly affected yield and GHGI: adding biochar under the same water-nitrogen- and moderately deficient irrigation(W1) under the same nitrogen-biochar application modes increased yield and reduced GHGI. However, moderately reduced nitrogen application decreased(N2) both measures under the same water-biochar application mode. The VIKOR comprehensive evaluation method determined W2N2B2 as the most suitable water-nitrogen-biochar application mode for optimizing yield and GHGI. This study provides a theoretical basis for stable, low-carbon development in green-intensive agriculture.

11.
J Environ Manage ; 370: 122757, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383753

ABSTRACT

The modified walnut shell biochar (WBC) was prepared through zinc-iron bimetallic oxide modification (ZF@WBC) at 600 °C under oxygen-limited conditions in this study. Through adsorption experiments, characterization analyses, and density functional theory (DFT) calculations, the adsorption properties of ZF@WBC to Pb (II) were investigated and the mechanism underlying such adsorption was elucidated. Characterization results showed that the surface area (375.9709 m2/g) and total pore volume (0.205319 cm3/g) of ZF@WBC were significantly greater than those of walnut shell biochar. The maximum adsorption capacity of ZF@WBC for Pb (II) was found to be 104.26 mg/g, which is 2.57 times higher than that of WBC according to the adsorption experiments conducted. The observed adsorption behavior followed both the pseudo-second-order (PSO) kinetic model and Langmuir isothermal adsorption model, suggesting that chemisorption plays a major role in the absorption process. Based on SEM, XRD, XPS, FTIR characterizations along with DFT calculations performed in this study, it can be concluded that surface complexation, ion exchange, electrostatic attraction, physical absorption are among the main mechanisms responsible for absorption of Pb (II) by ZF@WBC. Furthermore, even in the presence of interfering ions at different concentrations, ZF@WBC exhibited a removal rate above 70% for Pb (II). Therefore, ZF@WBC has great potential as an effective absorbent for removing Pb (II) from wastewater, while also offering opportunities for biomass waste resource utilization.

12.
J Environ Manage ; 370: 122764, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383747

ABSTRACT

Agricultural soil contamination by potentially toxic elements (PTEs) such as arsenic (As) and cadmium (Cd) poses a serious threat to food security. Immobilization serves as a widely used approach for the remediation of PTEs contaminated soils, nevertheless, the long-term effectiveness for the simultaneous immobilization of both cations and oxyanions remains a challenge. In order to effectively enhance the synergistic immobilization effect of soil As and Cd contaminated by multiple elements and improve the ecological environment of farmland. In this study, a typical polluted tailings area farmland was selected for situ immobilization experiments, and biochar was prepared from cow manure (CMB), rice straw (RSB), and pine wood (PWB) as raw materials. On this basis, the pristine biochar was modified with ferric chloride (F), potassium permanganate (K), magnesium chloride (M), and aluminum chloride (A), respectively. Furthermore, the immobilization effect of modified biochar on As-Cd and the stress effect on soil respiration were investigated. The results showed that CMB and RSB reduced the bioavailability of heavy metals, potassium permanganate has strong oxidizing properties, and the strong oxidability of potassium permanganate stimulated the generation of more oxygen-containing functional groups on the surface of biochar, thereby enhancing the adsorption and complexation effect of modified materials on As and Cd. Among them, the extracted Cd concentration of Diethylenetriamine pentaacetic acid (DTPA) in KCMB and KRSB in 2020 decreased by 8.23-43.12% and 9.67-35.29% compared to other treatments, respectively. Meanwhile, the KCMB and KRSB treatments also reduced the enrichment of As and Cd in plant tissues. In addition, the dissolved organic carbon (DOC) content in KCMB treatment was relatively high, and the carbon stability of the material was weakened. Simultaneously, the soil respiration emission of KCMB treatment was increased by 5.63% and 11.93% compared to KRSB and KPWB treatments, respectively. In addition, the structural equation also shows that DOC has a large positive effect on soil respiration. In summary, the KRSB treatment effectively achieve synergistic immobilization of As-Cd and provide important guiding significance for green and low-carbon remediation of polluted farmland.

13.
Sci Total Environ ; : 176708, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39383956

ABSTRACT

The unclear turnover of soluble and solid phases of biochar during increasingly severe climate change (e.g., intensive rainfall) raised questions about the carbon stability of biochar in soil. Here, we present an in-depth analysis of the molecular-level transformations occurring in both the soluble and solid phases of biochar subjected to prolonged wet-dry cycles with simulated rainwater. Biochar properties, including surface functionality and carbon texture, greatly affected the transformation route and led to a distinct stability variation. The rich alkyl -CH3 on the low-temperature biochar (450 °C) was oxidized to hydroxymethyl -CH2OH or formyl -CHO, and the ester -COOC- or peptide -CONHC- bonds were fragmented in the meantime, causing the release of protein- or lipid-like organic carbon and the declined carbon stability (Æ, tested by H2O2 oxidation, from 60.1 % to 53.2 %). After a high-temperature (750 °C) pyrolysis process, only oxidation of the surface -OH with limited bond breaking occurred after rainwater elution, presenting a marginal composition difference with constant stability. However, the fragile carbon nature of biochar, caused by CO2 activation, led to enhanced fragmentation, oxidation, and hydration, resulting in the release of tannin-like organic carbon, which compromises the carbon storage (Æ decreased from 81.2 % to 73.0 %). Our findings evaluated the critical transformation of biochar during intensive rainfall, offering crucial insights for designing sustainable biochar and achieving carbon neutrality.

14.
Article in English | MEDLINE | ID: mdl-39384671

ABSTRACT

Phosphorus (P) overloading in aquatic environments has long-been recognized as the leading cause of water quality deterioration, harmful algal bloom, and eutrophication. This study investigated P removal performance by five cost-effective carbonaceous materials (CMs) in flow-through packed column systems. These CMs include biochars pyrolyzed from feedstocks of Eucalyptus (E-biochar) and Douglas fir (D-biochar), commercial biochar (C-biochar), iron oxide-coated biochar (Fe-biochar), and commercial activated carbon (AC). The physicochemical properties of CMs, such as specific surface area (SSA), pore volume, pore diameter, elemental composition, and surface charge, were characterized. The packed column experimental results showed that P removal performance followed the order: E-biochar < D-biochar < C-biochar < Fe-biochar < AC. Specifically, the sorption capacity of 1 mg/L of P in packed columns was 0.0036 mg P/g E-biochar, 0.0111 mg P/g D-biochar, 0.0369 mg P/g D-biochar, 0.077 mg P/g Fe-biochar, and 0.088 mg P/g AC, respectively. The largest SSA (1012 m2/g) and pore volume (0.57 cm3/g) of AC accounted for the most outstanding P removal efficiency mainly by physical sorption, while electrostatic interaction explained the high P removal by Fe-biochar (SSA as low as 32.4 m2/g). Our findings provide direct practical implications for effectively removing P in water by cost-effective CMs.

15.
Chem Asian J ; : e202400999, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385524

ABSTRACT

The sustainable development of energy has always been a concern. Upgrading biomass catalysis into hydrocarbon liquid fuels is one of the effective methods. In order to upgrade biomass derivative guaiacol by Hydrodeoxygenation (HDO) catalysis, this article report a three-dimensional honeycomb structure biochar loaded with Ni nanoparticles and phosphomolybdic acid demonstrating excellent catalytic performance in a short period of time. This is due to the porous structure of biochar, which allows Ni metal nanoparticles to be highly uniformly dispersed on the support, which enhances the catalytic hydrogenation of guaiacol in terms of both rate and efficiency. Furthermore, it was observed that the added phosphomolybdic acid dissolved within the temperature range of 78-90°C, functioning as a homogeneous catalyst in the process. This proves advantageous, as the phosphomolybdic acid becomes accessible at any location within the porous Ni/C catalyst. The detailed characterization data revealed that the carbon support prepared in this study has a high specific surface area of up to 1375.61 m2/g. Additionally, the phosphomolybdic acid exhibited rich acidity, with Brønsted and Lewis acid contents of 2.55 µmol/g and 21.45 µmol/g, respectively. Reaction data demonstrated that at 240°C for 180 minutes, 100% conversion and 97.9% cyclohexane selectivity were achieved.

16.
Heliyon ; 10(19): e38163, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39386777

ABSTRACT

In Ethiopia, common bean (Phaseolus vulgaris L.) productivity remains low because of low soil fertility. However, both plant production and soil fertility benefit from integrated application of fertilizers. Thus, this study investigates the effect of integrated application of inorganic, organic and biofertilizers on selected soil properties and yield components of common bean. A field experiment was conducted at three sites in southern Ethiopia, under two consecutive cropping season (2021 and 2022). The experiment was conducted using a randomized complete block design (RCBD) with three replications. The treatments included three levels of inorganic fertilizer (Triple Superphosphate, TSP), applied at 0, 42.5, and 85 kg TSP ha⁻1 for Kokate; 0, 29, and 58 kg TSP ha⁻1 for Hawassa; and 0, 35.5, and 71 kg TSP ha⁻1 for Alage, tailored to the specific conditions of each site. Additionally, the experiment incorporated three levels of organic inputs 0, 5 t biochar ha⁻1, and 5 t compost ha⁻1 as well as Rhizobium inoculation (HB-429) applied at 500 g ha⁻1. These treatments were designed to assess the combined effects of inorganic, organic and biofertilizers on soil health and crop performance. Results showed that the integrated application of inorganic, and organic fertilizers significantly (p ≤ 0.05) improved soil pH, soil organic carbon, and available P compared with the sole fertilizer application plots. Similarly, the integrated use of inorganic, organic and biofertilizers increased nodule numbers, seed weight, grain yield, and biomass yield. We also found that 23 and 24 % higher grain yield were achieved with integrated applications of TSP fertilizer with compost on Hawassa and Alage sites than sole inorganic fertilizer application. On the other hand, the integrated application of TSP fertilizer with biochar increased by 18 % grain yield on Kokate over the sole application of inorganic fertilizer. The highest economic benefit of 69,460 and 63,250 ETB was obtained from the integrated application of TSP fertilizer with compost at Hawassa and Alage sites, respectively. The highest economic benefit for the Kokate site was 53,583 ETB at TSP fertilizer with biochar application. Overall, the study confirms that site-specific integrated soil fertility management appears to be a prerequisite for sustainable and profitable common bean production over sole fertilizer application in southern Ethiopia.

17.
Article in English | MEDLINE | ID: mdl-39358659

ABSTRACT

This study presents the synthesis and evaluation of a magnetic chitosan-modified biochar (M-BC-CS) composite, developed from waste maize straw, for the efficient removal of copper ions (Cu2+) and methylene blue (MB) dye from aqueous solutions. The composite was characterized using advanced techniques such as SEM, BET, FTIR, XPS, and XRD, confirming its enhanced surface area, porosity, and magnetic properties. The study is aimed at investigating the optimal conditions for adsorption of Cu2+ and MB by M-BC-CS through analysis of the influence of diverse adsorbent dosages, pH levels, reaction times, and initial solution concentrations. The findings demonstrated that the equilibrium duration for the adsorption of Cu2+ and MB by M-BC-CS was 60 min, resulting in corresponding equilibrium adsorption quantities of 54.42 mg/g and 67.23 mg/g, respectively. To elucidate the adsorption mechanism, the present investigation applied the pseudo-second-order kinetic model and the Langmuir isotherm. The outcomes suggested that the adsorption process is attributable to single molecular layer chemisorption. XPS and FTIR analysis determined that ion exchange and electrostatic interactions are the predominant mechanisms responsible for the simultaneous adsorption of Cu2+ and MB, and a competitive relationship exists between these mechanisms. In addition, M-BC-CS exhibited exceptional magnetic separation performance, enabling effortless and effective separation when exposed to an external magnetic field. Furthermore, the results demonstrated that M-BC-CS has good reusability and high adsorption capacity also in real wastewater, thus emphasizing its potential as a promising adsorbent for the elimination of Cu2+ and MB from aqueous solutions.

18.
J Environ Manage ; 370: 122770, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39362155

ABSTRACT

Having unique structural characteristics of biochar contributes great potential in photocatalysis, the preparation process complexity is still a great challenge for biochar-based photocatalysts. Based on this, this study proposes a new, simple, efficient, and flexible approach to preparing biochar-based photocatalysts by perylene diimide (GPC/PDI). The results showed that the hybridization between GPC and PDI was achieved by π-π stacking, which was reduced with increasing pyrolysis temperature, increased first and then decreased with increasing PDI content, and improved with enhanced solvent polarity. When the pyrolysis temperature was 400 °C, the PDI addition was 0.05 mg, and the reaction solvent was water, the degradation of 200 mg/L rhodamine B (RhB) by GPC400/PDI0.5 was 94%, and the reaction rate constant was 10 and 4 times higher than GPC400 and PDI, which were also effective in simulating actual wastewater treatment. This was attributed to the efficient electron-hole separation and migration along the π-π stacking direction due to the hybridization of GPC and PDI, which in turn reacts to produce reactive oxygen species (1O2, •O2-, •OH), facilitating the photocatalytic degradation process.

19.
Front Plant Sci ; 15: 1387460, 2024.
Article in English | MEDLINE | ID: mdl-39372849

ABSTRACT

The absorption and transport of selenium (Se) in rice depend on the shared transport proteins and channels with other elements. However, the interactions between Se and other elements within the soil-rice system and their relationship with Se-enriched rice are still not well understood. Hence, we conducted pot experiments to investigate the transformation of Se forms in soil and the absorption and enrichment of Se in rice, which varied with other elements influenced by straw and straw biochar returning in Se-rich red paddy soil. Partial least squares path modeling (PLS-PM) analysis was carried out to reveal the interaction between Se and other elements and the crucial processes in Se enrichment in rice grains. The results showed that the incorporation of straw and straw biochar into the fields increased the content of soil-soluble Se (SOL-Se) but significantly decreased the content of iron-manganese oxide-bound Se (FMO-Se) and organic matter-bound Se (OM-Se). Moreover, the rise in the soil-bioavailable Se was mainly attributed to the activation of FMO-Se and OM-Se. Compared with the NPK treatment, the contents of Se in rice grain were increased by 69.22% and 38.09%, under straw and biochar returning, respectively. However, the contents of Se in the leaves decreased. Variation partitioning analysis (VPA) indicated that the migration of Se in rice plants was significantly influenced by differences in rice tissues and their interactions with other nutrients [nitrogen (N), phosphorus (P), potassium (K), and Se], explaining 51.5% and 35.3% of the variations in Se content in different rice parts, respectively. The PLS-PM analysis demonstrated that the absorption of Se by rice roots and its transportation from the leaves to grains were crucial processes affecting Se enrichment in rice. However, these processes were modulated by the interaction between soil properties and root nutrients (N, P, and Se) induced by straw and straw biochar incorporation. The present study provides further understanding of the main factors and key processes in regulating Se absorption and transformation in the soil-rice system to more efficiently utilize Se-rich paddy fields through agricultural management measures.

20.
Front Plant Sci ; 15: 1441649, 2024.
Article in English | MEDLINE | ID: mdl-39372859

ABSTRACT

The combination of biochar and nitrogen (N) fertilization in agricultural salt-affected soils is an effective strategy for amending the soil and promoting production. To investigate the effect of nitrogen reduction combined with biochar application on a soda saline soil and soybean growth in black soil areas, a pot experiment was set up with two biochar application levels, 0 (B0) and 4.5 t/hm2 (B1); two biochar application depths, 0-20 cm (H1) and 0-40 cm (H2); and two nitrogen application levels, conventional nitrogen application (N0) and nitrogen reduction of 15% (N1). The results showed that the application of biochar improved the saline soil status and significantly increased soybean yield under lower nitrogen application. Moreover, increasing the depth of biochar application enhanced the effectiveness of biochar in reducing saline soil barriers to crop growth, which promoted soybean growth. Increasing the depth of biochar application increased the K+ and Ca2+ contents, soil nitrogen content, N fertilizer agronomic efficiency, leaf total nitrogen, N use efficiency, AN, Tr, gs, SPAD, leaf water potential, water content and soybean yield and its components. However, the Na+ content, SAR, ESP, Na+/K+, Ci and water use efficiency decreased with increasing biochar depth. Among the treatments with low nitrogen input and biochar, B1H1N1 resulted in the greatest soil improvement in the 0-20 cm soil layer compared with B0N0; for example, K+ content increased by 61.87%, Na+ content decreased by 44.80%, SAR decreased by 46.68%, and nitrate nitrogen increased by 26.61%. However, in the 20-40 cm soil layer, B1H2N1 had the greatest effect on improving the soil physicochemical properties, K+ content increased by 62.54%, Na+ content decreased by 29.76%, SAR decreased by 32.85%, and nitrate nitrogen content increased by 30.77%. In addition, compared with B0N0, total leaf nitrogen increased in B1H2N1 by 25.07%, N use efficiency increased by 6.7%, N fertilizer agronomic efficiency increased by 32.79%, partial factor productivity of nitrogen increased by 28.37%, gs increased by 22.10%, leaf water potential increased by 27.33% and water content increased by 6.44%. In conclusion, B1H2N1 had the greatest effect on improving the condition of saline soil; it not only effectively regulated the distribution of salt in soda saline soil and provided a low-salt environment for crop growth but also activated deep soil resources. Therefore, among all treatments investigated in this study, B1H2N1 was considered most suitable for improving the condition of soda saline soil in black soil areas and enhancing the growth of soybean plants.

SELECTION OF CITATIONS
SEARCH DETAIL