Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 846
Filter
1.
Article in English | MEDLINE | ID: mdl-39365535

ABSTRACT

Microplastics (MP) pollution is a pressing concern in today's marine environments. MPs can significantly affect marine ecosystems by altering nutrient and pollutant dynamics. This review analyses the existing literature to investigate interactions between MPs and micronutrients/pollutants, specifically trace and toxic metals in marine environments. It explores the adsorption of metals onto MP surfaces, emphasizing kinetics, isotherms, and underlying mechanisms of the process. The review highlights the potential consequences of MPs on the biogeochemical cycles of trace and toxic metals, emphasizing disruptions that could result in metal toxicity, metal limitations, reduced bioavailability, and adverse effects on primary productivity in marine ecosystems. It further underscores the need for future research to unravel the wide-ranging implications of MPs on trace and toxic metal cycling in marine ecosystems and their broader environmental impacts.

2.
Isotopes Environ Health Stud ; : 1-26, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365695

ABSTRACT

Copper, a malleable and ductile transition metal, possesses two stable isotopes. These copper isotopic composition data have recently found diverse applications in various fields and disciplines. In geology, copper isotopes serve as tracers that aid in investigating ore formation processes and the mechanisms of copper deposits Likewise, it has emerged as a valuable tracer in polluted environments. In plant biology, copper acts as an essential micronutrient crucial for photosynthesis, respiration, and growth. Copper isotopes contribute to understanding how plants uptake and dispense copper from the soil within their tissues. Similarly, in animals, copper serves as an essential trace element, playing a vital role in growth, white blood cell function, and enzyme activity. In humans, copper acts as an antioxidant, neutralising harmful free radicals within the body. It also helps in maintaining the nervous and immune system. Furthermore, copper isotopes find medical applications, particularly in cancer diagnostics, neurodegenerative diseases, and targeted radiotherapy. However, excessive copper can have detrimental effects in humans such as it can cause liver damage, nausea, and abdominal pain, whilst in plants it can affect the growth of plants, photosynthesis, and membrane permeability. This review emphasises the significance of copper and its isotopes in geology, the environment, and human health.

3.
Ecol Appl ; : e3052, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392203

ABSTRACT

In the last 25 years, several degraded peatlands in eastern Canada have been restored toward their natural structure. Pools are common in natural peatlands and are important habitats for unique flora and fauna. Because of their ecological value, pools have been created in some restored peatland sites. Nevertheless, the biogeochemistry of created pools in a restoration context has seldom been studied. The objective of our study is to characterize the biogeochemistry of created pools from restored peatlands and compare them with natural pools along a chronosequence since their creation. We measured different biogeochemical variables (pH, concentrations of nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), dissolved organic matter (DOM), base cations-calcium (Ca), sodium (Na), magnesium (Mg), and potassium (K)-and dissolved gases-methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)-) in 61 pools distributed over seven peatlands in eastern Canada. The sites represent a range of conditions, from natural to restored peatlands with pools ranging from 3 to 22 years old. Created and natural pools had distinctive biogeochemistry, with created pools being generally less acidic (pH >5) and 2.5 times more concentrated in nutrients (N and P) than in natural pools. DOC, N, P, dissolved gases, and base cations concentrations were lower in natural pools than in created pools, and varied between created sites. The oldest created pools (age >17 years) tend to approach the biogeochemical characteristics of natural pools, indicating that created pools may, over time, provide habitats with similar conditions to natural pools. A return of created pools to a natural pool-like biogeochemistry could thus inform on the success of peatland restoration.

4.
Environ Sci Technol ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39390789

ABSTRACT

Plant roots and associated microbes release a diverse range of functionally distinct exudates into the surrounding rhizosphere with direct impacts on soil carbon storage, nutrient availability, and contaminant dynamics. Yet mechanistic linkages between root exudation and emergent biogeochemical processes remain challenging to measure nondestructively, in real soil, over time. Here we used a novel combination of in situ microsensors with high-resolution mass spectrometry to measure, nondestructively, changing exudation and associated biogeochemical dynamics along single growing plant roots (Avena sativa). We found that metabolite and dissolved organic carbon (DOC) concentrations as well as microbial growth, redox potential (EH), and pH dynamics vary significantly among bulk soil, root tip, and more mature root zones. Surprisingly, the significant spike of rhizosphere DOC upon root tip emergence did not significantly correlate with any biogeochemical parameters. However, the presence of sugars significantly correlated with declines in EH following the arrival of the root tip, likely due to enhanced microbial oxygen demand. Similarly, the presence of organic acids significantly correlated to declines in pH upon root tip emergence. Overall, our in situ measurements highlight how different exudates released along growing roots create functionally distinct soil microenvironments that evolve over time.

5.
Sci Total Environ ; : 176795, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39395488

ABSTRACT

Microplastics (MPs) are ubiquitous and constantly accumulating in the marine environment, especially sediments. Yet, it is not well clarified if and how their carbon backbone could interact with surrounding sediments, eventually impairing key benthic processes. We assessed the effects of a 'pulse' contamination event of MPs on sedimentary organic matter (OM) quantity, quality and extracellular enzymatic activities (EEAs), which are well established descriptors of benthic ecosystem functioning. Marine sediments were exposed for 30 days to environmentally relevant concentrations (~0.2 % in weight) of naturally weathered particles (size range 70-210 µm) of polyurethane, polyethylene, and a mixture of the most common polymers that are documented to accumulate in marine sediments. Despite the low concentration, contaminated sediments showed significantly different composition of OM, showing a decrease in lipid content and increase in protein. Moreover, we document a significant decrease (over 25 %) in quantity of biopolymeric C already after 15 days of exposure, compared to controls. Contaminated sediments showed lower C degradation rates (up to -40 %) and altered EEAs, with alkaline phosphatase being ~50 % enhanced and aminopeptidase being reduced over 35 % compared to control treatments. Overall, the effects generated by the mixture of polymers were smaller than those exerted by the same amount of a single polymer. Our results provide insights on how that MPs can significantly alter marine sedimentary biogeochemistry through altered benthic processes, that could cumulatively impair whole benthic trophic webs by enhancing the accumulation and possible longer-term storage of recalcitrant organic C in the seabed.

6.
iScience ; 27(9): 110599, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39220262

ABSTRACT

Although diverse microorganisms can remove ammonium and nitrate simultaneously, their metabolic mechanisms are not well understood. Paracoccus denitrificans R-1 showed the maximal NH4 + removal rate 9.94 mg L-1·h-1 and 2.91 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. Analysis of the nitrogen balance calculation and isotope tracing experiment indicated that NH4 + was consumed through assimilation. The maximal NO3 - removal rate of strain R-1 was 18.05 and 19.76 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. The stoichiometric consumption ratio of acetate to nitrate was 0.902 and NO3 - was reduced to N2 for strain R-1 through 15NO3 - isotopic tracing experiment, which indicated a respiratory process coupled with the oxidation of electron donors. Genomic analysis showed that strain R-1 contained genes for ammonium assimilation and denitrification, which effectively promoted each other. These findings provide insights into microbial nitrogen transformation and facilitate the simultaneous removal of NH4 + and NO3 - in a single reactor.

7.
Glob Chang Biol ; 30(9): e17492, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39248442

ABSTRACT

Microbial carbon use efficiency (CUE) is an important variable mediating microbial effects on soil organic carbon (SOC) since it summarizes how much carbon is used for microbial growth or is respired. Yet, the role of CUE in regulating SOC storage remains debated, with evidence for both positive and negative SOC-CUE relations. Here, we use a combination of measured data around the world and numerical simulations to explore SOC-CUE relations accounting for temperature (T) effects on CUE. Results reveal that the sign of the CUE-T relation controls the direction of the SOC-CUE relations. A negative CUE-T relation leads to a positive SOC-CUE relation and vice versa, highlighting that CUE-T patterns significantly affect how organic carbon is used by microbes and hence SOC-CUE relations. Numerical results also confirm the observed negative SOC-T relation, regardless of the CUE-T patterns, implying that temperature plays a more dominant role than CUE in controlling SOC storage. The SOC-CUE relation is usually negative when temperature effects are isolated, even though it can become positive when nonlinear microbial turnover is considered. These results indicate a dominant role of CUE-T patterns in controlling the SOC-CUE relation. Our findings help to better understand SOC and microbial responses to a warming climate.


Subject(s)
Carbon , Soil Microbiology , Soil , Temperature , Carbon/analysis , Carbon/metabolism , Soil/chemistry , Carbon Cycle , Models, Theoretical
8.
mSystems ; : e0076324, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230322

ABSTRACT

Aerobes require dioxygen (O2) to grow; anaerobes do not. However, nearly all microbes-aerobes, anaerobes, and facultative organisms alike-express enzymes whose substrates include O2, if only for detoxification. This presents a challenge when trying to assess which organisms are aerobic from genomic data alone. This challenge can be overcome by noting that O2 utilization has wide-ranging effects on microbes: aerobes typically have larger genomes encoding distinctive O2-utilizing enzymes, for example. These effects permit high-quality prediction of O2 utilization from annotated genome sequences, with several models displaying ≈80% accuracy on a ternary classification task for which blind guessing is only 33% accurate. Since genome annotation is compute-intensive and relies on many assumptions, we asked if annotation-free methods also perform well. We discovered that simple and efficient models based entirely on genomic sequence content-e.g., triplets of amino acids-perform as well as intensive annotation-based classifiers, enabling rapid processing of genomes. We further show that amino acid trimers are useful because they encode information about protein composition and phylogeny. To showcase the utility of rapid prediction, we estimated the prevalence of aerobes and anaerobes in diverse natural environments cataloged in the Earth Microbiome Project. Focusing on a well-studied O2 gradient in the Black Sea, we found quantitative correspondence between local chemistry (O2:sulfide concentration ratio) and the composition of microbial communities. We, therefore, suggest that statistical methods like ours might be used to estimate, or "sense," pivotal features of the chemical environment using DNA sequencing data.IMPORTANCEWe now have access to sequence data from a wide variety of natural environments. These data document a bewildering diversity of microbes, many known only from their genomes. Physiology-an organism's capacity to engage metabolically with its environment-may provide a more useful lens than taxonomy for understanding microbial communities. As an example of this broader principle, we developed algorithms that accurately predict microbial dioxygen utilization directly from genome sequences without annotating genes, e.g., by considering only the amino acids in protein sequences. Annotation-free algorithms enable rapid characterization of natural samples, highlighting quantitative correspondence between sequences and local O2 levels in a data set from the Black Sea. This example suggests that DNA sequencing might be repurposed as a multi-pronged chemical sensor, estimating concentrations of O2 and other key facets of complex natural settings.

9.
Nat Geosci ; 17(9): 866-873, 2024.
Article in English | MEDLINE | ID: mdl-39267694

ABSTRACT

Wildfire activity in Arctic and boreal regions is rapidly increasing, with severe consequences for climate and human health. Regional long-term variations in fire frequency and intensity characterize fire regimes. The spatial variability in Arctic-boreal fire regimes and their environmental and anthropogenic drivers, however, remain poorly understood. Here we present a fire tracking system to map the sub-daily evolution of all circumpolar Arctic-boreal fires between 2012 and 2023 using 375 m Visible Infrared Imaging Radiometer Suite active fire detections and the resulting dataset of the ignition time, location, size, duration, spread and intensity of individual fires. We use this dataset to classify the Arctic-boreal biomes into seven distinct 'pyroregions' with unique climatic and geographic environments. We find that these pyroregions exhibit varying responses to environmental drivers, with boreal North America, eastern Siberia and northern tundra regions showing the highest sensitivity to climate and lightning density. In addition, anthropogenic factors play an important role in influencing fire number and size, interacting with other factors. Understanding the spatial variability of fire regimes and its interconnected drivers in the Arctic-boreal domain is important for improving future predictions of fire activity and identifying areas at risk for extreme events.

10.
Heliyon ; 10(16): e35813, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39220909

ABSTRACT

Microbial-induced calcite precipitation (MICP) is an environmentally friendly process that can be used to enhance soil surface stability against wind erosion. In this study, the performance of the MICP process on soil surface improvement was investigated using Staphylococcus warneri IR-103 bacteria. The biostabilizer, containing S. warneri suspension and a cementation solution consisting of 0.5 mM CaCl2 and 1.5 mM urea, was sprayed on fine-grain soil to induce a surface MICP reaction. Soil surface strength was measured using a penetrometer test, and wind tunnel tests were conducted to evaluate the soil surface's resistance to wind erosion. Scanning electron microscopy (SEM) analysis of the treated soils was conducted to visualize carbonate crystal formations within and on the soil particles. Additionally, X-ray diffraction (XRD) was used to confirm the presence and identify the crystal structures. The ecotoxicological assessment of the biostabilizer was carried out by performing phytotoxicity and oral/dermal/ocular in vivo acute toxicity experiments due to a few case reports of S. warneri's harmfulness and virulence of coagulase-negative staphylococci, highlighting the need for safety measures for workers and end-users. Mixing cementation solution with bacterial suspension in yeast-ammonium chloride medium increased soil strength and durability. The biostabilizer did not harm the seed germination of Agropyron desertorum, and the soil surface remained resistant to wind erosion. Rat oral/dermal acute toxicity tests revealed no adverse effects during the 14-day observation period. The LD50 (median lethal dose) cut-off value of the biostabilizer in oral and dermal administrations was 5000 and 1000 mg/kg body weight, respectively. Ocular administration of a 0.1 mL drop did not induce eye irritation in rabbits. In conclusion, the use of the biostabilizer for wind erosion control appears to be technically and environmentally feasible and justifiable.

11.
Sci Rep ; 14(1): 22386, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333559

ABSTRACT

Climate change is causing widespread impacts on seawater pH through ocean acidification (OA). Kelp forests, in some locations can buffer the effects of OA through photosynthesis. However, the factors influencing this variation remain poorly understood. To address this gap, we conducted a literature review and field deployments of pH and dissolved oxygen (DO) loggers within four habitats: intact kelp forest, moderate kelp cover, sparse kelp cover and barrens at one site in Port Phillip Bay, a wind-wave dominated coastal embayment in Victoria, Australia. Additionally, a wave logger was placed directly in front of the intact kelp forest and barrens habitats. Most studies reported that kelp increased seawater pH and DO during the day, compared to controls without kelp. This effect was more pronounced in densely populated forests, particularly in shallow, sheltered conditions. Our field study was broadly consistent with these observations, with intact kelp habitat having higher seawater pH than habitats with less kelp or barrens and higher seawater DO compared to barrens, particularly in the afternoon and during calmer wave conditions. Although kelp forests can provide local refuges to biota from OA, the benefits are variable through time and may be reduced by declines in kelp density and increased wave exposure.

12.
FEMS Microbiol Ecol ; 100(10)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39293810

ABSTRACT

Human decomposition in terrestrial ecosystems is a dynamic process creating localized hot spots of soil microbial activity. Longer-term (beyond a few months) impacts on decomposer microbial communities are poorly characterized and do not typically connect microbial communities to biogeochemistry, limiting our understanding of decomposer communities and their functions. We performed separate year-long human decomposition trials, one starting in spring, another in winter, integrating bacterial and fungal community structure and abundances with soil physicochemistry and biogeochemistry to identify key drivers of microbial community change. In both trials, soil acidification, elevated microbial respiration, and reduced soil oxygen concentrations occurred. Changes in soil oxygen concentrations were the primary driver of microbial succession and nitrogen transformation patterns, while fungal community diversity and abundance was related to soil pH. Relative abundance of facultative anaerobic taxa (Firmicutes and Saccharomycetes) increased during the period of reduced soil oxygen. The magnitude and timing of the decomposition responses were amplified during the spring trial relative to the winter, even when corrected for thermal inputs (accumulated degree days). Further, soil chemical parameters, microbial community structure, and fungal gene abundances remained altered at the end of 1 year, suggesting longer-term impacts on soil ecosystems beyond the initial pulse of decomposition products.


Subject(s)
Bacteria , Fungi , Microbiota , Soil Microbiology , Soil , Soil/chemistry , Fungi/genetics , Fungi/growth & development , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/growth & development , Humans , Oxygen/metabolism , Seasons , Ecosystem , Nitrogen/metabolism , Hydrogen-Ion Concentration
13.
Sci Total Environ ; 954: 176312, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306124

ABSTRACT

The Northern Patagonia coast, characterized by an intricate interaction among terrestrial and marine systems such as Reloncaví Estuarine System (RES), present highly productive marine and aquaculture activities, having a significant socio-economic importance in Chile. Understanding the composition of Organic Matter (OM) in aquatic ecosystems is crucial for elucidating biogeochemical processes, and the use of lipid biomarkers, has proven valuable in identifying OM sources. This study investigates the relationship between phytoplankton biomass indicators, including phytoplankton abundance, chlorophyll-a, and sterol molecules synthesized in high percentages by phytoplankton cells, also known as phytoplankton-derived sterols at the RES. The RES encompasses the Reloncaví Fjord (RF) and the Reloncaví Sound (RS) and exhibits a high influenced by oceanic waters and freshwater discharge from rivers Spatio-temporal sampling was conducted during the austral spring, summer and winter expeditions of 2018 and 2019, at two sites in RS and RF mouth (RFm). Our findings reveal higher sterol concentration at RFm than RS. Notably, high sterol concentrations during austral summer season coinciding with increased phytoplankton abundances. Furthermore, higher concentrations of terrestrial-derived sterols such as ß-sitosterol (C29Δ5) and stigmasterol (C29Δ5,22), at RFm site suggested an input of OM from the inner RF. Phytoplankton-derived sterols such as 24-methylenecholesterol (C28Δ5,24(28)) provide a reliable estimate of total diatom abundance at both sites (RFm and RS), though they showed a lower relationship with taxonomic subgroups and phytoplankton classes in our study area. Hence, phytoplankton-derived sterols can be considered reliable diatom biomarkers, particularly in the RS, where the primary source of OM is predominantly marine, and even with high sterol degradation values at RES. Our study highlights the importance of interpreting changes in sterol abundances as phytoplankton community shifts. To avoid misinterpretation, it is essential to incorporate direct phytoplankton counts in elucidating the complex biosynthetic sources of sterols within the water column.

14.
Sci Total Environ ; 954: 176118, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260479

ABSTRACT

Land use influences surface water quality, often alleviating stoichiometric constraints on primary production and altering biogeochemical cycling. However, land use effects on nutrient content and potential trace metal accumulation in aquatic plants remain unclear, and high concentrations of metals and altered nutrient ratios could impact the health of herbivores and detritivores. We tested for land use effects on nutrient and trace metal accumulation in a widespread riverine macrophyte, Podostemum ceratophyllum, collected from 91 locations from Georgia to Maine, USA in 2014-2016. We quantified carbon (C), nitrogen (N), phosphorus (P), their molar and mass ratios, N and C stable isotopes, and 17 additional elements in dried plants collected from each location to estimate relationships between plant tissue content and watershed land use, which we quantified as agriculture, forest, and development. Decreasing forest cover was correlated with increasing δ15N, Mg, Mn, and P in Podostemum tissue. Increasing urban development was correlated with increasing δ15N, Mg and P, while increasing agriculture was correlated with a decrease in C: P and the concentrations of multiple metals, along with increases in P, Mg and δ15N. Decreases in ratios of N: P and C:P with increasing agriculture and urban development in the watershed indicate more rapid P storage relative to C and N in plant tissue, and increased resource quality of the plant to consumers in these watersheds. We also observed potentially toxic dietary concentrations of some trace metals (B, Cd, Tl, Zn) in plant tissue which could be related to the plant's natural herbivory defense system or to land use. We conclude that land use influences the elemental composition of P. ceratophyllum, and potentially the quality and toxicity of the plant to herbivores and detritivores in eastern North American rivers.

15.
Sci Total Environ ; 953: 176012, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39236817

ABSTRACT

Sediment nutrients can be mobilized to overlying water via internal loading, which can be important to aquatic productivity. Using data from 143 Canadian lakes, we show high (~2400-fold) variation of soluble reactive phosphorus (SRP) concentrations in surficial sediment porewater, with results suggesting internal phosphorus loading (IPL) is also likely to vary widely. Consistent with past work at smaller scales, we show that lake depth, pH, trophic status, and bulk sediment Al:P and Fe:P influence porewater SRP, and IPL. Median porewater SRP concentration in lakes with high Al:P (molar ratios >10) were 4.8-fold smaller than in lakes with lower Al:P. In lakes where bulk sedimentary Fe:P molar ratios were >10 porewater SRP was 3.9-fold lower than in lakes with lower Fe:P. High pH (>7.8), along with hyper-eutrophic lakes were associated with higher porewater SRP. Finally, shallow lakes (<4 m depth) had median porewater SRP concentration 6-fold higher than deep lakes (>9 m depth). Important regional differences emerged, linked to regional variation in pH, soils, lake depth and trophic status, and paralleling areas of poor water quality. For example, median porewater SRP in lakes from the Boreal Plains and Prairies ecozones (dominated by Chernozems/Mollisols) was 64-fold and 44-fold higher than in the Boreal Shield (dominated by Podzols/Spodosols) (respectively), although we note that IPL risk is likely important across many ecozones. Using national data, we found in-lake measurements (particularly pH, and salinity) showed strong capacity in predicting porewater SRP (explaining 60-72 % of the variance in the data). Importantly, watershed predictors showed good predictive power, explaining ~50 % of variance in porewater SRP using variables including soil types, and % agriculture. Porewater SRP can be predicted with reasonable accuracy using easily measured variables, as can estimates of internal phosphorus loading, suggesting that landscape limnology holds strong potential in helping to inform lake management by informing understanding of in-lake nutrient sources.

16.
Environ Sci Technol ; 58(35): 15598-15606, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39173619

ABSTRACT

Coastal upwelling supplies nutrients supporting primary production while also adding the toxic trace metal mercury (Hg) to the mixed layer of the ocean. This could be a concern for human and environmental health if it results in the enhanced bioaccumulation of monomethylmercury (MMHg). Here, we explore how upwelling influences Hg cycling in the California Current System (CCS) biome through particle scavenging and sea-air exchange. We collected suspended and sinking particle samples from a coastal upwelled water parcel and an offshore non-upwelled water parcel and observed higher total particulate Hg and sinking flux in the upwelling region compared to open ocean. To further investigate the full dynamics of Hg cycling, we modeled Hg inventories and fluxes in the upper ocean under upwelling and non-upwelling scenarios. The model simulations confirmed and quantified that upwelling enhances sinking fluxes of Hg by 41% through elevated primary production. Such an enhanced sinking flux of Hg is biogeochemically important to understand in upwelling regions, as it increases the delivery of Hg to the deep ocean where net conversion to MMHg may take place.


Subject(s)
Mercury , California , Water Pollutants, Chemical , Seawater/chemistry , Environmental Monitoring
17.
Ecol Lett ; 27(8): e14491, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39132693

ABSTRACT

Animals interact with nutrient cycles by consuming and depositing nutrients, interactions studied separately in nutritional ecology and zoogeochemistry. Recent theoretical work bridges these disciplines, highlighting that animal-driven nutrient recycling could be crucial in helping animals meet their nutritional needs. When animals exhibit site fidelity, they consistently deposit nutrients, potentially improving vegetation quality. We investigated this potential feedback by analysing changes in forage nitrogen stocks following simulated caribou calving. We found that forage nitrogen stocks increased after 2 weeks and remained elevated after 1 year, a change due to increased forage quality, not quantity. We also developed a nutrient budget within calving grounds, demonstrating that natal fluid and calf carcasses contribute substantial nitrogen subsidies. We, thus, highlight a positive zoogeochemical feedback whereby nutrients deposited during calving become bioavailable during lactation and provide evidence that site fidelity creates a biogeochemical boomerang in which animals deposit nutrients that can be reused later.


Subject(s)
Nitrogen , Animals , Female , Nitrogen/analysis , Nitrogen/metabolism , Lactation , Deer/physiology , Animal Nutritional Physiological Phenomena
18.
PeerJ ; 12: e17844, 2024.
Article in English | MEDLINE | ID: mdl-39131615

ABSTRACT

High abundances of gelatinous zooplankton (GZ) can significantly impact marine ecosystem by acting as both sink and source of organic matter (OM) and nutrients. The decay of GZ bloom can introduce significant amount of OM to the ocean interior, with its variability influenced by GZ life traits and environmental factors, impacting microbial communities vital to marine biogeochemical cycles. The invasive ctenophores Mnemiopsis leidyi has formed massive blooms in the northern Adriatic Sea since 2016. However, the variability in the chemical composition and egg production of blooming populations, as well as the role of environmental factors in governing this variability, remains largely unknown. Our analysis of biometry, chemical composition, and fecundity of M. leidyi sampled in the Gulf of Trieste in 2021 revealed stable carbon and nitrogen content throughout bloom development, with no significant correlation with seawater temperature, salinity, oxygen, and chlorophyll a concentration. Although the studied population exhibited homogeneity in terms of biometry and chemical composition, the number of produced eggs varied substantially, showing no clear correlation with environmental variables and being somewhat lower than previously reported for the study area and other Mediterranean areas. We observed a positive correlation between the wet weight of individuals and the percentage of hatched eggs, as well as a significant positive correlation between the percentage of hatched eggs and ambient seawater temperature. Additionally, we noted that the speed of hatching decreased with decreasing seawater temperature in autumn, corresponding to the end of M. leidyi bloom.


Subject(s)
Ctenophora , Animals , Ctenophora/growth & development , Nitrogen/analysis , Nitrogen/metabolism , Seawater/chemistry , Ovum/chemistry , Ovum/growth & development , Eutrophication , Mediterranean Sea , Carbon/analysis , Carbon/metabolism , Ecosystem , Temperature
19.
Ecology ; 105(10): e4398, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39143756

ABSTRACT

Peatlands cover approximately 12% of the Canadian landscape and play an important role in the carbon cycle through their centennial- to millennial-scale storage of carbon under waterlogged and anoxic conditions. In recognizing the potential of these ecosystems as natural climate solutions and therefore the need to include them in national greenhouse gas inventories, the Canadian Model for Peatlands module (CaMP v. 2.0) was developed by the Canadian Forest Service. Model parameterization included compiling peat profiles across Canada to calibrate peat decomposition rates from different peatland types, to define typical bulk density profiles, and to describe the hydrological (i.e., water table) response of peatlands to climatic changes. A total of 1217 sites were included in the dataset from published and unpublished sources. The CORESITES table contains site location and summary data for each profile, as well as an estimate of total carbon mass per unit area (in megagrams of C per hectare). Total carbon mass per unit area at each location was calculated using bulk density and carbon content through each profile. The PROFILES table contains data for depth (in centimeters), bulk density (in grams per cubic meter), ash and carbon content (in percentage), and material descriptions for contiguous samples through each peat profile. Data gaps for bulk density and C content were filled using interpolation, regression trees, and assigned values based on material description and/or soil classification to allow for the estimation of total carbon mass per unit area. A subset of the sites (N = 374) also have pH and pore water trace-elemental geochemistry data and are found in the WATER table. The REFERENCES table contains the full citation of each source of the data and is linked to each core location through the SOURCEDATA table. The LOOKUP table defines codes in the database that required more space that what was sufficient in the metadata tables. The data can be accessed on Open Government Canada and will be useful for future work on carbon stock mapping and ecosystem modeling. All metadata and data are provided © Her Majesty the Queen in Right of Canada, 2023 and information contained in this publication may be reproduced for personal or public noncommercial purposes with attribution, whereas commercial reproduction and distribution are prohibited except with written permission from NRCan; complete details are noted in the Supporting Information file Metadata S1 (see Class III.B.3: Copyright restrictions).


Subject(s)
Soil , Canada , Soil/chemistry , Databases, Factual , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL