ABSTRACT
Phytochemical study of the species Kaunia lasiophthalma enabled the isolation of three undescribed and three known guaianolide-type sesquiterpene lactones, and one new benzofuran. The bioguided fractionation methodology was successful in detecting antimicrobial metabolites against Staphylococcus aureus strains and permitted the description of undescribed guaianolide-type sesquiterpene lactones with substitution patterns matching all those described in the Oxylobinae subtribe.
Subject(s)
Asteraceae , Sesquiterpenes , Anti-Bacterial Agents/pharmacology , Phytochemicals , Lactones/pharmacology , Sesquiterpenes/pharmacologyABSTRACT
The indiscriminate use of antibiotics is causing an increase in bacterial resistance, complicating therapeutic planning. In this context, natural products have emerged as major providers of bioactive compounds. This work performs a bioguided study of Brazilian red propolis to identify compounds with antibacterial potential and to evaluate their cytotoxicity against non-tumour cells. Using bioguided fractionation performed with the hydroalcoholic extract of red propolis from Alagoas, it was possible to obtain subfractions with remarkable bacteriostatic activity compared with the precursor fractions. The SC2 subfraction was highlighted and showed the best results with minimal inhibitory concentrations (MICs) of 56.75, 28.37, 454.00, and 227.00⯵gâ¯mL-1 against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, respectively. However, this study also revealed a cytotoxic effect against the non-tumour Vero cell line. Furthermore, through chemical analyses using high resolution mass spectrometry, high performance liquid chromatography with UV detection, and gas chromatography coupled to mass spectrometry, we verified the presence of important marker compounds in the fractions and extracts, including formononetin (m/z 267.0663), biochanin A (m/z 283.0601), and liquiritigenin (m/z 255.0655). The results obtained in this study suggest an important antibacterial potential of red propolis subfractions. In this context, the bioguided fractionation has been a useful process, due to its ability to isolate and concentrate active compounds in a logical and rational way.