Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65.423
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167333, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960054

ABSTRACT

Periodontitis, a common chronic inflammatory disease, epitomizes a significant impairment in the host immune system and an imbalance of bone metabolism. Macrophage polarization, a dynamic process dictated by the microenvironment, intricately contributes to the interplay between the immune system and bone remodeling, namely the osteoimmune system. Forkhead box protein O1 (FoxO1) has been shown to play a dramatic role in mediating oxidative stress, bone mass, as well as cellular metabolism. Nevertheless, the function and underlying mechanisms of FoxO1 in regulating macrophage polarization-mediated osteogenesis in periodontitis remain to be further elucidated. Here, we found that FoxO1 expression was closely linked to periodontitis, accompanied by aggravated inflammation. Notably, FoxO1 knockdown skewed macrophage polarization from M1 to the antiinflammatory M2 phenotype under inflammatory conditions, which rescued the impaired osteogenic potential. Mechanistically, we revealed that the enhancement of the transcription of peroxisome proliferator-activated receptor (PPAR) signaling in FoxO1-knockdown macrophages. In agreement with this contention, GW9662, a specific inhibitor of PPAR-γ signaling, greatly aggravated macrophage polarization from M2 to the M1 phenotype and attenuated osteogenic potential under inflammatory conditions. Additionally, PPAR-γ signaling agonist rosiglitazone (RSG) was applied to address ligature-induced periodontitis with attenuated inflammation. Our data lend conceptual credence to the function of FoxO1 in mediating macrophage polarization-regulated osteogenesis which serves as a novel therapeutic target for periodontitis.

2.
Biotechnol Biofuels Bioprod ; 17(1): 94, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961416

ABSTRACT

BACKGROUND: Limonene has a variety of applications in the foods, cosmetics, pharmaceuticals, biomaterials, and biofuels industries. In order to meet the growing demand for sustainable production of limonene at industry scale, it is essential to find an alternative production system to traditional plant extraction. A promising and eco-friendly alternative is the use of microbes as cell factories for the synthesis of limonene. RESULTS: In this study, the oleaginous yeast Yarrowia lipolytica has been engineered to produce D- and L-limonene. Four target genes, l- or d-LS (limonene synthase), HMG (HMG-CoA reductase), ERG20 (geranyl diphosphate synthase), and NDPS1 (neryl diphosphate) were expressed individually or fused together to find the optimal combination for higher limonene production. The strain expressing HMGR and the fusion protein ERG20-LS was the best limonene producer and, therefore, selected for further improvement. By increasing the expression of target genes and optimizing initial OD, 29.4 mg/L of L-limonene and 24.8 mg/L of D-limonene were obtained. We also studied whether peroxisomal compartmentalization of the synthesis pathway was beneficial for limonene production. The introduction of D-LS and ERG20 within the peroxisome improved limonene titers over cytosolic expression. Then, the entire MVA pathway was targeted to the peroxisome to improve precursor supply, which increased D-limonene production to 47.8 mg/L. Finally, through the optimization of fermentation conditions, D-limonene production titer reached 69.3 mg/L. CONCLUSIONS: In this work, Y. lipolytica was successfully engineered to produce limonene. Our results showed that higher production of limonene was achieved when the synthesis pathway was targeted to the peroxisome, which indicates that this organelle can favor the bioproduction of terpenes in yeasts. This study opens new avenues for the efficient synthesis of valuable monoterpenes in Y. lipolytica.

3.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38961813

ABSTRACT

Computational biological models have proven to be an invaluable tool for understanding and predicting the behaviour of many biological systems. While it may not be too challenging for experienced researchers to construct such models from scratch, it is not a straightforward task for early stage researchers. Design patterns are well-known techniques widely applied in software engineering as they provide a set of typical solutions to common problems in software design. In this paper, we collect and discuss common patterns that are usually used during the construction and execution of computational biological models. We adopt Petri nets as a modelling language to provide a visual illustration of each pattern; however, the ideas presented in this paper can also be implemented using other modelling formalisms. We provide two case studies for illustration purposes and show how these models can be built up from the presented smaller modules. We hope that the ideas discussed in this paper will help many researchers in building their own future models.


Subject(s)
Computational Biology , Computer Simulation , Models, Biological , Software , Computational Biology/methods , Algorithms , Humans
4.
iScience ; 27(6): 110135, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38966569

ABSTRACT

ADAM29 (a disintegrin and metalloprotease domain 29) is a member of the membrane-anchored ADAM family of proteins, which is highly expressed in testis and may mediate different physiological and pathological processes. Although the functions of many ADAM family members have been well characterized, the biological relevance of ADAM29 has remained largely unknown. Here, we report the generation of an Adam29-deficient mouse model to delve deeper into the in vivo functions of this ADAM family member. We show that ADAM29 depletion does not affect mice viability, development, or fertility, but somehow impinges on metabolism and energy expenditure. We also report herein that ADAM29 deficiency leads to an accelerated wound healing process, without affecting cell reprogramming in mouse-derived fibroblasts. Collectively, our findings provide new insights into ADAM29 biological functions, highlighting the importance of non-catalytic ADAM proteases.

5.
iScience ; 27(6): 109667, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38966570

ABSTRACT

Our work aimed to investigate the interactive roles of transforming growth factor ß1 (TGF-ß1), ubiquitin-specific-processing protease 7 (USP7), and Yes-associated protein (YAP) in ferroptosis during sepsis-secondary acute lung injury (ALI). Our study demonstrated that ferroptosis was aggravated by TGF-ß1 in both cellular and animal models of acute lung injury. Additionally, YAP upregulated glutathione peroxidase 4 (GPX4) and SLC7A11 by regulating the binding of TEAD4 to GPX4/SLC7A11 promoters. Furthermore, large tumor suppressor kinase 1 (LATS1) knockdown resulted in YAP expression stimulation, while USP7 downregulated YAP via deubiquitinating and stabilizing LATS1/2. YAP overexpression or USP7/LATS1 silencing reduced ferroptosis process, which regulated YAP through a feedback loop. However, TGF-ß1 annulled the repression of ferroptosis by YAP overexpression or LATS1/USP7 knockdown. By elucidating the molecular interactions between TGF-ß1, USP7, LATS1/2, and YAP, we identified a new regulatory axis of ferroptosis in sepsis-secondary ALI. Our study sheds light on the pathophysiology of ferroptosis and proposes a potential therapeutic approach for sepsis-induced ALI.

6.
iScience ; 27(6): 110123, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38966572

ABSTRACT

Metabotropic glutamate receptors (mGlu) regulate multiple functions in the nervous systems and are involved in several neurological disorders. However, selectively targeting individual mGlu subtypes with spatiotemporal precision is still an unmet need. Photopharmacology can address this concern through the utilization of photoswitchable compounds such as optogluram, which is a positive allosteric modulator (PAM) of mGlu4 that enables the precise control of physiological responses using light but does not have an optimal selectivity profile. Optogluram analogs were developed to obtain photoswitchable PAMs of mGlu4 receptor with an improved selectivity. Among them, optogluram-2 emerged as a photoswitchable ligand for mGlu4 receptor with activity as both PAM and allosteric agonists. It presents a higher selectivity and offers improved photoswitching of mGlu4 activity. These improved properties make optogluram-2 an excellent candidate to study the role of mGlu4 with a high spatiotemporal precision in systems where mGlu4 can be co-expressed with other mGlu receptors.

7.
STAR Protoc ; 5(3): 103164, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968078

ABSTRACT

Optogenetic manipulation has proven a powerful tool for investigating the mechanisms underlying the function of neuronal networks, but implementing the technique on mammals during early development remains challenging. Here, we present a comprehensive workflow to specifically manipulate mitral/tufted cells (M/TCs), the output neurons in the olfactory circuit, mediated by adeno-associated virus (AAV) transduction and light stimulation in neonatal mice and monitor neuronal and network activity with in vivo electrophysiology. This method represents an efficient approach to elucidate functional brain development. For complete details on the use and execution of this protocol, please refer to Chen et al.1,2,3.

8.
J Clin Invest ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963708

ABSTRACT

Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essentially meaningful. Here, we identified an under-appreciated Serine/Threonine kinase, CDKL3 (Cyclin-dependent kinase like 3), crucially drives the rapid cell cycle progression and cell growth in cancers. Mechanism-wise, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate Retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of CDK4 by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 (Cyclin-dependent kinase 4/6) inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes the acquired resistance of the latter. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presented an integrated paradigm of cancer cell cycle regulation and suggested CDKL3-targeting as a feasible approach in cancer treatment.

9.
ACS Biomater Sci Eng ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967485

ABSTRACT

Drug resistance is arguably one of the biggest challenges facing cancer research today. Understanding the underlying mechanisms of drug resistance in tumor progression and metastasis are essential in developing better treatment modalities. Given the matrix stiffness affecting the mechanotransduction capabilities of cancer cells, characterization of the related signal transduction pathways can provide a better understanding for developing novel therapeutic strategies. In this review, we aimed to summarize the recent advancements in tumor matrix biology in parallel to therapeutic approaches targeting matrix stiffness and its consequences in cellular processes in tumor progression and metastasis. The cellular processes governed by signal transduction pathways and their aberrant activation may result in activating the epithelial-to-mesenchymal transition, cancer stemness, and autophagy, which can be attributed to drug resistance. Developing therapeutic strategies to target these cellular processes in cancer biology will offer novel therapeutic approaches to tailor better personalized treatment modalities for clinical studies.

10.
Comput Biol Chem ; 112: 108139, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38972100

ABSTRACT

COVID-19, caused by the SARS-COV-2 virus, induces numerous immunological reactions linked to the severity of the clinical condition of those infected. The surface Spike protein (S protein) present in Sars-CoV-2 is responsible for the infection of host cells. This protein presents a high rate of mutations, which can increase virus transmissibility, infectivity, and immune evasion. Therefore, we propose to evaluate, using immunoinformatic techniques, the predicted epitopes for the S protein of seven variants of Sars-CoV-2. MHC class I and II epitopes were predicted and further assessed for their immunogenicity, interferon-gamma (IFN-γ) inducing capacity, and antigenicity. For B cells, linear and structural epitopes were predicted. For class I MHC epitopes, 40 epitopes were found for the clades of Wuhan, Clade 2, Clade 3, and 20AEU.1, Gamma, and Delta, in addition to 38 epitopes for Alpha and 44 for Omicron. For MHC II, there were differentially predicted epitopes for all variants and eight equally predicted epitopes. These were evaluated for differences in the MHC II alleles to which they would bind. Regarding B cell epitopes, 16 were found in the Wuhan variant, 14 in 22AEU.1 and in Clade 3, 15 in Clade 2, 11 in Alpha and Delta, 13 in Gamma, and 9 in Omicron. When compared, there was a reduction in the number of predicted epitopes concerning the Spike protein, mainly in the Delta and Omicron variants. These findings corroborate the need for updates seen today in bivalent mRNA vaccines against COVID-19 to promote a targeted immune response to the main circulating variant, Omicron, leading to more robust protection against this virus and avoiding cases of reinfection. When analyzing the specific epitopes for the RBD region of the spike protein, the Omicron variant did not present a B lymphocyte epitope from position 390, whereas the epitope at position 493 for MHC was predicted only for the Alpha, Gamma, and Omicron variants.

11.
JCI Insight ; 9(13)2024 May 30.
Article in English | MEDLINE | ID: mdl-38973610

ABSTRACT

Spinal and bulbar muscular atrophy (SBMA) is a slowly progressing disease with limited sensitive biomarkers that support clinical research. We analyzed plasma and serum samples from patients with SBMA and matched healthy controls in multiple cohorts, identifying 40 highly reproducible SBMA-associated proteins out of nearly 3,000 measured. These proteins were robustly enriched in gene sets of skeletal muscle expression and processes related to mitochondria and calcium signaling. Many proteins outperformed currently used clinical laboratory tests (e.g., creatine kinase [CK]) in distinguishing patients from controls and in their correlations with clinical and functional traits in patients. Two of the 40 proteins, Ectodysplasin A2 receptor (EDA2R) and Repulsive guidance molecule A (RGMA), were found to be associated with decreased survival and body weight in a mouse model of SBMA. In summary, we identified what we believe to be a robust and novel set of fluid protein biomarkers in SBMA that are linked with relevant disease features in patients and in a mouse model of disease. Changes in these SBMA-associated proteins could be used as an early predictor of treatment effects in clinical trials.


Subject(s)
Biomarkers , Humans , Animals , Biomarkers/blood , Biomarkers/metabolism , Mice , Male , Female , Middle Aged , Disease Models, Animal , Muscle, Skeletal/metabolism , Adult , Case-Control Studies , Aged , GPI-Linked Proteins/blood , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism
12.
Data Brief ; 55: 110573, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38974006

ABSTRACT

Teaching and learning activities used in the classroom form an important part of the learning environment. Creating productive learning environments may be influenced by how teachers and students perceive the teaching and learning process. Teachers' and students' perceptions of teaching and learning seem to influence each other. For example, how teachers approach their subject matter impacts how their students learn and view the learning environment or process. Therefore, the degree of teaching and learning quality congruence between teachers' and students' perceptions of teaching-learning process may impact the setting of the learning environment. This article describes a dataset concerning teachers' and students' perceptions of 26 teaching-learning activities used in biology lessons. The data were collected from 57 biology teachers and 469 students from 16 selected secondary schools in four districts of Zambia. Data were collected during the 2022 academic year using separate validated survey questionnaires. The statistical package for the social sciences (SPSS) version 25 was used to analyse the data by calculating descriptive and inferential statistics to describe and compare the participants' perceptions of the teaching-learning activities in biology lessons. The data may provide valuable insight into current teaching practices in biology classrooms based on teachers' and students' perceptions. The data may also provide a basis for comparing teachers' and students' perceptions of teaching-learning activities in biology classrooms.

13.
J Microbiol Biol Educ ; : e0006124, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975770

ABSTRACT

Molecular biology, broadly defined as the investigation of complex biomolecules in the laboratory, is a rapidly advancing field and as such the technologies available to investigators are constantly evolving. This constant advancement has obvious advantages because it allows students and researchers to perform more complex experiments in shorter periods of time. One challenge with such a rapidly advancing field is that techniques that had been vital for students to learn how to perform are now not essential for a laboratory scientist. For example, while cloning a gene in the past could have led to a publication and form the bulk of a PhD thesis project, technology has now made this process only a step toward one of these larger goals and can, in many cases, be performed by a company or core facility. As teachers and mentors, it is imperative that we understand that the technologies we teach in the lab and classroom must also evolve to match these advancements. In this perspective, we discuss how the rapid advances in gene synthesis technologies are affecting curriculum and how our classrooms should evolve to ensure our lessons prepare students for the world in which they will do science.

14.
BMC Biol ; 22(1): 149, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965504

ABSTRACT

BACKGROUND: Organisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wild Saccharomyces cerevisiae yeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated "cross protection" mechanisms, where mild 'primary' doses of one stress can enhance tolerance to severe doses of a different 'secondary' stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. RESULTS: During the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2 scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2 resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whether CTT1 function was fully necessary for acquired H2O2 resistance. Some strains exhibited partial dispensability of CTT1 when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels of CTT1 dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. CONCLUSIONS: Ultimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms.


Subject(s)
Hydrogen Peroxide , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Ethanol/pharmacology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Oxidative Stress/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , Osmotic Pressure , Catalase/metabolism , Catalase/genetics , Genetic Variation
15.
Elife ; 122024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968292

ABSTRACT

A small, nucleotide-binding domain, the ATP-cone, is found at the N-terminus of most ribonucleotide reductase (RNR) catalytic subunits. By binding adenosine triphosphate (ATP) or deoxyadenosine triphosphate (dATP) it regulates the enzyme activity of all classes of RNR. Functional and structural work on aerobic RNRs has revealed a plethora of ways in which dATP inhibits activity by inducing oligomerisation and preventing a productive radical transfer from one subunit to the active site in the other. Anaerobic RNRs, on the other hand, store a stable glycyl radical next to the active site and the basis for their dATP-dependent inhibition is completely unknown. We present biochemical, biophysical, and structural information on the effects of ATP and dATP binding to the anaerobic RNR from Prevotella copri. The enzyme exists in a dimer-tetramer equilibrium biased towards dimers when two ATP molecules are bound to the ATP-cone and tetramers when two dATP molecules are bound. In the presence of ATP, P. copri NrdD is active and has a fully ordered glycyl radical domain (GRD) in one monomer of the dimer. Binding of dATP to the ATP-cone results in loss of activity and increased dynamics of the GRD, such that it cannot be detected in the cryo-EM structures. The glycyl radical is formed even in the dATP-bound form, but the substrate does not bind. The structures implicate a complex network of interactions in activity regulation that involve the GRD more than 30 Å away from the dATP molecules, the allosteric substrate specificity site and a conserved but previously unseen flap over the active site. Taken together, the results suggest that dATP inhibition in anaerobic RNRs acts by increasing the flexibility of the flap and GRD, thereby preventing both substrate binding and radical mobilisation.


Subject(s)
Adenosine Triphosphate , Protein Binding , Ribonucleotide Reductases , Ribonucleotide Reductases/metabolism , Ribonucleotide Reductases/chemistry , Adenosine Triphosphate/metabolism , Allosteric Regulation , Anaerobiosis , Deoxyadenine Nucleotides/metabolism , Catalytic Domain , Protein Conformation , Substrate Specificity , Protein Multimerization , Models, Molecular
16.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949024

ABSTRACT

Mitochondria-related neurodegenerative diseases have been implicated in the disruption of primary cilia function. Mutation in an intrinsic mitochondrial complex I component NDUFAF2 has been identified in Leigh syndrome, a severe inherited mitochondriopathy. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome, a ciliopathy with defects in the brain, kidney, and eye. Here, we report a mechanistic link between mitochondria metabolism and primary cilia signaling. We discovered that loss of NDUFAF2 caused both mitochondrial and ciliary defects in vitro and in vivo and identified NDUFAF2 as a binding partner for ARMC9. We also found that NDUFAF2 was both necessary and sufficient for cilia formation and that exogenous expression of NDUFAF2 rescued the ciliary and mitochondrial defects observed in cells from patients with known ARMC9 deficiency. NAD+ supplementation restored mitochondrial and ciliary dysfunction in ARMC9-deficient cells and zebrafish and ameliorated the ocular motility and motor deficits of a patient with ARMC9 deficiency. The present results provide a compelling mechanistic link, supported by evidence from human studies, between primary cilia and mitochondrial signaling. Importantly, our findings have significant implications for the development of therapeutic approaches targeting ciliopathies.


Subject(s)
Cilia , Kidney Diseases, Cystic , Leigh Disease , Mitochondria , Zebrafish , Humans , Zebrafish/metabolism , Zebrafish/genetics , Leigh Disease/genetics , Leigh Disease/metabolism , Leigh Disease/pathology , Cilia/metabolism , Cilia/pathology , Cilia/genetics , Animals , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , Retina/metabolism , Retina/pathology , Retina/abnormalities , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Eye Abnormalities/metabolism , Mice , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Cerebellum/metabolism , Cerebellum/pathology , Cerebellum/abnormalities , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Male
17.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949025

ABSTRACT

Healthy adipose tissue is essential for normal physiology. There are 2 broad types of adipose tissue depots: brown adipose tissue (BAT), which contains adipocytes poised to burn energy through thermogenesis, and white adipose tissue (WAT), which contains adipocytes that store lipids. However, within those types of adipose, adipocytes possess depot and cell-specific properties that have important implications. For example, the subcutaneous and visceral WAT confers divergent risk for metabolic disease. Further, within a depot, different adipocytes can have distinct properties; subcutaneous WAT can contain adipocytes with either white or brown-like (beige) adipocyte properties. However, the pathways that regulate and maintain this cell and depot-specificity are incompletely understood. Here, we found that the transcription factor KLF15 is required for maintaining white adipocyte properties selectively within the subcutaneous WAT. We revealed that deletion of Klf15 is sufficient to induce beige adipocyte properties and that KLF15's direct regulation of Adrb1 is a critical molecular mechanism for this process. We uncovered that this activity is cell autonomous but has systemic implications in mouse models and is conserved in primary human adipose cells. Our results elucidate a pathway for depot-specific maintenance of white adipocyte properties that could enable the development of therapies for obesity and associated diseases.


Subject(s)
Adipocytes, White , Kruppel-Like Transcription Factors , Subcutaneous Fat , Animals , Mice , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Adipocytes, White/metabolism , Subcutaneous Fat/metabolism , Humans , Mice, Knockout , Adipose Tissue, White/metabolism , Male , Adipocytes, Beige/metabolism
18.
Elife ; 132024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949652

ABSTRACT

Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of ß-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.


Subject(s)
Caenorhabditis elegans , Microtubules , Protein Processing, Post-Translational , Tubulin , Animals , Tubulin/metabolism , Tubulin/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Microtubules/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Acetylation , Axons/metabolism , Axons/physiology , Phosphorylation , Nerve Regeneration , Kinesins/metabolism , Kinesins/genetics
19.
Elife ; 132024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949655

ABSTRACT

Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid-liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.


Subject(s)
Chemokine CCL5 , Chemotaxis , Cricetulus , Heparitin Sulfate , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Animals , Heparitin Sulfate/metabolism , Humans , CHO Cells , Mice , Heparin/metabolism , Heparin/pharmacology , Phase Separation
20.
iScience ; 27(6): 110139, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38952678

ABSTRACT

The development of antifungal drugs requires novel molecular targets due to limited treatment options and drug resistance. Through chemical screening and establishment of a novel genetic technique to repress gene expression in Trichophyton rubrum, the primary causal fungus of dermatophytosis, we demonstrated that fungal Cdc42 and Rac GTPases are promising antifungal drug targets. Chemical inhibitors of these GTPases impair hyphal formation, which is crucial for growth and virulence in T. rubrum. Conditional repression of Cdc24, a guanine nucleotide exchange factor for Cdc42 and Rac, led to hyphal growth defects, abnormal cell morphology, and cell death. EHop-016 inhibited the promotion of the guanine nucleotide exchange reaction in Cdc42 and Rac by Cdc24 as well as germination and growth on the nail fragments of T. rubrum and improved animal survival in an invertebrate infection model of T. rubrum. Our results provide a novel antifungal therapeutic target and a potential lead compound.

SELECTION OF CITATIONS
SEARCH DETAIL
...