Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters











Publication year range
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 8): 165-172, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38990054

ABSTRACT

Preparation of biomacromolecules for structural biology studies is a complex and time-consuming process. The goal is to produce a highly concentrated, highly pure product that is often shipped to large facilities with tools to prepare the samples for crystallization trials or for measurements at synchrotrons and cryoEM centers. The aim of this article is to provide guidance and to discuss general considerations for shipping biomacromolecular samples. Details are also provided about shipping samples for specific experiment types, including solution- and cryogenic-based techniques. These guidelines are provided with the hope that the time and energy invested in sample preparation is not lost due to shipping logistics.


Subject(s)
Specimen Handling , Specimen Handling/methods , Specimen Handling/standards , Crystallography, X-Ray/methods
2.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999018

ABSTRACT

After the period of halogenated compounds, the period of nano-structured systems, and that of phosphorus (and nitrogen)-based additives (still in progress), following the increasingly demanding circular economy concept, about ten years ago the textile flame retardant world started experiencing the design and exploitation of bio-sourced products. Indeed, since the demonstration of the potential of such bio(macro)molecules as whey proteins, milk proteins (i.e., caseins), and nucleic acids as effective flame retardants, both natural and synthetic fibers and fabrics can take advantage of the availability of several low-environmental impact/"green" compounds, often recovered from wastes or by-products, which contain all the elements that typically compose standard flame-retardant recipes. The so-treated textiles often exhibit flame-retardant features that are similar to those provided by conventional fireproof treatments. Further, the possibility of using the same deposition techniques already available in the textile industry makes these products very appealing, considering that the application methods usually do not require hazardous or toxic chemicals. This review aims to present an overview of the development of bio-sourced flame retardants, focusing attention on the latest research outcomes, and finally discussing some current challenging issues related to their efficient application, paving the way toward further future implementations.

3.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791524

ABSTRACT

Actin filaments, as key components of the cytoskeleton, have aroused great interest due to their numerous functional roles in eukaryotic cells, including intracellular electrical signaling. The aim of this research is to characterize the alternating current (AC) conduction characteristics of both globular and polymerized actin and quantitatively compare their values to those theoretically predicted earlier. Actin filaments have been demonstrated to act as conducting bionanowires, forming a signaling network capable of transmitting ionic waves in cells. We performed conductivity measurements for different concentrations of actin, considering both unpolymerized and polymerized actin to identify potential differences in their electrical properties. These measurements revealed two relevant characteristics: first, the polymerized actin, arranged in filaments, has a lower impedance than its globular counterpart; second, an increase in the actin concentration leads to higher conductivities. Furthermore, from the data collected, we developed a quantitative model to represent the electrical properties of actin in a buffer solution. We hypothesize that actin filaments can be modeled as electrical resistor-inductor-capacitor (RLC) circuits, where the resistive contribution is due to the viscous ion flows along the filaments; the inductive contribution is due to the solenoidal flows along and around the helix-shaped filament and the capacitive contribution is due to the counterion layer formed around each negatively charged filament.


Subject(s)
Actin Cytoskeleton , Electric Conductivity , Animals , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/chemistry , Actins/metabolism , Actins/chemistry , Polymerization
4.
Drug Deliv Transl Res ; 14(9): 2325-2344, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38758498

ABSTRACT

Skin cancer remains one of the most prominent types of cancer. Melanoma and non-melanoma skin cancer are commonly found together, with melanoma being the more deadly type. Skin cancer can be effectively treated with chemotherapy, which mostly uses small molecular medicines, phytoceuticals, and biomacromolecules. Topical delivery of these therapeutics is a non-invasive way that might be useful in effectively managing skin cancer. Different skin barriers, however, presented a major obstacle to topical cargo administration. Transferosomes have demonstrated significant potential in topical delivery by improving cargo penetration through the circumvention of diverse skin barriers. Additionally, the transferosome-based gel can prolong the residence of drug on the skin, lowering the frequency of doses and their associated side effects. However, the choice of appropriate transferosome compositions, such as phospholipids and edge activators, and fabrication technique are crucial for achieving improved entrapment efficiency, penetration, and regulated particle size. The present review discusses skin cancer overview, current treatment strategies for skin cancer and their drawbacks. Topical drug delivery against skin cancer is also covered, along with the difficulties associated with it and the importance of transferosomes in avoiding these difficulties. Additionally, a summary of transferosome compositions and fabrication methods is provided. Furthermore, topical delivery of small molecular drugs, phytoceuticals, and biomacromolecules using transferosomes and transferosomes-based gel in treating skin cancer is discussed. Thus, transferosomes can be a significant option in the topical delivery of drugs to manage skin cancer efficiently.


Subject(s)
Antineoplastic Agents , Liposomes , Skin Neoplasms , Humans , Skin Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Animals , Administration, Cutaneous , Drug Delivery Systems , Skin Absorption
5.
Food Chem ; 454: 139682, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38797106

ABSTRACT

Wall material types influence the efficacy of nanocarriers in oral delivery systems. We utilized three food biomacromolecules (whey protein isolate, oxidized starch, lipids) to prepare three types of nanocarriers. Our aim was to investigate their performance in digestion, cellular absorption, mucus penetration, intestinal retention, and bioavailability of the encapsulated anthocyanins (Ant). The release rate of protein nanocarriers (Pro-NCs) was twice that of starch nanocarriers (Sta-NCs) and four times that of lipid nanocarriers (Lip-NCs) in simulated gastrointestinal fluid. Additionally, Pro-NCs demonstrated superior transmembrane transport capacity and over three times cellular internalization efficiency than Sta-NCs and Lip-NCs. Sta-NCs exhibited the highest mucus-penetrating capacity, while Pro-NCs displayed the strongest mucoadhesion, resulting in extended gastrointestinal retention time for Pro-NCs. Sta-NCs significantly enhanced the in vivo bioavailability of Ant, nearly twice that of free Ant. Our results demonstrate the critical role of wall material types in optimizing nanocarriers for the specific delivery of bioactive compounds.


Subject(s)
Anthocyanins , Biological Availability , Drug Carriers , Nanoparticles , Anthocyanins/chemistry , Anthocyanins/administration & dosage , Anthocyanins/pharmacokinetics , Drug Carriers/chemistry , Animals , Humans , Administration, Oral , Nanoparticles/chemistry , Drug Delivery Systems/instrumentation , Male , Whey Proteins/chemistry , Rats, Sprague-Dawley , Lipids/chemistry , Rats , Starch/chemistry , Caco-2 Cells
6.
Int J Biol Macromol ; 270(Pt 1): 132042, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710248

ABSTRACT

Anthocyanins, natural plant pigments responsible for the vibrant hues in fruits, vegetables, and flowers, boast antioxidant properties with potential human health benefits. However, their susceptibility to degradation under conditions such as heat, light, and pH fluctuations necessitates strategies to safeguard their stability. Recent investigations have focused on exploring the interactions between anthocyanins and biomacromolecules, specifically proteins and polysaccharides, with the aim of enhancing their resilience. Notably, proteins like soy protein isolate and whey protein, alongside polysaccharides such as pectin, starch, and chitosan, have exhibited promising affinities with anthocyanins, thereby enhancing their stability and functional attributes. High-pressure processing (HPP), emerging as a non-thermal technology, has garnered attention for its potential to modulate these interactions. The application of high pressure can impact the structural features and stability of anthocyanin-protein/polysaccharide complexes, thereby altering their functionalities. However, caution must be exercised, as excessively high pressures may yield adverse effects. Consequently, while HPP holds promise in upholding anthocyanin stability, further exploration is warranted to elucidate its efficacy across diverse anthocyanin variants, macromolecular partners, pressure regimes, and their effects within real food matrices.


Subject(s)
Anthocyanins , Polysaccharides , Pressure , Anthocyanins/chemistry , Polysaccharides/chemistry , Antioxidants/chemistry , Humans
7.
Int J Biol Macromol ; 270(Pt 1): 131856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38693000

ABSTRACT

Biomacromolecules derived from natural sources offer superior biocompatibility, biodegradability, and water-holding capacity, which make them promising scaffolds for tissue engineering. Psyllium seed has gained attention in biomedical applications recently due to its gel-forming ability, which is provided by its polysaccharide-rich content consisting mostly of arabinoxylan. This study focuses on the extraction and gelation of Psyllium seed hydrocolloid (PSH) in a single-step water-based protocol, and scaffold fabrication using freeze-drying method. After characterization of the scaffold, including morphological, mechanical, swelling, and protein adsorption analyses, 3D cell culture studies were done using NIH-3 T3 fibroblast cells on PSH scaffold, and cell viability was assessed using Live/Dead and Alamar Blue assays. Starting from day 1, high cell viability was obtained, and it reached 90 % at the end of 15-day culture period. Cellular morphology on PSH scaffold was monitored via SEM analysis; cellular aggregates then spheroid formation were observed throughout the study. Collagen Type-I and F-actin expressions were followed by immunostaining revealing a 9- and 10-fold increase during long-term culture. Overall, a single-step and non-toxic protocol was developed for extraction and gelation of PSH. Obtained results unveiled that PSH scaffold provided a favorable 3D microenvironment for cells, holding promise for further tissue engineering applications.


Subject(s)
Colloids , Psyllium , Seeds , Tissue Engineering , Tissue Scaffolds , Xylans , Psyllium/chemistry , Xylans/chemistry , Xylans/pharmacology , Tissue Engineering/methods , Animals , Seeds/chemistry , Mice , Colloids/chemistry , Tissue Scaffolds/chemistry , NIH 3T3 Cells , Cell Survival/drug effects , Water/chemistry
8.
Small ; 20(35): e2402334, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38659186

ABSTRACT

Inert inorganic nano-building blocks, such as carbon nanotubes (CNTs) and boron nitride (BN) nanosheets, possess excellent physicochemical properties. However, it remains challenging to build aerogels with these inert nanomaterials unless they are chemically modified or compounded with petrochemical polymers, which affects their intrinsic properties and is usually not environmentally friendly. Here, a universal biomacromolecule-enabled assembly strategy is proposed to construct aerogels with 90 wt% ultrahigh inorganic loading. The super-high inorganic content is beneficial for exploiting the inherent properties of inert nanomaterials in multifunctional applications. Taking chitosan-CNTs aerogel as a proof-of-concept demonstration, it delivers sensitive pressure response as a pressure sensor, an ultrahigh sunlight absorption (94.5%) raising temperature under light (from 25 to 71 °C within 1 min) for clean-up of crude oil spills, and superior electromagnetic interference shielding performance of up to 68.9 dB. This strategy paves the way for the multifunctional application of inert nanomaterials by constructing aerogels with ultrahigh inorganic loading.

9.
Polymers (Basel) ; 16(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611253

ABSTRACT

Chitin and chitosan are important structural macromolecules for most fungi and marine crustaceans. The functions and application areas of the two molecules are also adjacent beyond their similar molecular structure, such as tissue engineering and food safety where solution systems are involved. However, the elasticities of chitin and chitosan in solution lack comparison at the molecular level. In this study, the single-molecule elasticities of chitin and chitosan in different solutions are investigated via atomic force microscope (AFM) based single-molecule spectroscopy (SMFS). The results manifest that the two macromolecules share the similar inherent elasticity in DOSM due to their same chain backbone. However, obvious elastic deviations can be observed in aqueous conditions. Especially, a lower pH value (acid environment) is helpful to increase the elasticity of both chitin and chitosan. On the contrary, the tendency of elastic variation of chitin and chitosan in a larger pH value (alkaline environment) shows obvious diversity, which is mainly determined by the side groups. This basic study may produce enlightenment for the design of intelligent chitin and chitosan food packaging and biomedical materials.

10.
Front Chem ; 12: 1378447, 2024.
Article in English | MEDLINE | ID: mdl-38680456

ABSTRACT

Metal ions can perform multiple roles ranging from regulatory to structural and are crucial for cell function. While some metal ions like Na+ are ubiquitously present at high concentrations, other ions, especially Ca2+ and transition metals, such as Zn2+ or Cu+/2+ are regulated. The concentrations above or below the physiological range cause severe changes in the behavior of biomolecules that bind them and subsequently affect the cell wellbeing. This has led to the development of specialized protocols to study metal ion binding biomolecules in bulk conditions that mimic the cell environment. Recently, there is growing evidence of influence of post-transcriptional and post-translational modifications on the affinity of the metal ion binding sites. However, such targets are difficult to obtain in amounts required for classical biophysical experiments. Single molecule techniques have revolutionized the field of biophysics, molecular and structural biology. Their biggest advantage is the ability to observe each molecule's interaction independently, without the need for synchronization. An additional benefit is its extremely low sample consumption. This feature allows characterization of designer biomolecules or targets obtained coming from natural sources. All types of biomolecules, including proteins, DNA and RNA were characterized using single molecule methods. However, one group is underrepresented in those studies. These are the metal ion binding biomolecules. Single molecule experiments often require separate optimization, due to extremely different concentrations used during the experiments. In this review we focus on single molecule methods, such as single molecule FRET, nanopores and optical tweezers that are used to study metal ion binding biomolecules. We summarize various examples of recently characterized targets and reported experimental conditions. Finally, we discuss the potential promises and pitfalls of single molecule characterization on metal ion binding biomolecules.

11.
Int J Biol Macromol ; 265(Pt 2): 130994, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518950

ABSTRACT

Biofouling remains a persistent challenge within the domains of biomedicine, tissue engineering, marine industry, and membrane separation processes. Multifunctional hydrogels have garnered substantial attention due to their complex three-dimensional architecture, hydrophilicity, biocompatibility, and flexibility. These hydrogels have shown notable advances across various engineering disciplines. The antifouling efficacy of hydrogels typically covers a range of strategies to mitigate or inhibit the adhesion of particulate matter, biological entities, or extraneous pollutants onto their external or internal surfaces. This review provides a comprehensive review of the antifouling properties and applications of hydrogels. We first focus on elucidating the fundamental principles for the inherent resistance of hydrogels to fouling. This is followed by a comprehensive investigation of the methods employed to enhance the antifouling properties enabled by the hydrogels' composition, network structure, conductivity, photothermal properties, release of reactive oxygen species (ROS), and incorporation of silicon and fluorine compounds. Additionally, we explore the emerging prospects of antifouling hydrogels to alleviate the severe challenges posed by surface contamination, membrane separation and wound dressings. The inclusion of detailed mechanistic insights and the judicious selection of antifouling hydrogels are geared toward identifying extant gaps that must be bridged to meet practical requisites while concurrently addressing long-term antifouling applications.


Subject(s)
Biofouling , Hydrogels , Hydrogels/pharmacology , Hydrogels/chemistry , Biofouling/prevention & control , Hydrophobic and Hydrophilic Interactions , Silicon
12.
Molecules ; 29(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338486

ABSTRACT

Egg white proteins pose notable limitations in emulsion applications due to their inadequate wettability and interfacial instability. Polyphenol-driven alterations in proteins serve as an effective strategy for optimizing their properties. Herein, covalent and non-covalent complexes of egg white proteins-proanthocyanins were synthesized. The analysis of structural alterations, amino acid side chains and wettability was performed. The superior wettability (80.00° ± 2.23°) and rigid structure (2.95 GPa) of covalent complexes established favorable conditions for their utilization in emulsions. Furthermore, stability evaluation, digestion kinetics, free fatty acid (FFA) release kinetics, and correlation analysis were explored to unravel the impact of covalent and non-covalent modification on emulsion stability, dynamic digestion process, and interlinkages. Emulsion stabilized by covalent complex exhibited exceptional stabilization properties, and FFA release kinetics followed both first-order and Korsmeyer-Peppas models. This study offers valuable insights into the application of complexes of proteins-polyphenols in emulsion systems and introduces an innovative approach for analyzing the dynamics of the emulsion digestion process.


Subject(s)
Digestion , Fatty Acids, Nonesterified , Emulsions/chemistry , Fatty Acids, Nonesterified/metabolism , Egg Proteins , Particle Size
13.
Int J Biol Macromol ; 261(Pt 2): 129901, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316328

ABSTRACT

Stimuli responsive delivery systems, also known as smart/intelligent drug delivery systems, are specialized delivery vehicles designed to provide spatiotemporal control over drug release at target sites in various diseased conditions, including tumor, inflammation and many others. Recent advances in the design and development of a wide variety of stimuli-responsive (pH, redox, enzyme, temperature) materials have resulted in their widespread use in drug delivery and tissue engineering. The aim of this review is to provide an insight of recent nanoparticulate drug delivery systems including polymeric nanoparticles, dendrimers, lipid-based nanoparticles and the design of new polymer-drug conjugates (PDCs), with a major emphasis on natural along with synthetic commercial polymers used in their construction. Special focus has been placed on stimuli-responsive polymeric materials, their preparation methods, and the design of novel single and multiple stimuli-responsive materials that can provide controlled drug release in response a specific stimulus. These stimuli-sensitive drug nanoparticulate systems have exhibited varying degrees of substitution with enhanced in vitro/in vivo release. However, in an attempt to further increase drug release, new dual and multi-stimuli based natural polymeric nanocarriers have been investigated which respond to a mixture of two or more signals and are awaiting clinical trials. The translation of biopolymeric directed stimuli-sensitive drug delivery systems in clinic demands a thorough knowledge of its mechanism and drug release pattern in order to produce affordable and patient friendly products.


Subject(s)
Nanoparticles , Neoplasms , Stimuli Responsive Polymers , Humans , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Polymers/chemistry , Neoplasms/drug therapy
14.
Int J Biol Macromol ; 255: 127520, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865358

ABSTRACT

Regenerative medicine and drug delivery systems provide promising approaches for the treatment of skin lesions. However, the design of engineered substrates containing therapeutic agents for cell proliferation and its differentiation into skin cells, with skin-like patterns, is the major challenge. Here, to overcome this problem, a hybrid scaffold conjugated with nanoparticles containing the extract of Verbascum sinuatum L. flowers (HE) was designed. To this end, (chitosan-PEG)-based nanocarriers (Chi-PEG) were first prepared in the volume ratios of 90:10, 80:20, 70:30, and 50:50 v/v. The results indicated that the 70:30 ratio possessed better physical/morphologic properties along with more suitable stability than other nanoparticles (encapsulation-efficiency:86.34 %, zeta-potential:21.2 mV, and PDI:0.30). Afterward, PCL-collagen biologic scaffold (PCL-Coll) were prepared by the lyophilization method, then conjugated with selected nanoparticles(Chi-PEG70:30-HE). Notably, in addition to PCL-Coll/Chi-PEG-HE, two scaffolds of PCL-Coll and PCL-Coll/Chi-PEG were prepared to evaluate the role of conjugation in the release behavior of herbal bio-macromolecules. Based on the results, the conjugation process was led to a more stable release, compared to unconjugated nanoparticles. The mentioned process also created an integrated network along with better physicomechanical properties [modulus:12.31 MPa, tensile strength:4.44 MPa, smaller pore size(2 µm), and better swelling (100.27 %) with a symmetrical wettability on the surface]. PCL-Coll/Chi-PEG-HE scaffold was also resulted in higher expression levels of K10 and K14 keratinocytes with biomimetic patterns than PCL-Coll/Chi-PEG scaffold. This could be due to the active ingredients of V. sinuatum extract like alkaloids, flavonoids, and triterpenoids which imparts the wound healing (anti-inflammatory, anti-bacterial, anti-oxidant) properties to this scaffold. It seems that the use of bioactive materials like herbal extracts, in the form of encapsulated into polymeric nanocarriers, in the structure of engineered scaffolds can be a promising option for regenerating damaged skin without scarring. Hence, this study can provide innovative insights into the combination of two techniques of drug delivery and tissue engineering to design bio-scaffolds containing bioactive molecules with better therapeutic approaches.


Subject(s)
Chitosan , Verbascum , Humans , Chitosan/chemistry , Polyesters/chemistry , Keratinocytes , Tissue Engineering/methods , Stem Cells , Tissue Scaffolds/chemistry
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1039065

ABSTRACT

Cells not only contain membrane-bound organelles (MBOs), but also membraneless organelles (MLOs) formed by condensation of many biomacromolecules. Examples include RNA-protein granules such as nucleoli and PML nuclear bodies (PML-NBs) in the nucleus, as well as stress granules and P-bodies in the cytoplasm. Phase separation is the basic organizing principle of the form of the condensates or membraneless organelles (MLOs) of biomacromolecules including proteins and nucleic acids. In particular, liquid-liquid phase separation (LLPS) compartmentalises and concentrates biological macromolecules into liquid condensates. It has been found that phase separation of biomacromolecules requires some typical intrinsic characteristics, such as intrinsically disordered regions, modular domains and multivalent interactions. The phase separation of biomacromolecules plays a key role in many important cell activities. In recent years, the phase separation of biomacromolecules phase has become a focus of research in gene transcriptional regulation. Transcriptional regulatory elements such as RNA polymerases, transcription factors (TFs), and super enhancers (SEs) all play important roles through phase separation. Our group has previously reported for the first time that long-term inactivation or absence of assembly factors leads to the formation of condensates of RNA polymerase II (RNAPII) subunits in the cytoplasm, and this process is reversible, suggesting a novel regulatory model of eukaryotic transcription machinery. The phase separation of biomacromolecules provides a biophysical understanding for the rapid transmission of transcriptional signals by a large number of TFs. Moreover, phase separation during transcriptional regulation is closely related to the occurrence of cancer. For example, the activation of oncogenes is usually associated with the formation of phase separation condensates at the SEs. In this review, the intrinsic characteristics of the formation of biomacromolecules phase separation and the important role of phase separation in transcriptional regulation are reviewed, which will provide reference for understanding basic cell activities and gene regulation in cancer.

16.
Article in English | MEDLINE | ID: mdl-38038221

ABSTRACT

The development of chemoimmunotherapy with reduced systemic toxicity using local formulations is an effective strategy for combating tumor recurrence. Herein, we reported a localized hydrogel system for antitumor chemoimmunotherapy, formed by doxorubicin (DXR)-loaded bovine serum albumin (BSA) nanoparticles self-cross-linked with natural polysaccharide chitosan (CS). The drug-loaded hydrogel (DXR-CBGel) with antiswelling performance and prolonged drug-release profile was combined with antiprogrammed cell death protein 1 (aPD-1) as an in situ vaccine for treating glioblastoma multiforme (GBM) lesions. The antiswelling hydrogel system shows excellent biosafety for volume-sensitive GBM lesions. Both the albumin-bound formulation and the in situ gelation design facilitate the local retention and sustained release of DXR to generate long-term chemoimmunotherapy with reduced systemic toxicity. The chemotherapy-induced immunogenic cell death of DXR with the assistance of immunotherapeutic CS can trigger tumor-specific immune responses, which are further amplified by an immune checkpoint blockade to effectively inhibit cancer recurrence. The strategy of combining albumin-bound drug formulation and biocompatible polymer-based hydrogel for localized chemoimmunotherapy shows great potential against postsurgery glioblastoma recurrence.

17.
J Chromatogr A ; 1712: 464492, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37944435

ABSTRACT

Field-flow fractionation (FFF) with its several variants, has developed into a mature methodology. The scope of the FFF investigations has expanded, covering both a wide range of basic studies and especially a wide range of analytical applications. Special attention of this review is given to the achievements of FFF with reference to recent applications in the fractionation, isolation, and purification of biomacromolecules, and from which especially those of (in alphabetical order) bacteria, cells, extracellular vesicles, liposomes, lipoproteins, nucleic acids, and viruses and virus-like particles. In evaluating the major approaches and trends demonstrated since 2012, the most significant biomacromolecule applications are compiled in tables. It is also evident that asymmetrical flow field-flow fractionation is by far the most dominant technique in the studies. The industry has also shown current interest in FFF and adopted it in some sophisticated fields. FFF, in combination with appropriate detectors, handles biomacromolecules in open channel in a gentle way due to the lack of shear forces and unwanted interactions caused by the stationary phase present in chromatography. In addition, in isolation and purification of biomacromolecules quite high yields can be achieved under optimal conditions.


Subject(s)
Chemical Fractionation , Fractionation, Field Flow , Fractionation, Field Flow/methods , Lipoproteins , Chromatography , Liposomes
18.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958853

ABSTRACT

Centromeric chromatin is thought to play a critical role in ensuring the faithful segregation of chromosomes during mitosis. However, our understanding of this role is presently limited by our poor understanding of the structure and composition of this unique chromatin. The nucleosomal variant, CENP-A, localizes to narrow regions within the centromere, where it plays a major role in centromeric function, effectively serving as a platform on which the kinetochore is assembled. Previous work found that, within a given cell, the number of microtubules within kinetochores is essentially unchanged between CENP-A-localized regions of different physical sizes. However, it is unknown if the amount of CENP-A is also unchanged between these regions of different sizes, which would reflect a strict structural correspondence between these two key characteristics of the centromere/kinetochore assembly. Here, we used super-resolution optical microscopy to image and quantify the amount of CENP-A and DNA within human centromere chromatin. We found that the amount of CENP-A within CENP-A domains of different physical sizes is indeed the same. Further, our measurements suggest that the ratio of CENP-A- to H3-containing nucleosomes within these domains is between 8:1 and 11:1. Thus, our results not only identify an unexpectedly strict relationship between CENP-A and microtubules stoichiometries but also that the CENP-A centromeric domain is almost exclusively composed of CENP-A nucleosomes.


Subject(s)
Microscopy , Nucleosomes , Humans , Centromere Protein A/genetics , Chromosomal Proteins, Non-Histone/metabolism , Centromere/metabolism , Chromatin , Kinetochores/metabolism , Autoantigens/chemistry
19.
Anal Chim Acta ; 1284: 341990, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37996164

ABSTRACT

MicroRNAs (miRNAs) are important biomacromolecules used as biomarkers for the diagnosis of several diseases. However, current detection strategies are limited by expensive equipment and complicated procedures. Here, we develop a portable, sensitive, and stable (Eu-MOF)-based sensing platform to detect miRNA via smartphone. The Eu-MOF absorbs the carboxyfluorescein (FAM)-tagged probe DNA (pDNA) to generate hybrid pDNA@Eu-MOF, which can efficiently quench the fluorescence of FAM through a photoinduced electron transfer (PET) process. When integrated with a smartphone, the nonemissive pDNA@ Eu-MOF hybrid could be utilized as a portable and sensitive platform to sense miRNA (miR-892b) with a detection limit of 0.32 pM, which could be even distinguished by the naked eye. Moreover, this system demonstrates high selectivity for identifying miRNA family members with single-base mismatches. Furthermore, the expression levels of miRNA in cancer cell samples could be analyzed accurately. Therefore, the proposed method offers a promising guideline for the design of MOF-based sensing strategies and expands their potential applications for diagnostic purposes.


Subject(s)
Metal-Organic Frameworks , MicroRNAs , MicroRNAs/genetics , Luminescence , DNA Probes/genetics , Fluorescence , Limit of Detection
20.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834056

ABSTRACT

Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.


Subject(s)
Bacteria , Cellulose , Biopolymers , Polysaccharides, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL