Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Inorg Biochem ; 257: 112600, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759261

ABSTRACT

Rhenium complexes show great promise as anticancer drug candidates. Specifically, compounds with a Re(CO)3(NN)(py)+ core in their architecture have shown cytotoxicity equal to or greater than that of well-established anticancer drugs based on platinum or organic molecules. This study aimed to evaluate how the strength of the interaction between rhenium(I) tricarbonyl complexes fac-[Re(CO)3(NN)(py)]+, NN = 1,10-phenanthroline (phen), dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) or dipyrido[3,2-a:2'3'-c]phenazine (dppz) and biomolecules (protein, lipid and DNA) impacted the corresponding cytotoxic effect in cells. Results showed that fac-[Re(CO)3(dppz)(py)]+ has higher Log Po/w and binding constant (Kb) with biomolecules (protein, lipid and DNA) compared to complexes of fac-[Re(CO)3(phen)(py)]+ and fac-[Re(CO)3(dpq)(py)]+. As consequence, fac-[Re(CO)3(dppz)(py)]+ exhibited the highest cytotoxicity (IC50 = 8.5 µM for HeLa cells) for fac-[Re(CO)3(dppz)(py)]+ among the studied compounds (IC50 > 15 µM). This highest cytotoxicity of fac-[Re(CO)3(dppz)(py)]+ are probably related to its lipophilicity, higher permeation of the lipid bilayers of cells, and a more potent interaction of the dppz ligand with biomolecules (protein and DNA). Our findings open novel avenues for rational drug design and highlight the importance of considering the chemical structures of rhenium complexes that strongly interact with biomolecules (proteins, lipids, and DNA).


Subject(s)
Antineoplastic Agents , Coordination Complexes , DNA , Rhenium , Rhenium/chemistry , Humans , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , DNA/chemistry , DNA/metabolism , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Quinoxalines/chemistry , Quinoxalines/pharmacology , Phenazines/chemistry , Phenazines/pharmacology , Cell Line, Tumor , HeLa Cells
2.
Foods ; 13(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611394

ABSTRACT

Within the realm of archaeology, the analysis of biomolecules assumes significant importance in elucidating historical dietary patterns and their implications for contemporary contexts. To achieve this, knowledge and tools of both chemistry and archaeology are essential to yield objective outcomes and conduct analyses of archaeological materials for the detection of biomolecules. Usually, only minuscule remnants of ceramic fragments are retrieved from excavations, which limits the feasibility of comprehensive laboratory analysis. This study aimed to establish a protocol for analyzing fatty acids and starch from archaeological food utensils with minimal sample quantities. Various experiments were conducted to replicate preparations that might have occurred in archaeological vessels, aiming to establish the optimal protocol. The analyses were performed using clay griddles, subjecting vegetable oil to varying temperatures for fatty acid assessment. For starch analysis, a series of experiments encompassed diverse forms of potato preparations (pulp, chuño, tortilla, carbonization, and freeze-drying) and maize (flour, tortilla, and carbonization). The verification of the experiments was confirmed by conducting identical analyses, as developed in the current study, on authentic archaeological fragments. The principal outcomes of this investigation include the successful extraction of both types of biomolecules using only 0.25 g of the sample, obtained through direct scraping from the vessel. Soxhlet extraction was identified as the most efficient strategy to recover fatty acids. Additionally, a comprehensive protocol for the identification of starch extraction was developed. This study has, for the first time, elucidated two detailed methodologies for the extraction of fatty acids and starch in scenarios in which researchers can obtain limited quantities of archaeological food utensil fragments.

3.
Toxins (Basel) ; 16(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38535808

ABSTRACT

Central America is home to one of the most abundant herpetofauna in the Americas, occupying only 7% of the continent's total area. Vipers and lizards are among the most relevant venomous animals in medical practice due to the consequences of envenomation from the bite of these animals. A great diversity of biomolecules with immense therapeutic and biotechnological value is contained in their venom. This paper describes the prominent leading representatives of the family Viperidae, emphasizing their morphology, distribution, habitat, feeding, and venom composition, as well as the biotechnological application of some isolated components from the venom of the animals from these families, focusing on molecules with potential anti-thrombotic action. We present the leading protein families that interfere with blood clotting, platelet activity, or the endothelium pro-thrombotic profile. In conclusion, Central America is an endemic region of venomous animals that can provide many molecules for biotechnological applications.


Subject(s)
Thrombosis , Animals , Central America , Blood Coagulation , Biotechnology , Blood Platelets
4.
iScience ; 27(2): 108968, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38327788

ABSTRACT

Excessive or aberrant NLRP3 inflammasome activation has been implicated in the progression and initiation of many inflammatory conditions; however, currently no NLRP3 inflammasome inhibitors have been approved for therapeutic use in the clinic. Here we have identified that the natural product brazilin effectively inhibits both priming and activation of the NLRP3 inflammasome in cultured murine macrophages, a human iPSC microglial cell line and in a mouse model of acute peritoneal inflammation. Through computational modeling, we predict that brazilin can adopt a favorable binding pose within a site of the NLRP3 protein which is essential for its conformational activation. Our results not only encourage further evaluation of brazilin as a therapeutic agent for NLRP3-related inflammatory diseases, but also introduce this small-molecule as a promising scaffold structure for the development of derivative NLRP3 inhibitor compounds.

5.
Pharmaceutics ; 16(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38399309

ABSTRACT

Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.

7.
Pharmaceutics ; 15(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38140106

ABSTRACT

The concept of pain encompasses a complex interplay of sensory and emotional experiences associated with actual or potential tissue damage. Accurately describing and localizing pain, whether acute or chronic, mild or severe, poses a challenge due to its diverse manifestations. Understanding the underlying origins and mechanisms of these pain variations is crucial for effective management and pharmacological interventions. Derived from a wide spectrum of species, including snakes, arthropods, mollusks, and vertebrates, animal venoms have emerged as abundant repositories of potential biomolecules exhibiting analgesic properties across a broad spectrum of pain models. This review focuses on highlighting the most promising venom-derived toxins investigated as potential prototypes for analgesic drugs. The discussion further encompasses research prospects, challenges in advancing analgesics, and the practical application of venom-derived toxins. As the field continues its evolution, tapping into the latent potential of these natural bioactive compounds holds the key to pioneering approaches in pain management and treatment. Therefore, animal toxins present countless possibilities for treating pain caused by different diseases. The development of new analgesic drugs from toxins is one of the directions that therapy must follow, and it seems to be moving forward by recommending the composition of multimodal therapy to combat pain.

9.
Biotechnol Appl Biochem ; 70(6): 2069-2087, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37694532

ABSTRACT

Candida tropicalis is a nonconventional yeast with medical and industrial significance, belonging to the CTG clade. Recent advancements in whole-genome sequencing and genetic analysis revealed its close relation to other unconventional yeasts of biotechnological importance. C. tropicalis is known for its immense potential in synthesizing various valuable biomolecules such as ethanol, xylitol, biosurfactants, lipids, enzymes, α,ω-dicarboxylic acids, single-cell proteins, and more, making it an attractive target for biotechnological applications. This review provides an update on C. tropicalis biological characteristics and its efficiency in producing a diverse range of biomolecules with industrial significance from various feedstocks. The information presented in this review contributes to a better understanding of C. tropicalis and highlights its potential for biotechnological applications and market viability.


Subject(s)
Biotechnology , Candida tropicalis , Candida tropicalis/genetics , Candida tropicalis/metabolism
10.
Microorganisms ; 11(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37512842

ABSTRACT

Candida albicans is a commensal fungus in healthy humans that causes infection in immunocompromised individuals through the secretion of several virulence factors. The successful establishment of infection is owing to elaborate strategies to cope with defensive molecules secreted by the host, including responses toward oxidative stress. Extracellular vesicle (EV) release is considered an alternative to the biomolecule secretory mechanism that favors fungal interactions with the host cells. During candidiasis establishment, the host environment becomes oxidative, and it impacts EV release and cargo. To simulate the host oxidative environment, we added menadione (an oxidative stress inducer) to the culture medium, and we explored C. albicans EV metabolites by metabolomics analysis. This study characterized lipidic molecules transported to an extracellular milieu by C. albicans after menadione exposure. Through Liquid Chromatography coupled with Mass Spectrometry (LC-MS) analyses, we identified biomolecules transported by EVs and supernatant. The identified molecules are related to several biological processes, such as glycerophospholipid and sphingolipid pathways, which may act at different levels by tuning compound production in accordance with cell requirements that favor a myriad of adaptive responses. Taken together, our results provide new insights into the role of EVs in fungal biology and host-pathogen interactions.

11.
Ecotoxicol Environ Saf ; 262: 115117, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37315359

ABSTRACT

Amongst the many treatments available for the removal of emerging contaminants in wastewater, microalgal cultures have been shown to be effective. However, the effectiveness of exposure of a native microalgal consortium to emerging contaminants such as bisphenol-A (BPA) and triclosan (TCS) to determine the half-maximum effective concentrations (EC50) has not yet been determined. The effect on growth and nutrient removal of such a treatment as well as on the production of biomolecules such as carbohydrates, lipids, and proteins are, at present, unknown. In this study, the EC50 of BPA and TCS (96-hour experiments) was determined using a consortium of native microalgae (Scenedesmus obliquus and Desmodesmus sp.) to define the maximum tolerance to these contaminants. The effect of BPA and TCS in synthetic wastewater (SWW) was investigated in terms of microalgal growth, chlorophyll a (Chl-a), carbohydrate, lipid, and protein content, as well as nutrient removal. Assays were performed in heterotrophic conditions (12/12 light/dark cycles). EC50-96 h values of 17 mg/L and 325 µg/L for BPA and TCS, respectively, were found at 72 h. For an initial microalgal inoculum of ≈ 300 mg TSS/L (total suspended solids per litre), growth increased by 16.1% when exposed to BPA and 17.78% for TCS. At ≈ 500 mg TSS/L, growth increased by 8.25% with BPA and 9.92% with TCS, respectively. At the EC50-96 h concentrations determined in the study, BPA and TCS did not limit the growth of microalgae in wastewater. Moreover, they were found to stimulate the content of Chl-a, carbohydrates, lipids, proteins, and enhance nutrient removal. AVAILABILITY OF DATA AND MATERIAL: Data sharing not applicable to this article as no datasets were generated or analysed during the present study.

12.
Front Bioeng Biotechnol ; 11: 1108396, 2023.
Article in English | MEDLINE | ID: mdl-37091338

ABSTRACT

The field of 3D bioengineering proposes to effectively contribute to the manufacture of artificial multicellular organ/tissues and the understanding of complex cellular mechanisms. In this regard, 3D cell cultures comprise a promising bioengineering possibility for the alternative treatment of organ function loss, potentially improving patient life expectancies. Patients with end-stage disease, for example, could benefit from treatment until organ transplantation or even undergo organ function restoration. Currently, 3D bioprinters can produce tissues such as trachea cartilage or artificial skin. Most low-cost 3D bioprinters are built from fused deposition modeling 3D printer frames modified for the deposition of biologically compatible material, ranging between $13.000,00 and $300.000,00. Furthermore, the cost of consumables should also be considered as they, can range from $3,85 and $100.000,00 per gram, making biomaterials expensive, hindering bioprinting access. In this context, our report describes the first prototype of a significantly low-cost 3D bioprinter built from recycled scrap metal and off-the-shelf electronics. We demonstrate the functionalized process and methodology proof of concept and aim to test it in different biological tissue scaffolds in the future, using affordable materials and open-source methodologies, thus democratizing the state of the art of this technology.

13.
Article in English | MEDLINE | ID: mdl-36981823

ABSTRACT

The first element legislated adopting chemical speciation was chromium (Cr) for differentiation between the highly toxic Cr(VI) from the micronutrient Cr(III). Therefore, this work aimed to develop a new analytical method through the coupling of High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) with inductively coupled plasma mass spectrometry (ICP-MS) to obtain molecular and elemental information simultaneously from a single sample injection. In the first step, a low-cost flow split made of acrylic was developed aiming at optimally directing the sample to the detectors, enabling the HPLC-DAD/ICP-MS coupling. After the extraction of Certified Reference Materials (CRM of natural water NIST1640a and sugar cane leaf agro FC_012017), the recoveries determined by ICP-MS were 99.7% and 85.4%, respectively. Then, the method of HPLC-DAD/ICP-MS was applied for real samples of the CRMs. The presence of possible biomolecules associated with Cr(III) and Cr(VI) species was evaluated, with the simultaneous response detection of molecular (DAD) and elementary (ICP-MS) detectors. Potential biomolecules were observed during the monitoring of Cr(VI) and Cr(III) in sugar cane leaves, water samples and a supplement of Cr picolinate. Finally, the article also discusses the potential of the technique applied to biomolecules containing other associated elements and the need of more bioanalytical methods to understand the presence of trace elements in biomolecules.


Subject(s)
Chromium , Trace Elements , Chromatography, High Pressure Liquid/methods , Chromium/analysis , Mass Spectrometry/methods , Trace Elements/analysis , Water
14.
Sci Total Environ ; 858(Pt 2): 159797, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36334678

ABSTRACT

Waste management is a key feature to ensure sustainable consumption and production patterns, and to combat the impacts of climate change. In this scenario, the production of biochar from different biomasses results in environmental and economic advantages. In this study, biochar was produced from sugarcane bagasse pyrolysis, to immobilize biomolecules, in order to assemble an electrochemical immunosensor to detect antibodies against SARS-CoV-2. For this, screen-printed carbon electrodes (SPCE) were modified with a dispersion of biochar and used to immobilize the receptor-binding-domain (RBD) against virus S-protein, through EDC/NHS crosslinking reaction. Under the best set of experimental conditions, negative and positive serum samples responses distinguished based on a cutoff value of 82.3 %, at a 95 % confidence level. The immunosensor showed selective behavior to antibodies against yellow fever and its performance was stable up to 7 days of storage. Therefore, biochar yielded from sugarcane bagasse is an ecofriendly material that can be used as a platform to immobilize biomolecules for construction of electrochemical biosensors.


Subject(s)
Biosensing Techniques , COVID-19 , Saccharum , Electrochemical Techniques/methods , SARS-CoV-2 , Cellulose , Immunoassay/methods , Electrodes , Antibodies
15.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12564, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439703

ABSTRACT

The need to fully exploit fishing resources due to increasing production and consequent waste generation requires research to promote the sustainability of the fishing industry. Fish waste from the industry is responsible for relevant environmental contamination. However, these raw materials contain high amounts of collagen and other biomolecules, being attractive due to their industrial and biotechnological applicability. Thus, to reduce the waste from pirarucu (Arapaima gigas) processing, this study aimed to obtain collagen from pirarucu skin tissue. The extraction process used 0.05 M sodium hydroxide, 10% butyl alcohol, and 0.5 M acetic acid, with extraction temperature of 20°C. The obtained yield was 27.8%, and through sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), it was determined that the collagen obtained was type I. This study showed that collagen solubility was highest at pH 3 and the lowest solubility was at concentrations of 3% sodium chloride. The denaturation temperature of collagen was 38.1°C, and its intact molecular structure was observed using the Fourier transform infrared spectrophotometry technique with an absorption radius of 1. The results showed that it was possible to obtain collagen from pirarucu skin at 20°C, which has the typical characteristics of commercial type I collagen. In conclusion, the procedures used may be considered to be an interesting alternative for collagen extraction, a new product obtained from the processing of fish waste.

16.
Braz. J. Pharm. Sci. (Online) ; 59: e23365, 2023. tab, graf
Article in English | LILACS | ID: biblio-1520321

ABSTRACT

Abstract Polymersomes are nanometric vesicles that can encapsulate large and hydrophilic biomolecules, such as proteins, in the aqueous core. Data in literature show large variation in encapsulation efficiency (%EE) values depending on the method used for calculation. We investigated different approaches (direct and indirect) to quantify the %EE of different proteins (catalase, bovine serum albumin-BSA, L-asparaginase and lysozyme) in Pluronic L-121 polymersomes. Direct methods allow quantification of the actual payload of the polymersomes and indirect methods are based on the quantification of the remaining non-encapsulated protein. The protein-loaded polymersomes produced presented approximately 152 nm of diameter (PDI ~ 0.4). Higher %EE values were obtained with the indirect method (up to 25%), attributed to partial entanglement of free protein in the polymersomes poly(Ethylene Glycol) corona. For the direct methods, vesicles were disrupted with chloroform or proteins precipitated with solvents. Reasonable agreement was found between the two protocols, with values up to 8%, 6%, 17.6% and 0.9% for catalase, BSA, L-asparaginase and lysozyme, respectively. We believe direct determination is the best alternative to quantify the %EE and the combination of both protocols would make results more reliable. Finally, no clear correlation was observed between protein size and encapsulation efficiency.


Subject(s)
Poloxamer/adverse effects , Asparaginase/classification , Muramidase/antagonists & inhibitors , Chloroform/adverse effects
18.
World J Microbiol Biotechnol ; 38(11): 211, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36053367

ABSTRACT

Several studies have shown that any magnetic field (MF) applied to microalgae modifies its cultivation conditions and may favor biomolecule production since it interacts with the microorganisms and affect their growth. As a result, there are changes in concentrations and compositions of biomass and biomolecules. This review aims at updating MF applications to microalga cultures that were reported by studies conducted in the last 5 years. It shows the main studies that reached positive results of carbohydrate, lipid, protein and pigment production. Effects of MFs may be positive, negative or null, depending on some factors, such as intensity, exposure time, physiological state of cells and application devices. Therefore, this review details cultivation conditions used for reaching high concentration of biomolecules, explains the action of MFs on microalgae and describes their applicability to the biorefinery concept.


Subject(s)
Microalgae , Biofuels , Biomass , Magnetic Fields , Microalgae/metabolism
19.
Animals (Basel) ; 12(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36009745

ABSTRACT

Administration of immunostimulants in fish is a preventive method to combat infections. A wide variety of these biological molecules exist, among which one of the yeast wall compounds stands out for its different biological activities. The ß-glucan that forms the structural part of yeast is capable of generating immune activity in fish by cell receptor recognition. The most frequently used ß-glucans for the study of mechanisms of action are those of commercial origin, with doses recommended by the manufacturer. Nevertheless, their immune activity is inefficient in some fish species, and increasing the dose may show adverse effects, including immunosuppression. Conversely, experimental ß-glucans from other yeast species show different activities, such as antibacterial, antioxidant, healing, and stress tolerance properties. Therefore, this review analyses the most recent scientific reports on the use of yeast ß-glucans in freshwater and marine fish.

20.
Theory Biosci ; 141(4): 339-347, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36042123

ABSTRACT

The origin of life was a cosmic event happened on primitive Earth. A critical problem to better understand the origins of life in Earth is the search for chemical scenarios on which the basic building blocks of biological molecules could be produced. Classic works in pre-biotic chemistry frequently considered early Earth as an homogeneous atmosphere constituted by chemical elements such as methane (CH4), ammonia (NH3), water (H2O), hydrogen (H2) and hydrogen sulfide (H2S). Under that scenario, Stanley Miller was capable to produce amino acids and solved the question about the abiotic origin of proteins. Conversely, the origin of nucleic acids has tricked scientists for decades once nucleotides are complex, though necessary molecules to allow the existence of life. Here we review possible chemical scenarios that allowed not only the formation of nucleotides but also other significant biomolecules. We aim to provide a theoretical solution for the origin of biomolecules at specific sites named "Prebiotic Chemical Refugia." Prebiotic chemical refugium should therefore be understood as a geographic site in prebiotic Earth on which certain chemical elements were accumulated in higher proportion than expected, facilitating the production of basic building blocks for biomolecules. This higher proportion should not be understood as static, but dynamic; once the physicochemical conditions of our planet changed periodically. These different concentration of elements, together with geochemical and astronomical changes along days, synodic months and years provided somewhat periodic changes in temperature, pressure, electromagnetic fields, and conditions of humidity, among other features. Recent and classic works suggesting most likely prebiotic refugia on which the main building blocks for biological molecules might be accumulated are reviewed and discussed.


Subject(s)
Origin of Life , Refugium , Earth, Planet , Atmosphere/chemistry , Nucleotides , Evolution, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL