Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 492
Filter
1.
World J Clin Cases ; 12(18): 3589-3595, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983431

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a new type of extracorporeal respiratory and circulatory assistance device. It can drain venous blood out of the body and inject it into veins or arteries after being oxygenated by an oxygenator (membrane lung) to replace lung and heart functions in a short time. ECMO can provide tissue blood perfusion and gas exchange almost equivalent to cardiac output and extend the effective treatment time window for patients with acute circulatory failure to restore cardiopulmonary function. CASE SUMMARY: We report a case of an 81-year-old woman who underwent whole cerebral angiography, basilar artery thrombectomy and stent thrombectomy in the posterior artery of the left brain after implantation of ECMO. The patient was admitted to the hospital due to myocardial infarction. Considering that the cause of the patient's disturbance of consciousness was unknown and cerebrovascular accident could not be ruled out after the implantation of ECMO, the department of Radioactive Intervention performed cerebral angiography. And the result of the angiography indicated vascular occlusion. After the basilar artery thrombectomy and stent thrombectomy in the posterior artery of the left brain, the patency of the occlusive vessel was achieved. CONCLUSION: Although the patient eventually died of circulatory failure, the result of this case verifies the feasibility of cerebral angiography and thrombectomy in patients with implanted ECMO in the intubated state.

2.
J Pain Res ; 17: 2071-2077, 2024.
Article in English | MEDLINE | ID: mdl-38887385

ABSTRACT

Purpose: We aimed to assess uterine and arcuate artery Doppler indices in patients with mild primary dysmenorrhea. Patients and Methods: A total of 55 patients were included, consisting of women without dysmenorrhea (n=26, group A) and women with mild primary dysmenorrhea (n=29, group B). Doppler measurements of the uterine and arcuate arteries were performed in both groups on the 1st-2nd days and 21st-24th days (midluteal phase) of the menstrual cycle using transvaginal ultrasound and compared between the groups. The severity of dysmenorrhea was assessed using visual analog scale scores. Results: Doppler measurements of the uterine and arcuate arteries performed on the 1st-2nd days of the menstrual cycle and the midluteal phase were similar between the groups (p>0.05). There was a significant decrease in the intragroup measurements of uterine and arcuate arteries performed on the first day of menstruation and the luteal phase in both groups (p<0.01). Conclusion: Doppler findings of the uterine and arcuate arteries did not differ between patients with and without mild primary dysmenorrhea. The etiology of primary dysmenorrhea mainly involves ischemia and vasoconstriction, but mild primary dysmenorrhea appears to be associated with a different etiology other than decreased tissue perfusion.

4.
J Am Coll Cardiol ; 84(1): 78-96, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38925728

ABSTRACT

Whereas medical practice stems from Hippocrates, cardiovascular science originates with Aristotle. The Hippocratic philosophy was championed by Galen (129-216 CE), whose advocacy of a tripartite soul found favor in the early Christian Church. In contrast, Aristotle's works were banned as heresy by ecclesiastical authority, only to survive and prosper in the Islamic Golden Age (775-1258 CE). Galen theorized that the circulation consisted of separate venous and arterial systems. Blood was produced in the liver and traveled centrifugally through veins. When arriving in the right ventricle, venous blood passed through tiny pores in the ventricular septum into the left ventricle, where it became aerated by air passing from the lungs through the pulmonary veins to the left side of the heart. Following arrival at distal sites, arterial blood disappeared, being consumed by the tissues, requiring that the liver needed to continually synthesize new blood. The heart was viewed as a sucking organ, and the peripheral pulse was deemed to result from changes in arterial tone, rather than cardiac systole. Galen's framework remained undisputed and dominated medical thought for 1,300 years, but the reintroduction of Aristotelian principles from the Islamic world into Europe (through the efforts of the Toledo School of Translators) were nurtured by the academic freedom and iconoclastic environment uniquely cultivated at the University of Padua, made possible by Venetian rebellion against papal authority. At Padua, the work of Andreas Vesalius, Realdo Colombo, Hieronymus Fabricius ab Acquapendente, and William Harvey (1543-1628) methodically destroyed Galen's model, leading to the modern concept of a closed-ended circulation. Yet, due to political forces, Harvey was ridiculed, as was James Lind, who performed the first prospective controlled trial, involving citrus fruits for scurvy (1747); it took nearly 50 years for his work to be accepted. Even the work of William Withering (1785), the father of cardiovascular pharmacology, was tarnished by professional jealously and the marketing campaign of a pharmaceutical company. Today's cardiovascular investigators should understand that major advances are routinely derided by the medical establishment for political or personal reasons; and it may take decades or centuries for important work to be accepted.


Subject(s)
Cardiology , Humans , Cardiology/history , History, Ancient , History, Medieval , Physicians/history , History, 17th Century , Biomedical Research/history , History, 16th Century
5.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1974-1980, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812210

ABSTRACT

Hypertension is the most common chronic disease in clinics and has become the most common risk factor for cardiovascular diseases. Because of its high incidence rate, disability rate, and mortality, it has attracted worldwide attention. Despite continuous progress in modern medicine in the treatment of hypertension with new antihypertensive drugs such as Zilebesiran, a nucleic acid drug that acts on microRNA, direct renin inhibitors, and renal sympathetic blockade, the control rate is still not ideal. How to effectively prevent and control hypertension has become one of the urgent clinical challenges to be solved. Traditional Chinese medicine(TCM) has a long record of treating hypertension and has accumulated rich experience, including theoretical understanding, effective single medicine, compound medicine, traditional Chinese patent medicines, and classic famous prescriptions. In TCM, hypertension belongs to the categories of diseases such as dizziness and headache. Previous literature and clinical studies have found that hypertension has key pathogenesis such as fire syndrome, fluid syndrome, deficiency syndrome, and blood stasis syndrome. Among them, the hyperactivity of liver Yang is closely related to blood pressure fluctuations, blood pressure variability, inflammation, and sympathetic activity stimulation. Internal obstruction by blood stasis is closely related to the damage of target organs such as the heart, brain, and kidneys in hypertension. Therefore, the two key pathogenesis of liver yang hyperactivity and internal obstruction by blood stasis run through the entire process of hypertension. Previous studies have found that the effective empirical formula Tianxiong Granules, based on the principles of suppressing Yang and promoting blood circulation, originated from the classic formula Xiongqiong Tianma Pills in Yu Yao Yuan Fang. It is composed of Gastrodiae Rhizoma, Chuanxiong Rhizoma, Puerariae Lobatae Radix, Achyranthis Bidentatae Radix, and Cyathulae Radix and has significant therapeutic effects in the treatment of hypertension. The clinical indications include headache, dizziness, bloating, strong neck, and weak waist and legs. At the same time, it may be accompanied by poor speech, thirst, normal or loose stools, soreness in the waist and legs, lower limb pain, muscle and pulse spasm, menstrual and abdominal pain, dark red tongue, strong pulse strings, or straight and long pulse strings that pass through the mouth of an inch. In the combination rule, it can be used according to the different pathogenesis stages of hypertension patients. In the fire syndrome stage, it is often combined with Tianma Gouteng Decoction and Chaihu Jia Longgu Muli Decoction. In the fluid syndrome stage, it is often combined with Banxia Baizhu Tianma Decoction. In the deficiency syndrome stage, it is often combined with Liuwei Dihuang Pills and Shenqi Pills. In terms of dosage, it is important to focus on the main symptoms and adjust the dosage of key drugs based on blood pressure values. Some drugs can be used in sufficient quantities. By analyzing the compatibility of Tianxiong Granules, clinical application indications, combined formula experience, and dosage application experience, we provide effective treatment methods and more options for TCM to treat hypertension with Yang hyperactivity and blood stasis syndrome.


Subject(s)
Drugs, Chinese Herbal , Hypertension , Humans , Hypertension/drug therapy , Hypertension/physiopathology , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/therapeutic use , Blood Circulation/drug effects , Blood Pressure/drug effects , Medicine, Chinese Traditional , Antihypertensive Agents/pharmacology
6.
Int J Pharm ; 659: 124193, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703934

ABSTRACT

Polyethylene glycol (PEG) is a popular biocompatible polymer and PEGylated nanoparticles passively accumulate in tumor tissues because of their enhanced permeability and retention effects. Recently, the anti-PEG immunity of PEGylated nanoparticles has become an issue that needs to be solved for their clinical applications. Dendrimers are highly branched and well-defined polymers with many terminal groups, which act as potent drug carriers. In this study, we examined the pharmacokinetics, biodistribution, anti-PEG immunity, and tumor accumulation of a fully PEGylated polyamidoamine (PAMAM) dendrimer after the first and second injections and compared them to those of a PEGylated liposome with the same lipid component as Doxil®. The PEGylated dendrimer showed greater blood circulation than that of the PEGylated liposome after the first and second injections in rats. In mice injected with the PEGylated dendrimer, much less anti-PEG immunoglobulin M (IgM) was generated than that in mice injected with the PEGylated liposome. The PEGylated dendrimer accumulated in the tumor after both the first and second injections. Our results indicated that the PEGylated dendrimer with a small size and high PEG density showed attenuated anti-PEG immunity and overcame the accelerated blood clearance phenomenon, which is useful for drug delivery systems for cancer treatment.


Subject(s)
Dendrimers , Liposomes , Polyethylene Glycols , Animals , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Dendrimers/pharmacokinetics , Dendrimers/chemistry , Tissue Distribution , Male , Mice , Doxorubicin/pharmacokinetics , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Immunoglobulin M/blood , Rats , Rats, Sprague-Dawley , Mice, Inbred BALB C , Female , Cell Line, Tumor , Nanoparticles
7.
Chest ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821183

ABSTRACT

BACKGROUND: Despite the known interplay between blood flow and function, there is currently no minimally invasive method to monitor diaphragm hemodynamics. We used contrast-enhanced ultrasound (CEUS) to quantify relative diaphragm blood flow (Q˙DIA) in humans and assessed the technique's efficacy and reliability during graded inspiratory pressure threshold loading. We hypothesized that: (1) Q˙DIA would linearly increase with pressure generation: and (2) that there would be good test-retest reliability and interanalyzer reproducibility. RESEARCH QUESTION: Can the first minimally invasive method to measure relative diaphragm blood flow be validated in humans? STUDY DESIGN AND METHODS: Quantitative contrast-enhanced ultrasound of the costal diaphragm was performed in healthy participants (10 male subjects, 6 female subjects; mean age 28 ± 5 years; BMI 22.8 ± 2.0 kg/m) during unloaded breathing and three stages of loaded breathing on two separate days. Gastric and esophageal balloon catheters measured diaphragmatic pressure. Ultrasonography was performed during a constant-rate IV infusion of lipid-stabilized microbubbles following each stage. Ultrasound images were acquired after a destruction-replenishment sequence and diaphragm specific time-intensity data were used to determine Q˙DIA by two individuals. RESULTS: Transdiaphragmatic pressure for unloaded and each loading stage were 15.2 ± 0.8, 26.1 ± 0.8, 34.6 ± 0.8, and 40.0 ± 0.8 percentage of the maximum, respectively. Q˙DIA increased with each stage of loading (3.1 ± 3.1, 6.9 ± 3.6, 11.0 ± 4.9, and 13.5 ± 5.4 AU/s; P < .0001). The linear relationship between diaphragmatic flow and pressure was reproducible from day to day. Q˙DIA had good to excellent test-retest reliability (0.86 [0.77, 0.92]; P < .0001) and excellent interanalyzer reproducibility (0.93 [0.90, 0.95]; P < .0001) with minimal bias. INTERPRETATION: Relative Q˙DIA measurements have valid physiological underpinnings, are reliable day to day, and reproducible analyzer-to-analyzer. Contrast-enhanced ultrasound is a viable, minimally invasive method for assessing costal Q˙DIA in humans and may provide a tool to monitor diaphragm hemodynamics in clinical settings.

8.
Brain Spine ; 4: 102832, 2024.
Article in English | MEDLINE | ID: mdl-38756859

ABSTRACT

Introduction: Both intracranial pressure (ICP) and cerebral arterial blood volume (CaBV) have a pulsatile character related to the cardiac cycle. The evolution of the shape of ICP pulses under increasing ICP or decreasing intracranial compliance is well documented. Nevertheless, the exact origin of the alterations in the ICP morphology remains unclear. Research question: Does ICP pulse waveform become similar to non-invasively estimated CaBV pulse during ICP plateau waves. Material and methods: A total of 15 plateau waves recorded in 15 traumatic brain injured patients were analyzed. CaBV pulse waveforms were calculated using global cerebral blood flow model from transcranial Doppler cerebral blood flow velocity (CBFV) signals. The difference index (DI) was used to quantify the similarity between ICP and CaBV waveforms. DI was calculated as the sum of absolute sample-by-sample differences between ICP and CaBV waveforms, representing the area between the pulses. Results: ICP increased (19.4 mm Hg [Q1-Q3: 18.2-23.4 mm Hg] vs. 42.7 mm Hg [Q1-Q3: 36.5-45.1 mm Hg], p < 0.001) while CBFV decreased (44.2 cm/s [Q1-Q3: 34.8-69.5 cm/s] vs. 32.9 cm/s [Q1-Q3: 24.7-68.2 cm/s], p = 0.002) during plateau waves. DI was smaller during the plateau waves (20.4 [Q1-Q3: 15.74-23.0]) compared to the baselines (26.3 [Q1-Q3: 24.2-34.7], p < 0.001). Discussion and conclusion: The area between corresponding ICP and CaBV pulse waveforms decreased during the plateau waves which suggests they became similar in shape. CaBV may play a significant role in determining the shape of ICP pulses during the plateau waves and might be a driving force in formulating ICP elevation.

9.
Technol Cancer Res Treat ; 23: 15330338241250244, 2024.
Article in English | MEDLINE | ID: mdl-38693842

ABSTRACT

Single biofilm biomimetic nanodrug delivery systems based on single cell membranes, such as erythrocytes and cancer cells, have immune evasion ability, good biocompatibility, prolonged blood circulation, and high tumor targeting. Because of the different characteristics and functions of each single cell membrane, more researchers are using various hybrid cell membranes according to their specific needs. This review focuses on several different types of biomimetic nanodrug-delivery systems based on composite biofilms and looks forward to the challenges and possible development directions of biomimetic nanodrug-delivery systems based on composite biofilms to provide reference and ideas for future research.


Subject(s)
Antineoplastic Agents , Biofilms , Biomimetics , Drug Delivery Systems , Neoplasms , Humans , Neoplasms/drug therapy , Biofilms/drug effects , Biomimetics/methods , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Biomimetic Materials/chemistry , Animals , Drug Carriers/chemistry
10.
Article in English | MEDLINE | ID: mdl-38748379

ABSTRACT

OBJECTIVES: Anastomotic leakage in esophageal cancer surgery may be reduced by evaluating the blood flow to the reconstructed organ, but quantitative evaluation of arterial and venous blood flow is difficult. This study aimed to quantitatively assess blood flow using a new technique, as well as determine the relationship between the blood flow in the gastric tube and anastomotic leakage using near-infrared spectroscopy. METHODS: This single-center, observational study included 50 patients aged 51-82 years who underwent radical esophagectomy with gastric tube reconstruction for esophageal cancer between June 2022 and January 2023. Regional tissue oxygen saturation was measured at the antrum (point X), the anastomotic point (point Z), and the midpoint between points X and Z (point Y) before and after gastric tube formation. These three points of oxygen saturation were investigated in relation to anastomotic leakage. RESULTS: When comparing the presence of leakage to its absence, regional tissue oxygen saturation at points X and Z after gastric tube formation was significantly lower (X: p = 0.03, Z: p = 0.02), with the decreasing rate significantly higher at point Z (p = 0.01). There was no significant difference in the decreasing rate of regional tissue oxygen saturation between points X and Y (X: p = 0.052, Y: p = 0.83). CONCLUSION: Regional tissue oxygen saturation levels may be useful for measuring blood flow and could be a predictor of anastomotic leakage.

11.
Nutr Res ; 126: 14-22, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603978

ABSTRACT

Hormonal changes during the menopause transition may lead to vasomotor symptoms, including hot flashes (HFs) and neuropsychiatric symptoms such as anxiety and irritability. We hypothesized that the effects of cassis polyphenol (CaP) to improve microcirculation and vasorelaxation may alleviate menopausal symptoms. We performed a randomized, double-blind, parallel-group, placebo-controlled trial involving 59 healthy women (mean [standard deviation] age, 51.3 [4.3] years; body mass index, 20.8 [2.6] kg/m2). Participants experiencing subjective menopausal symptoms consumed CaP tablets (400 mg/d, CaP group) or placebo tablets (placebo group) for 4 weeks. Participants were evaluated using questionnaires at baseline, during the 4-week intervention period, and during a 2-week postinterventional observation period. The primary objective was to evaluate the effects of supplementation with CaP on HFs in healthy Japanese women with menopausal symptoms. Additional assessments included the modified Kupperman menopausal index, World Health Organization-5 Well-Being Index, World Health Organization quality-of-life 26-item index, State-Trait Anxiety Inventory (anxiety and trait components), and Oguri-Shirakawa-Azumi sleep inventory (middle-aged and elderly versions). During the 4-week intervention period, no significant between-group differences were detected in the HF frequency, HF score, sweating frequency, menopausal symptoms, quality of life, anxiety, or sleep. During the 2-week postintervention observational period, the HF score and sweating frequency were significantly decreased in the CaP group compared with the placebo group. These findings suggest that twice daily intake of CaP for 4 weeks does not alleviate menopause symptoms, but the improvement observed in the CaP intake group during the postintervention period warrants confirmation through further large-scale studies.


Subject(s)
Dietary Supplements , Hot Flashes , Menopause , Polyphenols , Quality of Life , Humans , Female , Double-Blind Method , Middle Aged , Hot Flashes/drug therapy , Polyphenols/pharmacology , Polyphenols/administration & dosage , Menopause/drug effects , Anxiety , Surveys and Questionnaires
12.
Arterioscler Thromb Vasc Biol ; 44(6): 1265-1282, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602102

ABSTRACT

BACKGROUND: Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. METHODS: Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time-to-cell cycle reentry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA-seq (single-cell RNA sequencing) analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. RESULTS: Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous flow-exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. CONCLUSIONS: Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence misregulation that leads to vascular dysfunction and disease.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p27 , Endothelial Cells , Zebrafish , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Animals , Humans , Endothelial Cells/metabolism , Mechanotransduction, Cellular , Inhibitor of Differentiation Proteins/metabolism , Inhibitor of Differentiation Proteins/genetics , Cell Cycle , Mice , Cells, Cultured , Time Factors , Regional Blood Flow , Human Umbilical Vein Endothelial Cells/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Cell Proliferation , Neoplasm Proteins
13.
Physiol Rep ; 12(7): e15983, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605405

ABSTRACT

Siphons are devices that transport liquids uphill between two containers. It has been proposed that a siphon principle operates in closed circulatory systems, as best exemplified by the circulation of blood in mammals. This principle is supposed to ensure that no additional work is necessary to pump blood above the level of the heart, and that there is no gravitational static pressure gradient in the column of blood. The first statement is correct, while we demonstrate that, ignoring hydraulic resistance to blood flow, the static pressure gradient is equal to the hydrostatic gradient in a siphon model of blood circulation, although the details of the proof do not depend on the geometry of the circulatory system and the proof can be trivially extended to other models such as a vascular waterfall. This implies that the controversy over the siphon principle has no implications for the description of blood circulation, and that mechanisms such as the "baffle," which some authors have appealed to in order to obtain the expected gradient, are not necessary. In our discussion, we also discuss empirical data that appear to provide additional verification of our results, as well as several everyday occurrences that provide additional support.


Subject(s)
Heart , Hemodynamics , Animals , Gravitation , Mammals
14.
Bioengineering (Basel) ; 11(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38671801

ABSTRACT

XRD diffraction and IR absorption were investigated for raw loess powder and heat-treated loess powder. Raw loess retains its useful minerals, but loses their beneficial properties when calcined at 850 °C and 1050 °C. To utilize the useful minerals, loess balls were made using a low-temperature wet-drying method. The radiant energy and transmittance were measured for the loess balls. Far-infrared ray (FIR) emitted from loess bio-balls is selectively absorbed as higher vibrational energy by water molecules. FIR can raise the body's core temperature, thereby improving blood flow through the body's thermoregulatory mechanism. In an exploratory study with 40 participants, when the set temperature of the loess ball mat was increased from 25 °C to 50 °C, blood flow increased by 39.01%, from 37.48 mL/min to 52.11 mL/min, in the left middle finger; in addition, it increased by 39.62%, from 37.15 mL/min to 51.87 mL/min, in the right middle finger. The FIR emitted from loess balls can be widely applied, in various forms, to diseases related to blood flow, such as cold hands and feet, diabetic foot, muscle pain, and menstrual pain.

15.
Biol Pharm Bull ; 47(5): 955-964, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38644204

ABSTRACT

The occurrence of in-stent restenosis (ISR) poses a significant challenge for percutaneous coronary intervention (PCI). Thus, the promotion of vascular reendothelialization is essential to inhibit endothelial proliferation. In this study, we clarified the mechanism by which Detoxification and Activating Blood Circulation Decoction (DABCD) promotes vascular reendothelialization to avoid ISR by miRNA-126-mediated modulation of the vascular endothelial growth factor (VEGF) signaling pathway. A rat model of post-PCI restenosis was established by balloon injury. The injured aortic segment was collected 14 and 28 d after model establishment. Our findings indicate that on the 14th and 28th days following balloon injury, DABCD reduced intimal hyperplasia and inflammation and promoted vascular reendothelialization. Additionally, DABCD markedly increased nitric oxide (NO) expression and significantly decreased ET-1 production in rat serum. DABCD also increased the mRNA level of endothelial nitric oxide synthase (eNOS) and the protein expression of VEGF, p-Akt, and p-extracellular signal-regulated kinase (ERK)1/2 in vascular tissue. Unexpectedly, the expression of miR-126a-5p mRNA was significantly lower in the aortic tissue of balloon-injured rats than in the aortic tissue of control rats, and higher miR-126a-5p levels were observed in the DABCD groups. The results of this study indicated that the vascular reendothelialization effect of DABCD on arterial intimal injury is associated with the inhibition of neointimal formation and the enhancement of vascular endothelial activity. More specifically, the effects of DABCD were mediated, at least in part, through miR-126-mediated VEGF signaling pathway activation.


Subject(s)
MicroRNAs , Nitric Oxide Synthase Type III , Rats, Sprague-Dawley , Signal Transduction , Vascular Endothelial Growth Factor A , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Signal Transduction/drug effects , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Coronary Restenosis/metabolism , Aorta/drug effects , Aorta/pathology , Aorta/metabolism
16.
Tohoku J Exp Med ; 263(2): 141-150, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38522897

ABSTRACT

Warming Yang promoting blood circulation and diuresis (WYPBD) has been proven effective in treating some diseases. This study aimed to evaluate therapeutic effect of WYPBD in treating chronic heart failure (CHF). CHF rats were established by intraperitoneally injecting doxorubicin (DOX). Therapeutic effects of WYPBD on cardiac function and hemodynamic parameters of myocardial tissues were analyzed. Collagen fiber production and myocardial fibrosis were evaluated. Transcriptions of COL1A1 gene, COL3A1 gene, and TGFB1 gene were evaluated with RT-PCR. Expression of BNP, AVP, PARP, caspase-3, and Bcl-2 in myocardial tissues were evaluated. TUNEL assay was used to identify apoptosis of cardiomyocytes. WYPBD alleviated degree of myocardial hypertrophy in CHF rats compared to the rats in CHF model group (P < 0.05). WYPBD significantly improved cardiac hemodynamics (increased LVEF and LVSF) of CHF rats compared to rats in the CHF model group (P < 0.05). WYPBD protected myocardial structure and inhibited collagen fiber production in myocardial tissues of CHF rats. WYPBD markedly decreased myocardial fibrosis mediators (Col1α, Col3α, TGF-ß1) transcription in myocardial tissues of CHF rats compared to rats in CHF model group (P < 0.05). WYPBD significantly reduced BNP and AVP expression in myocardial tissues of CHF rats compared to rats in the CHF model group (P < 0.05). WYPBD markedly reduced the expression of PRAP and caspase-3, and increased Bcl-2 expression in myocardial tissues of CHF rats compared to rats in the CHF model group (P < 0.05). In conclusion, WYPBD alleviated CHF myocardial damage by inhibiting collagen fiber and myocardial fibrosis, attenuating apoptosis associated with the mitochondria signaling pathway of cardiomyocytes.


Subject(s)
Apoptosis , Diuresis , Fibrosis , Heart Failure , Hemodynamics , Myocardium , Rats, Sprague-Dawley , Signal Transduction , Animals , Heart Failure/pathology , Heart Failure/physiopathology , Apoptosis/drug effects , Signal Transduction/drug effects , Male , Myocardium/pathology , Myocardium/metabolism , Hemodynamics/drug effects , Diuresis/drug effects , Collagen/metabolism , Chronic Disease , Mitochondria/metabolism , Mitochondria/drug effects , Transforming Growth Factor beta1/metabolism , Natriuretic Peptide, Brain/metabolism , Natriuretic Peptide, Brain/blood , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Rats
17.
J Ethnopharmacol ; 328: 118078, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38513781

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes. Chinese medicine believes that kidney deficiency and blood stasis are significant pathogenesis of DR. A characteristic therapeutic approach for this pathogenesis is the kidney-tonifying and blood-activating method. By literature retrieval from several databases, we methodically summarized the commonly used kidney-tonifying and blood-activating herbs for treating DR, including Lycii Fructus, Rehmanniane Radix Praeparata, and Corni Fructus with the function of nourishing kidney; Salvia Miltiorrhizae Radix et Rhizoma with the function of enhancing blood circulation; Rehmanniae Radix with the function of nourishing kidney yin; and Astragali Radix with the function of tonifying qi. It has been demonstrated that these Chinese herbs described above, by tonifying the kidney and activating blood circulation, significantly improve the course of DR. AIM OF THE STUDY: Through literature research, to gain a thorough comprehension of the pathogenesis of DR. Simultaneously, through the traditional application analysis, modern pharmacology research and network pharmacology analysis of kidney-tonifying and blood-activating herbs, to review the effectiveness and advantages of kidney-tonifying and blood-activating herbs in treating DR comprehensively. MATERIALS AND METHODS: PubMed, the China National Knowledge Infrastructure (CNKI), and Wanfang Data were used to filter the most popular herbs for tonifying kidney and activating blood in the treatment of DR. The search terms were "diabetic retinopathy" and "tonifying kidney and activating blood". Mostly from 2000 to 2023. Network pharmacology was applied to examine the key active components and forecast the mechanisms of kidney-tonifying and blood-activating herbs in the treatment of DR. RESULTS: Kidney deficiency and blood stasis are the pathogenesis of DR, and the pathogenesis is linked to oxidative stress, inflammation, hypoxia, and hyperglycemia. Scientific data and network pharmacology analysis have demonstrated the benefit of tonifying kidney and activating blood herbs in treating DR through several channels, multiple components, and multiple targets. CONCLUSIONS: This review first presents useful information for subsequent research into the material foundation and pharmacodynamics of herbs for tonifying kidney and activating blood, and offers fresh insights into the treatment of DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Drugs, Chinese Herbal , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Diabetic Retinopathy/drug therapy , Medicine, Chinese Traditional , Plant Roots , Kidney , Diabetes Mellitus/drug therapy
18.
Arterioscler Thromb Vasc Biol ; 44(5): 1101-1113, 2024 May.
Article in English | MEDLINE | ID: mdl-38545783

ABSTRACT

BACKGROUND: Much of what we know about insulin resistance is based on studies from metabolically active tissues such as the liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance; however, the underlying mechanisms remain incompletely understood. Arf6 (ADP ribosylation factor 6) is a small GTPase that plays a critical role in endothelial cell function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. METHODS: We used mouse models of constitutive endothelial cell-specific Arf6 deletion (Arf6f/- Tie2Cre+) and tamoxifen-inducible Arf6 knockout (Arf6f/f Cdh5CreER+). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamps. We used a fluorescence microsphere-based technique to measure tissue blood flow. Skeletal muscle capillary density was assessed using intravital microscopy. RESULTS: Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide bioavailability but independent of altered acetylcholine-mediated or sodium nitroprusside-mediated vasodilation. Endothelial cell-specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow-fed mice and glucose intolerance in high-fat diet-fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. CONCLUSIONS: Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.


Subject(s)
ADP-Ribosylation Factor 6 , Endothelium , Insulin Resistance , Muscle, Skeletal , Mice , ADP-Ribosylation Factor 6/genetics , ADP-Ribosylation Factor 6/metabolism , Endothelium/metabolism , Mice, Inbred C57BL , Glucose Intolerance , Tamoxifen , Mice, Knockout , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Obesity/metabolism , Obesity/pathology , Glucose/metabolism , Diet, High-Fat , Mice, Obese , Vasodilation
19.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542295

ABSTRACT

Hedgehog (Hh) signaling is crucial in cardiovascular development and maintenance. However, the biological role of Patched1 (Ptch1), an inhibitory receptor of the Hh signaling pathway, remains elusive. In this study, a Ptch1 ortholog was characterized in Nile tilapia (Oreochromis niloticus), and its function was investigated through CRISPR/Cas9 gene knockout. When one-cell embryos were injected with CRISPR/Cas9 targeting ptch1, the mutation efficiency exceeded 70%. During 0-3 days post fertilization (dpf), no significant differences were observed between the ptch1 mutant group and the control group; at 4 dpf (0 day after hatching), about 10% of the larvae showed an angiogenesis defect and absence of blood flow; from 5 dpf, most larvae exhibited an elongated heart, large pericardial cavity, and blood leakage and coagulation, ultimately dying during the 6-8 dpf period due to the lack of blood circulation. Consistently, multiple differentially expressed genes related to angiogenesis, blood coagulation, and heart development were enriched in the ptch1 mutants. Furthermore, Smoothened (Smo) antagonist (cyclopamine) treatment of the ptch1 mutants greatly rescued the cardiovascular disorders. Collectively, our study suggests that Ptch1 is required for cardiovascular development and vascular integrity via Smo signaling, and excessive Hh signaling is detrimental to cardiovascular development.


Subject(s)
Cichlids , Animals , Cichlids/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Signal Transduction , Gene Knockout Techniques , Mutation , Smoothened Receptor/genetics
20.
Biomed Eng Online ; 23(1): 24, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388416

ABSTRACT

Aortic stenosis, hypertension, and left ventricular hypertrophy often coexist in the elderly, causing a detrimental mismatch in coupling between the heart and vasculature known as ventricular-vascular (VA) coupling. Impaired left VA coupling, a critical aspect of cardiovascular dysfunction in aging and disease, poses significant challenges for optimal cardiovascular performance. This systematic review aims to assess the impact of simulating and studying this coupling through computational models. By conducting a comprehensive analysis of 34 relevant articles obtained from esteemed databases such as Web of Science, Scopus, and PubMed until July 14, 2022, we explore various modeling techniques and simulation approaches employed to unravel the complex mechanisms underlying this impairment. Our review highlights the essential role of computational models in providing detailed insights beyond clinical observations, enabling a deeper understanding of the cardiovascular system. By elucidating the existing models of the heart (3D, 2D, and 0D), cardiac valves, and blood vessels (3D, 1D, and 0D), as well as discussing mechanical boundary conditions, model parameterization and validation, coupling approaches, computer resources and diverse applications, we establish a comprehensive overview of the field. The descriptions as well as the pros and cons on the choices of different dimensionality in heart, valve, and circulation are provided. Crucially, we emphasize the significance of evaluating heart-vessel interaction in pathological conditions and propose future research directions, such as the development of fully coupled personalized multidimensional models, integration of deep learning techniques, and comprehensive assessment of confounding effects on biomarkers.


Subject(s)
Heart , Ventricular Function, Left , Aged , Humans , Aging , Coronary Vessels , Heart Ventricles
SELECTION OF CITATIONS
SEARCH DETAIL
...