Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 533
Filter
1.
Sci Rep ; 14(1): 15796, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982277

ABSTRACT

The clinical diagnosis of biliary atresia (BA) poses challenges, particularly in distinguishing it from cholestasis (CS). Moreover, the prognosis for BA is unfavorable and there is a dearth of effective non-invasive diagnostic models for detection. Therefore, the aim of this study is to elucidate the metabolic disparities among children with BA, CS, and normal controls (NC) without any hepatic abnormalities through comprehensive metabolomics analysis. Additionally, our objective is to develop an advanced diagnostic model that enables identification of BA. The plasma samples from 90 children with BA, 48 children with CS, and 47 NC without any liver abnormalities children were subjected to metabolomics analysis, revealing significant differences in metabolite profiles among the 3 groups, particularly between BA and CS. A total of 238 differential metabolites were identified in the positive mode, while 89 differential metabolites were detected in the negative mode. Enrichment analysis revealed 10 distinct metabolic pathways that differed, such as lysine degradation, bile acid biosynthesis. A total of 18 biomarkers were identified through biomarker analysis, and in combination with the exploration of 3 additional biomarkers (LysoPC(18:2(9Z,12Z)), PC (22:5(7Z,10Z,13Z,16Z,19Z)/14:0), and Biliverdin-IX-α), a diagnostic model for BA was constructed using logistic regression analysis. The resulting ROC area under the curve was determined to be 0.968. This study presents an innovative and pioneering approach that utilizes metabolomics analysis to develop a diagnostic model for BA, thereby reducing the need for unnecessary invasive examinations and contributing to advancements in diagnosis and prognosis for patients with BA.


Subject(s)
Biliary Atresia , Biomarkers , Cholestasis , Metabolic Networks and Pathways , Metabolomics , Biliary Atresia/blood , Biliary Atresia/diagnosis , Biliary Atresia/metabolism , Humans , Metabolomics/methods , Cholestasis/blood , Cholestasis/diagnosis , Cholestasis/metabolism , Female , Male , Biomarkers/blood , Infant , Child, Preschool , Diagnosis, Differential , ROC Curve , Metabolome , Case-Control Studies , Child
2.
Brain Plast ; 9(1-2): 21-41, 2024.
Article in English | MEDLINE | ID: mdl-38993579

ABSTRACT

Background: Microglia and inflammation play a significant role in Alzheimer's disease (AD). Physical exercise and peripheral signals can influence microglial activity in the brain. Modulating the inflammatory response in the brain may provide therapeutic approaches for AD. Objective: To assess the effects of intravenously administered blood plasma from exercise-trained donor rats on cognitive function, microglia, and cytokine levels in an AD rat model at two different pathological stages; an early pre-plaque stage and a later stage closer to the emergence of extracellular plaques. Methods: Male transgenic McGill-R-Thy1-APP rats aged 2 and 5 months received 14 injections over 6 weeks: 1) plasma from exercise-trained rats (ExPlas), 2) plasma from sedentary rats (SedPlas), or 3) saline. Cognitive function was evaluated in a novel object recognition task. Microglia count and morphology were analyzed in cornu ammonis, dentate gyrus, entorhinal cortex, and subiculum. Amyloid plaque number and size were assessed in the rats with the later treatment start. A multiplex assay was used to measure 23 cytokines in cornu ammonis. Results: In rats treated from 2 months of age, ExPlas and SedPlas increased number and length of microglial branches in cornu ammonis and dentate gyrus compared to saline. Only ExPlas-treated rats exhibited similar changes in subiculum, while entorhinal cortex showed no differences across treatments. Microglia count remained unaffected. In rats treated from 5 months of age, there were no significant differences in microglia count or morphology or the number or size of amyloid plaques in any brain region. Compared to both other treatments in early pre-plaque stage rats, SedPlas increased TNF-α levels. ExPlas upregulated GM-CSF, IL-18, and VEGF, while SedPlas increased IL-10 compared to saline. In later-stage rats, ExPlas upregulated IL-17, and SedPlas upregulated TNF-α compared to saline. There were no effects of treatments on recognition memory. Conclusions: Intravenous injections of blood plasma from exercise-trained and sedentary donors differentially modulated microglial morphology and cytokine levels in the AD rat model at an early pre-plaque stage of pathology. Exercised plasma may reduce proinflammatory TNF-α signaling and promote microglial responses to early Aß accumulation but the lack of treatment effects in the later-stage rats emphasizes the potential importance of treatment timing.

3.
Bull Exp Biol Med ; 176(6): 811-815, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38896317

ABSTRACT

The qualitative composition and zeta potential of magnetite nanoparticles (size 4.2±1.2 nm) obtained by co-precipitation method were determined by X-ray and diffraction dynamic light scattering. The zeta potential of Fe3O4 particles was -15.1±4.5 mV. The possibility of interaction of magnetite nanoparticles with human blood plasma proteins and hemoglobin as well as with erythrocyte membranes was demonstrated by spectrophotometry, electrophoresis, and fluorescence methods. No changes in the sizes of hemoglobin molecules and plasma proteins after their modification by Fe3O4 particles were detected. The possibility of modifying the structural state of erythrocyte membranes in the presence of magnetite nanoparticles was demonstrated by means of fluorescent probe 1-anilinonaphthalene-8-sulfonate.


Subject(s)
Hemoglobins , Magnetite Nanoparticles , Humans , Magnetite Nanoparticles/chemistry , Hemoglobins/chemistry , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/metabolism , Particle Size , Blood Proteins/chemistry , Anilino Naphthalenesulfonates/chemistry , X-Ray Diffraction , Ferrosoferric Oxide/chemistry , Fluorescent Dyes/chemistry
4.
ACS Appl Mater Interfaces ; 16(24): 30648-30657, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38843092

ABSTRACT

Organic and inorganic hybrid field-effect transistors (FETs), utilizing layered molybdenum diselenide (MoSe2) and an organic semiconductor poly(3-hexylthiophene) (P3HT), are presented for biosensing applications. A new hybrid device structure that combines organic (P3HT) and inorganic (MoSe2) components is showcased for accurate and selective bioanalyte detection in human bodily fluids to overcome 2D-transition metal dichalcogenides (TMDs) nonspecific interactions. This hybrid structure utilizes organic and inorganic semiconductors' high surface-to-volume ratio, carrier transport, and conductivity for biosensing. Ammonia concentrations in saliva and plasma are closely linked to physiological and pathological conditions of the human body. A highly sensitive hybrid FET biosensor detects total ammonia (NH4+ and NH3) from 0.5 µM to 1 mM concentrations, with a detection limit of 0.65 µM in human bodily fluids. The sensor's ammonia specificity in artificial saliva against interfering species is showcased. Furthermore, the fabricated hybrid FET device exhibits a stable and repeatable response to ammonia in both saliva and plasma, achieving a remarkable response level of 2300 at a 1 mM concentration of ammonia, surpassing existing literature by 10-fold. This hybrid FET biosensing platform holds significant promise for developing a precise tool for the real-time monitoring of ammonia concentrations in human biological fluids, offering potential applications in point-of-care diagnostics.


Subject(s)
Ammonia , Biosensing Techniques , Saliva , Transistors, Electronic , Ammonia/analysis , Humans , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Saliva/chemistry , Saliva/metabolism , Thiophenes/chemistry , Molybdenum/chemistry , Limit of Detection , Semiconductors
5.
Luminescence ; 39(6): e4805, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38859619

ABSTRACT

In this study, a chemiluminescence (CL) method was developed to determine diphenoxylate in tablets and human plasma. This is the first CL method proposed to determine diphenoxylate. Creating three-dimensional data caused the parallel factor analysis algorithm (PARAFAC) to be used for the first time in CL methods. The method is based on the fact that diphenoxylate enhances the weak CL produced in the reaction of Ru(phen)3 2+ and acidic Ce(IV), and the concentration of Ce(IV) solution has a different effect on the CL response of diphenoxylate and the blank plasma. The calibration curve was linear from 4.0 × 10-8 to 1.6 × 10-6 mol L-1 (R2 = 0.9954), and the detection limit was 1.3 × 10-8 mol L-1 (S/N = 3). The sampling rate was about 30 samples per hour, and the % RSD for 10 repeated measurements of 4 × 10-7 mol L-1 diphenoxylate was 5.4%. The interference effects of some ions, amino acids, and common additives were also investigated. The CL method was successfully used to determine diphenoxylate in tablets, and the results were statistically confirmed by the reference method. The proposed CL method and the PARAFAC algorithm were successfully used to determine the concentration of diphenoxylate in human blood plasma samples.


Subject(s)
Luminescent Measurements , Tablets , Humans , Tablets/chemistry , Luminescent Measurements/methods , Luminescence , Limit of Detection , Algorithms , Oxalates/chemistry , Oxalates/blood , Factor Analysis, Statistical
6.
Alzheimers Dement ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885334

ABSTRACT

INTRODUCTION: Corticobasal syndrome (CBS) can result from underlying Alzheimer's disease (AD) pathologies. Little is known about the utility of blood plasma metrics to predict positron emission tomography (PET) biomarker-confirmed AD in CBS. METHODS: A cohort of eighteen CBS patients (8 amyloid beta [Aß]+; 10 Aß-) and 8 cognitively unimpaired (CU) individuals underwent PET imaging and plasma analysis. Plasma concentrations were compared using a Kruskal-Wallis test. Spearman correlations assessed relationships between plasma concentrations and PET uptake. RESULTS: CBS Aß+ group showed a reduced Aß42/40 ratio, with elevated phosphorylated tau (p-tau)181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) concentrations, while CBS Aß- group only showed elevated NfL concentration compared to CU. Both p-tau181 and GFAP were able to differentiate CBS Aß- from CBS Aß+ and showed positive associations with Aß and tau PET uptake. DISCUSSION: This study supports use of plasma p-tau181 and GFAP to detect AD in CBS. NfL shows potential as a non-specific disease biomarker of CBS regardless of underlying pathology. HIGHLIGHTS: Plasma phosphorylated tau (p-tau)181 and glial fibrillary acidic protein (GFAP) concentrations differentiate corticobasal syndrome (CBS) amyloid beta (Aß)- from CBS Aß+. Plasma neurofilament light concentrations are elevated in CBS Aß- and Aß+ compared to controls. Plasma p-tau181 and GFAP concentrations were associated with Aß and tau positron emission tomography (PET) uptake. Aß42/40 ratio showed a negative correlation with Aß PET uptake.

7.
Front Cell Infect Microbiol ; 14: 1374560, 2024.
Article in English | MEDLINE | ID: mdl-38873096

ABSTRACT

Introduction: As a contagious and chronic disease in the livestock industry, Paratuberculosis is a significant threat to dairy herds' genetic and economic resources. Due to intensive breeding and high production of dairy cattle, the incidence and prevalence are higher. Developing non-destructive diagnostic methods for the early detection and identification of healthy animals is paramount for breeding programs. Conventional methods are almost entirely destructive, have low accuracy, lack precision, and are time-consuming. Near-infrared spectroscopy (NIRS) and aquaphotomics can detect changes in biofluids and thus have the potential to diagnose disease. This study aimed to investigate the diagnostic ability of NIRS and aquaphotomics for Paratuberculosis in dairy cattle. Methods: Blood plasma from dairy cattle was collected in the NIR range (1,300 nm to 1,600 nm) 60 days before and 100 days to 200 days after calving in two groups, positive and negative, using the same consecutive enzyme-linked immunosorbent assay test results three times as a reference test. Results: NIRS and aquaphotomics methods invite 100% accuracy, sensitivity, and specificity to detect Paratuberculosis using data mining by unsupervised method, Principal Component Analysis, and supervised methods: Soft Independent Modeling of Class Analogiest, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Partial Least Square-Discriminant Analysis, and Support Vector Machine models. Discussion: The current study found that monitoring blood plasma with NIR spectra provides an opportunity to analyze antibody levels indirectly via changes in water spectral patterns caused by complex physiological changes, such as the amount of antibodies related to Paratuberculosis by aquagram.


Subject(s)
Cattle Diseases , Paratuberculosis , Spectroscopy, Near-Infrared , Animals , Cattle , Paratuberculosis/diagnosis , Spectroscopy, Near-Infrared/methods , Cattle Diseases/diagnosis , Cattle Diseases/blood , Sensitivity and Specificity , Mycobacterium avium subsp. paratuberculosis/immunology , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Mycobacterium avium subsp. paratuberculosis/genetics , Female , Dairying , Enzyme-Linked Immunosorbent Assay/methods
8.
Metab Brain Dis ; 39(5): 985-1004, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842660

ABSTRACT

Neurodegeneration, known as the progressive loss of neurons in terms of their structure and function, is the principal pathophysiological change found in the majority of brain-related disorders. Ageing has been considered the most well-established risk factor in most common neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). There is currently no effective treatment or cure for these diseases; the approved therapeutic options to date are only for palliative care. Ageing and neurodegenerative diseases are closely intertwined; reversing the aspects of brain ageing could theoretically mitigate age-related neurodegeneration. Ever since the regenerative properties of young blood on aged tissues came to light, substantial efforts have been focused on identifying and characterizing the circulating factors in the young and old systemic milieu that may attenuate or accentuate brain ageing and neurodegeneration. Later studies discovered the superiority of old plasma dilution in tissue rejuvenation, which is achieved through a molecular reset of the systemic proteome. These findings supported the use of therapeutic blood exchange for the treatment of degenerative diseases in older individuals. The first objective of this article is to explore the rejuvenating properties of blood-based therapies in the ageing brains and their therapeutic effects on AD. Then, we also look into the clinical applications, various limitations, and challenges associated with blood-based therapies for AD patients.


Subject(s)
Aging , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/metabolism , Aging/physiology , Animals , Brain/metabolism , Brain/pathology , Alzheimer Disease/therapy , Alzheimer Disease/metabolism
9.
J Hazard Mater ; 472: 134525, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743978

ABSTRACT

The widespread consumption of cocaine poses a significant threat to modern society. The most effective way to combat this problem is to control the distribution of cocaine, based on its accurate and sensitive detection. Here, we proposed the detection of cocaine in human blood plasma using a combination of surface enhanced Raman spectroscopy and machine learning (SERS-ML). To demonstrate the efficacy of our proposed approach, cocaine was added into blood plasma at various concentrations and drop-deposited onto a specially prepared disposable SERS substrate. SERS substrates were created by deposition of metal nanoclusters on electrospun polymer nanofibers. Subsequently, SERS spectra were measured and as could be expected, the manual distinguishing of cocaine from the spectra proved unfeasible, as its signal was masked by the background signal from blood plasma molecules. To overcome this issue, a database of SERS spectra of cocaine in blood plasma was collected and used for ML training and validation. After training, the reliability of proposed approach was tested on independently prepared samples, with unknown for SERS-ML cocaine presence or absence. As a result, the possibility of rapid determination of cocaine in blood plasma with a probability above 99.5% for cocaine concentrations up to 10-14 M was confirmed. Therefore, it is evident that the proposed approach has the ability to detect trace amounts of cocaine in bioliquids in an express and simple manner.


Subject(s)
Cocaine , Spectrum Analysis, Raman , Cocaine/blood , Cocaine/chemistry , Humans , Machine Learning , Metal Nanoparticles/chemistry
10.
BMC Cancer ; 24(1): 555, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702616

ABSTRACT

Periampullary cancers, including pancreatic ductal adenocarcinoma, ampullary-, cholangio-, and duodenal carcinoma, are frequently diagnosed in an advanced stage and are associated with poor overall survival. They are difficult to differentiate from each other and challenging to distinguish from benign periampullary disease preoperatively. To improve the preoperative diagnostics of periampullary neoplasms, clinical or biological markers are warranted.In this study, 28 blood plasma amino acids and derivatives from preoperative patients with benign (N = 45) and malignant (N = 72) periampullary disease were analyzed by LC-MS/MS.Principal component analysis and consensus clustering both separated the patients with cancer and the patients with benign disease. Glutamic acid had significantly higher plasma expression and 15 other metabolites significantly lower plasma expression in patients with malignant disease compared with patients having benign disease. Phenylalanine was the only metabolite associated with improved overall survival (HR = 0.50, CI 0.30-0.83, P < 0.01).Taken together, plasma metabolite profiles from patients with malignant and benign periampullary disease were significantly different and have the potential to distinguish malignant from benign disease preoperatively.


Subject(s)
Amino Acids , Biomarkers, Tumor , Humans , Male , Female , Amino Acids/blood , Middle Aged , Aged , Biomarkers, Tumor/blood , Ampulla of Vater/pathology , Tandem Mass Spectrometry , Diagnosis, Differential , Common Bile Duct Neoplasms/blood , Common Bile Duct Neoplasms/diagnosis , Common Bile Duct Neoplasms/surgery , Common Bile Duct Neoplasms/pathology , Duodenal Neoplasms/blood , Duodenal Neoplasms/diagnosis , Duodenal Neoplasms/pathology , Duodenal Neoplasms/surgery , Adult , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/surgery , Pancreatic Neoplasms/mortality , Chromatography, Liquid , Principal Component Analysis , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/pathology
11.
Anal Bioanal Chem ; 416(13): 3107-3115, 2024 May.
Article in English | MEDLINE | ID: mdl-38589616

ABSTRACT

Through enabling whole blood detection in point-of-care testing (POCT), sedimentation-based plasma separation promises to enhance the functionality and extend the application range of lateral flow assays (LFAs). To streamline the entire process from the introduction of the blood sample to the generation of quantitative immune-fluorescence results, we combined a simple plasma separation technique, an immunoreaction, and a micropump-driven external suction control system in a polymer channel-based LFA. Our primary objective was to eliminate the reliance on sample-absorbing separation membranes, the use of active separation forces commonly found in POCT, and ultimately allowing finger prick testing. Combining the principle of agglutination of red blood cells with an on-device sedimentation-based separation, our device allows for the efficient and fast separation of plasma from a 25-µL blood volume within a mere 10 min and overcomes limitations such as clogging, analyte adsorption, and blood pre-dilution. To simplify this process, we stored the agglutination agent in a dried state on the test and incorporated a filter trench to initiate sedimentation-based separation. The separated plasma was then moved to the integrated mixing area, initiating the immunoreaction by rehydration of probe-specific fluorophore-conjugated antibodies. The biotinylated immune complex was subsequently trapped in the streptavidin-rich detection zone and quantitatively analyzed using a fluorescence microscope. Normalized to the centrifugation-based separation, our device demonstrated high separation efficiency of 96% and a yield of 7.23 µL (= 72%). Furthermore, we elaborate on its user-friendly nature and demonstrate its proof-of-concept through an all-dried ready-to-go NT-proBNP lateral flow immunoassay with clinical blood samples.


Subject(s)
Natriuretic Peptide, Brain , Peptide Fragments , Humans , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/isolation & purification , Peptide Fragments/blood , Point-of-Care Testing , Immunoassay/methods , Immunoassay/instrumentation , Equipment Design
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653353

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and moderate exercise holds promise in ameliorating the ongoing neurodegeneration and cognitive decline. Here, we investigated whether exercise-enriched blood plasm could yield a beneficial therapeutic effect on AD pathologies and cognitive decline in transgenic AD (P301S) mice. In this investigation, a cohort of 2-month-old C57BL/6 mice were granted continuous access to either a running wheel or a fixed wheel for 6 weeks. After that, their plasmas were extracted and subsequently injected intravenously into 4.5-month-old P301S mice biweekly over a 6-week period. A comprehensive methodology was then employed, integrating behavioral tests, pathology assessments, and biochemical analyses to unveil the potential anti-dementia implications of exercise-enriched blood plasma in P301S mice. Upon systemic administration, the findings revealed a noteworthy attenuation of hippocampus-dependent behavioral impairments in P301S mice. Conversely, blood plasma from sedentary counterparts exhibited no discernible impact. These effects were intricately associated with the mitigation of neuroinflammation, the augmentation of hippocampal adult neurogenesis, and a reduction of synaptic impairments following the administration of exercise-enriched blood plasma. These findings advance the proposition that administering exercise-enriched blood plasma may serve as an effective prophylactic measure against AD, opening avenues for further exploration and potential therapeutic interventions.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Disease Models, Animal , Hippocampus , Mice, Inbred C57BL , Mice, Transgenic , Physical Conditioning, Animal , Animals , Alzheimer Disease/therapy , Alzheimer Disease/blood , Hippocampus/metabolism , Hippocampus/pathology , Physical Conditioning, Animal/methods , Cognitive Dysfunction/therapy , Cognitive Dysfunction/blood , Mice , Plasma/metabolism , Male , Neurogenesis
13.
J Lasers Med Sci ; 15: e3, 2024.
Article in English | MEDLINE | ID: mdl-38655046

ABSTRACT

Introduction: In men, several factors cause infertility, among which we can mention damage to sperm due to high temperature. So far, various treatments have been proposed for it, but they have not been highly effective. The current study aimed to evaluate the effect of exosome therapy (EXO) and photobiomodulation therapy (PBMT) on spermatogenesis arrest in male mice after scrotum hyperthermia. Methods: In this experimental study, the animals were divided into four groups: control, scrotal hyperthermia, scrotal hyperthermia+EXO (100 µL/d) (mice were treated for 30 days), scrotal hyperthermia+PBMT (laser of 0.03 J/cm2 for 30 seconds/for 30 days). Hyperthermia was induced by exposure to the temperature of 43 °C for 20 minute every day for 5 times. After 6 weeks, the animals were sacrificed. Results: The treated groups showed a significant increase in sperm parameters, as compared to the hyperthermic groups. Moreover, these favorable effects were observed in relation to the volume of testicular tissue, the number of germ cells, Leydig cells and Sertoli cells, and the level of testosterone. Research on antioxidants showed a significant reduction in oxidized glutathione (GSSG) and reactive oxygen species (ROS) in the treatment groups in comparison to the hyperthermia group (P<0.001). Also, there has been a significant increase in the amount of hydrogen peroxide enzyme observed in the hyperthermia group as opposed to the treatment group (P<0.001). Conclusion: These findings show that EXO and PBMT can improve spermatogenesis caused by hyperthermia, reduce ROS and GSSG, and increase glutathione (GSH) and sperm quality.

14.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673903

ABSTRACT

Cardiotonic steroids (CTSs), such as digoxin, are used for heart failure treatment. However, digoxin permeates the brain-blood barrier (BBB), affecting central nervous system (CNS) functions. Finding a CTS that does not pass through the BBB would increase CTSs' applicability in the clinic and decrease the risk of side effects on the CNS. This study aimed to investigate the tissue distribution of the CTS ouabain following intraperitoneal injection and whether ouabain passes through the BBB. After intraperitoneal injection (1.25 mg/kg), ouabain concentrations were measured at 5 min, 15 min, 30 min, 1 h, 3 h, 6 h, and 24 h using HPLC-MS in brain, heart, liver, and kidney tissues and blood plasma in C57/black mice. Ouabain was undetectable in the brain tissue. Plasma: Cmax = 882.88 ± 21.82 ng/g; Tmax = 0.08 ± 0.01 h; T1/2 = 0.15 ± 0.02 h; MRT = 0.26 ± 0.01. Cardiac tissue: Cmax = 145.24 ± 44.03 ng/g (undetectable at 60 min); Tmax = 0.08 ± 0.02 h; T1/2 = 0.23 ± 0.09 h; MRT = 0.38 ± 0.14 h. Kidney tissue: Cmax = 1072.3 ± 260.8 ng/g; Tmax = 0.35 ± 0.19 h; T1/2 = 1.32 ± 0.76 h; MRT = 1.41 ± 0.71 h. Liver tissue: Cmax = 2558.0 ± 382.4 ng/g; Tmax = 0.35 ± 0.13 h; T1/2 = 1.24 ± 0.7 h; MRT = 0.98 ± 0.33 h. Unlike digoxin, ouabain does not cross the BBB and is eliminated quicker from all the analyzed tissues, giving it a potential advantage over digoxin in systemic administration. However, the inability of ouabain to pass though the BBB necessitates intracerebral administration when used to investigate its effects on the CNS.


Subject(s)
Mice, Inbred C57BL , Ouabain , Animals , Tissue Distribution , Injections, Intraperitoneal , Mice , Male , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain/metabolism , Brain/drug effects , Mass Spectrometry/methods , Kidney/metabolism , Kidney/drug effects , Liver/metabolism , Liver/drug effects , Chromatography, High Pressure Liquid/methods , Myocardium/metabolism , Cardiotonic Agents/pharmacokinetics , Cardiotonic Agents/pharmacology , Cardiotonic Agents/administration & dosage
15.
Asian Pac J Cancer Prev ; 25(3): 1017-1023, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38546084

ABSTRACT

OBJECTIVE: The purpose of this study was to analyze the effect of oral administration of radioiodine (I-131) on the immune responses (interleukin 6 and 10) as biodosimetry markers and to support clinical trials of I-131 solution. METHODS: The design of this study was an in vivo experimental study using twenty-seven male rats (Rattus norvegicus strain Sprague-Dawley) given 100 µL of I-131 solution at a dose of 260 µCi. Blood plasma was taken at 0.25, 0.5, 1, 3, 24, 48, 120, and 168 hours post oral I-131 administration, respectively. Rats without radioiodine administration as a control group. The levels of IL-6 and IL-10 were measured using the enzyme-linked immunosorbent assay (ELISA) method. Statistical analysis was carried out with one-way ANOVA using SPSS version 25 software. RESULT: IL-6 level began to significantly increase at 0.25 hours post administration of I-131 (14.4 pg/mL ± 2.52 pg/mL, p=0.02). During 7 days of observation, IL-6 levels had 2 peaks of highly significant increase at 0.5 hours (43.57 ± 5.28, p<0.001) and 120 hours (24.08 ± 2.69, p<0.001 compared to control (5.44 ± 0.95 pg/mL). IL-10 level began to significantly increase at 0.25 hours (30.32 ± 3.22 pg/mL, p=0.03) compared to controls (20.61 ± 1.59 pg/mL). CONCLUSION: The highest increase in IL-6 and IL-10 levels occurred respectively in the first 0.5 hours 8 times and in the first 0.25 hours 1.47 times compared to controls. Internal irradiation with radioiodine resulted in a significant increase in immune cells in exposed blood plasma characterized by the production of the cytokines IL-6 and IL-10. This appears to be a response of immune cells to reduce or stop inflammatory reactions through the release of anti-inflammatory cytokines in an effort to prevent excessive inflammatory responses that can damage cells and tissues.


Subject(s)
Interleukin-10 , Interleukin-6 , Rats , Male , Animals , Iodine Radioisotopes , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Cytokines , Immunity
16.
J Environ Sci Health B ; 59(5): 215-222, 2024.
Article in English | MEDLINE | ID: mdl-38459769

ABSTRACT

Atrazine (ATZ) is the third most sold herbicide in Brazil, occupying the seventh position between most widely used pesticides. Due to its easy outflow, low reactivity and solubility, moderate adsorption to organic matter and clay, and long soil persistence, residual herbicide can be identified after long periods following application, and its usage has been prohibited in diverse countries. Amphibians are important bioindicators to assess impact of pesticide like atrazine, due to having a partial aquatic life cycle. This study had as objective to assess the response of bullfrog (Lithobates catesbeianus) tadpoles when exposed to this herbicide. Animals were exposed for a total of 168h to following concentrations: negative control, 40 µg/L, 200 µg/L, 2000 µg/L, 20000 µg/L of ATZ. Analysis of swimming activity was performed, and biochemical profile was assessed by analysis of blood and plasma glucose levels, urea, creatinine, cholesterol, HDL, triglycerides, glutamic pyruvic transaminase (GPT), alkaline phosphatase (AP), calcium, total proteins, phenol, peroxidase and polyphenol oxidase activity. Results exhibited malnutrition, anemia, likely muscle mass loss, and hepatic damage, indicating that ATZ can lead to an increase in energy to maintain homeostasis for animal survival.


Subject(s)
Atrazine , Herbicides , Pesticides , Water Pollutants, Chemical , Animals , Herbicides/metabolism , Larva , Pesticides/metabolism , Rana catesbeiana/metabolism , Water Pollutants, Chemical/metabolism
17.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542366

ABSTRACT

The ongoing anthropogenic pollution of the biosphere with As, Cd, Hg and Pb will inevitably result in an increased influx of their corresponding toxic metal(loid) species into the bloodstream of human populations, including children and pregnant women. To delineate whether the measurable concentrations of these inorganic pollutants in the bloodstream are tolerable or implicated in the onset of environmental diseases urgently requires new insight into their dynamic bioinorganic chemistry in the bloodstream-organ system. Owing to the human exposure to multiple toxic metal(loid) species, the mechanism of chronic toxicity of each of these needs to be integrated into a framework to better define the underlying exposure-disease relationship. Accordingly, this review highlights some recent advances into the bioinorganic chemistry of the Cd2+, Hg2+ and CH3Hg+ in blood plasma, red blood cells and target organs and provides a first glimpse of their emerging mechanisms of chronic toxicity. Although many important knowledge gaps remain, it is essential to design experiments with the intent of refining these mechanisms to eventually establish a framework that may allow us to causally link the cumulative exposure of human populations to multiple toxic metal(loid) species with environmental diseases of unknown etiology that do not appear to have a genetic origin. Thus, researchers from a variety of scientific disciplines need to contribute to this interdisciplinary effort to rationally address this public health threat which may require the implementation of stronger regulatory requirements to improve planetary and human health, which are fundamentally intertwined.


Subject(s)
Environmental Pollutants , Mercury , Metals, Heavy , Soil Pollutants , Child , Humans , Female , Pregnancy , Cadmium/analysis , Mercury/analysis , Heavy Metal Poisoning , Environmental Pollution , Environmental Monitoring , Metals, Heavy/toxicity , Metals, Heavy/analysis , Risk Assessment , China
18.
Blood Cells Mol Dis ; 106: 102842, 2024 May.
Article in English | MEDLINE | ID: mdl-38492545

ABSTRACT

Extracellular vesicles (EVs) as membrane-bound particles released by various cells are potential tools for diagnosis and treatment. Blood cells, particularly platelets, are the source of circulating EVs. MATERIAL: EVs were enriched with gradient ultracentrifugation and measured by nanoparticle tracking assay. A flow cytometric multiplex assay was used for cellular source determination. Activation of platelets was measured as a percentage of CD62p+/CD61+ platelets and correlated with the concentration and size of released EVs. RESULTS: In general there was no statistically significant correlation between EVs` concentration and degree of platelet activation. EVs from different cellular sources were detected. Comparing different needle thicknesses, there was a decrease in the EVs concentration for the 16G needle versus the 21G needle, but no difference was observed for EVs` size and phenotype or platelets activation. During blood storage, platelet activation increased, but there was no effect on the EVs` concentration, size, or phenotype. CONCLUSIONS: Preanalytical factors like needle thickness and storage time can affect the MVs' properties. Activation of platelets during blood collection or blood storage occurs; however, it is difficult to determine its effect on the physiological properties of EVs since the mechanisms of EVs` biogenesis and especially clearness are not precisely known.


Subject(s)
Extracellular Vesicles , Platelet Activation , Humans , Blood Platelets , Blood Coagulation , Blood Preservation
19.
Sensors (Basel) ; 24(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38475128

ABSTRACT

Our work uses a polarization matrix formalism to analyze and algorithmically represent optical anisotropy by open dehydration of blood plasma films. Analytical relations for Jones matrix reconstruction of optical birefringence maps of protein crystal networks of dehydrated biofluid films are found. A technique for 3D step-by-step measurement of the distributions of the elements of the Jones matrix or Jones matrix images (JMI) of the optically birefringent structure of blood plasma films (BPF) has been created. Correlation between JMI maps and corresponding birefringence images of dehydrated BPF and saliva films (SF) obtained from donors and prostate cancer patients was determined. Within the framework of statistical analysis of layer-by-layer optical birefringence maps, the parameters most sensitive to pathological changes in the structure of dehydrated films were found to be the central statistical moments of the 1st to 4th orders. We physically substantiated and experimentally determined the sensitivity of the method of 3D polarization scanning technique of BPF and SF preparations in the diagnosis of endometriosis of uterine tissue.


Subject(s)
Optical Devices , Female , Humans , Anisotropy , Microscopy, Polarization/methods , Birefringence , Proteins
20.
Mol Reprod Dev ; 91(2): e23731, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38404010

ABSTRACT

Premature ovarian insufficiency (POI) patients experience a decline in ovarian function and a reduction in serum reproductive hormones, leading to a significant impact on the outcomes of assisted reproductive technology. Despite the absence of an effective clinical treatment to restore fertility in POI patients, recent research has indicated that cord blood plasma (CBP) derived from human umbilical cord blood (hUCB) may offer therapeutic benefits for various degenerative diseases. The primary aim of this study is to explore approaches for enhancing ovarian function and serum reproductive hormones through the administration of CBP in a murine model. Initially, hUCB was utilized to obtain CBP (CBP), which was subsequently analyzed for cytokine and growth factor profiles in comparison to adult blood plasma (ABP) by use of flow cytometry. Subsequently, POI mouse models were established through the induction of 4-vinylcyclohexene diepoxide, followed by the injection of CBP into the tail. At 7, 14, and 21 days posttreatment, mouse ovaries and blood were collected, and their estrus cycle, body weight, and ovarian weights were evaluated using precise electronic balance. Finally, ovarian morphology and follicle number were assessed through HE staining, while serum levels of anti-Müllerian hormone (AMH), estradiol (E2) and follicle-stimulating hormone (FSH) were determined by ELISA. Our study revealed that individuals with CBP exhibited significantly lower concentrations of proinflammatory cytokines, including IL-ß (p < 0.01) and IL-2 (p < 0.05), while displaying elevated levels of anti-inflammatory cytokines and chemokines, such as IL-2, IL-4, IL-6, IL-8, IL-12P70, IL-17A, IP-10, interferon-γ, and tumor necrosis factor-α (p < 0.01). Furthermore, CBP demonstrated remarkably higher levels of growth factors, including transforming growth factor-ß1, vascular endothelial growth factor, and insulin-like growth factor-1 (p < 0.01) than ABP. Notably, our investigation also revealed that CBP restored the content of serum reproductive hormones, such as AMH, E2, and FSH (p < 0.05), and increased the number of primordial and primary follicles (p < 0.01) and decreased the number of luteal and atretic follicles (p < 0.01) in vivo. Our findings suggested that CBP-secreted cytokines and growth factors could be restored POI ovarian function, enhanced serum reproductive hormones and rescued follicular development in vivo. These findings further support the potential of CBP as a promising strategy in clinical applications for POI related infertility.


Subject(s)
Cytokines , Primary Ovarian Insufficiency , Female , Adult , Humans , Mice , Animals , Fetal Blood , Vascular Endothelial Growth Factor A , Interleukin-2 , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/pathology , Estradiol , Follicle Stimulating Hormone , Intercellular Signaling Peptides and Proteins , Plasma
SELECTION OF CITATIONS
SEARCH DETAIL
...