Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Publication year range
1.
Fa Yi Xue Za Zhi ; 39(5): 465-470, 2023 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-38006266

ABSTRACT

OBJECTIVES: To explore the feasibility of genetic marker detection of semen-specific coding region single nucleotide polymorphism (cSNP) based on SNaPshot technology in semen stains and mixed body fluid identification. METHODS: Genomic DNA (gDNA) and total RNA were extracted from 16 semen stains and 11 mixtures composed of semen and venous blood, and the total RNA was reverse transcribed into complementary DNA (cDNA). The cSNP genetic markers were screened on the validated semen-specific mRNA coding genes. The cSNP multiplex detection system based on SNaPshot technology was established, and samples were genotyped by capillary electrophoresis (CE). RESULTS: A multiplex detection system containing 5 semen-specific cSNPs was successfully established. In 16 semen samples, except the cSNP located in the TGM4 gene showed allele loss in cDNA detection results, the gDNA and cDNA typing results of other cSNPs were highly consistent. When detecting semen-venous blood mixtures, the results of cSNP typing detected were consistent with the genotype of semen donor and were not interfered by the genotype of venous blood donor. CONCLUSIONS: The method of semen-specific cSNPs detection by SNaPshot technology method can be applied to the genotyping of semen (stains) and provide information for determining the origin of semen in mixed body fluids (stains).


Subject(s)
Body Fluids , Semen , Genetic Markers , Polymorphism, Single Nucleotide , DNA, Complementary/genetics , RNA, Messenger/genetics , DNA , Saliva , Forensic Genetics/methods
2.
Journal of Forensic Medicine ; (6): 465-470, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1009379

ABSTRACT

OBJECTIVES@#To explore the feasibility of genetic marker detection of semen-specific coding region single nucleotide polymorphism (cSNP) based on SNaPshot technology in semen stains and mixed body fluid identification.@*METHODS@#Genomic DNA (gDNA) and total RNA were extracted from 16 semen stains and 11 mixtures composed of semen and venous blood, and the total RNA was reverse transcribed into complementary DNA (cDNA). The cSNP genetic markers were screened on the validated semen-specific mRNA coding genes. The cSNP multiplex detection system based on SNaPshot technology was established, and samples were genotyped by capillary electrophoresis (CE).@*RESULTS@#A multiplex detection system containing 5 semen-specific cSNPs was successfully established. In 16 semen samples, except the cSNP located in the TGM4 gene showed allele loss in cDNA detection results, the gDNA and cDNA typing results of other cSNPs were highly consistent. When detecting semen-venous blood mixtures, the results of cSNP typing detected were consistent with the genotype of semen donor and were not interfered by the genotype of venous blood donor.@*CONCLUSIONS@#The method of semen-specific cSNPs detection by SNaPshot technology method can be applied to the genotyping of semen (stains) and provide information for determining the origin of semen in mixed body fluids (stains).


Subject(s)
Genetic Markers , Semen , Polymorphism, Single Nucleotide , DNA, Complementary/genetics , Body Fluids , RNA, Messenger/genetics , DNA , Saliva , Forensic Genetics/methods
3.
Mini Rev Med Chem ; 22(18): 2332-2343, 2022.
Article in English | MEDLINE | ID: mdl-35240957

ABSTRACT

MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene expression. miRNAs have tissue-specific expression and are also present in various extracellular body fluids, including blood, tears, semen, vaginal fluid, and urine. Additionally, the expression of miRNAs in body fluids is linked to various pathological diseases, including cancer and neurodegenerative diseases. Examination of body fluids is important in forensic medicine as they serve as a valuable form of evidence. Due to its stability, miRNA offers an advantage for body fluid identification, which can be detected even after several months or from compromised samples. Identification of unique miRNA profiles for different body fluids enables the identification of the body fluids. Furthermore, miRNAs profiling can be used to estimate post-mortem interval. Various biochemical and molecular methods used for the identification of miRNAs have shown promising results. We discuss different miRNAs as specific biomarkers and their clinical importance in different pathological conditions, as well as their medicolegal importance.


Subject(s)
Body Fluids , MicroRNAs , Biomarkers/metabolism , Body Fluids/chemistry , Body Fluids/metabolism , Female , Forensic Genetics/methods , Forensic Medicine/methods , Humans , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Forensic Sci Int ; 300: e44-e49, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31126709

ABSTRACT

MicroRNAs (miRNAs) have been of interest in forensic science for body fluid identification with recent years. However, there is no study investigating the species specificity of miRNA markers by the SYBR Green method. Due to the conservation of miRNAs across species, miRNA markers maybe less species-specific than mRNA markers, and in forensic cases, animal buccal swabs are more likely to appear. Therefore, in this study we addressed the influence of 8 kinds of animal buccal swabs on human saliva, semen, vaginal secretion swabs and blood identification with 10 candidate specific miRNA markers by the SYBR Green quantitative PCR. Our data showed that the expression levels of the candidate specific miRNA markers miR-124a and 372 in the cat, dog, mouse and rabbit buccal swabs were in the same range as the human vaginal secretion swabs; buccal swabs from these animals also showed similar expression levels to human saliva for the candidate specific miRNA markers miR-200c, 205 and 658. These results indicated that biomaterials of buccal swabs from cats, dogs, mice and rabbits may be mistaken for human saliva or human vaginal secretion swabs, both of which could result in false positives for human body fluids. Thus, the interpretation of these miRNA profiles for human body fluid identification can be inaccurate in the presence of these animal buccal swabs. Therefore, we suggested performing species tests before human body identification with miRNA markers.


Subject(s)
Genetic Markers , MicroRNAs/genetics , Mouth Mucosa/metabolism , Animals , Blood/metabolism , Cats , Cervix Mucus/metabolism , Dogs , Female , Forensic Genetics/methods , Humans , Male , Mice , MicroRNAs/metabolism , Polymerase Chain Reaction , Rabbits , Saliva/metabolism , Semen/metabolism , Species Specificity , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL