Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 480
Filter
1.
Article in English | MEDLINE | ID: mdl-39368104

ABSTRACT

Near-infrared (NIR) persistent luminescence (PersL) materials have unique optical properties with promising applications in bioimaging and anticounterfeiting. However, their development is currently hindered by poor red-light-exciting ability. In this study, CaTiO3:Cr0.001,Y0.02 (CTCY) was synthesized with 650 nm-excited 772 nm NIR PersL. The Y3+ doping in the Ca2+ lattice plays a key role in the PersL property. A charge compensation mechanism was proposed, in which Cr3+ in the Ti4+ lattice was stabilized by Y3+-doping while oxygen vacancies were generated to store the excitation energy at the same time. A thermal ionization mechanism might elucidate the red-light-excited NIR PersL of CTCY, which benefits from the perovskite structure of CaTiO3. CTCY has 120 times more intense red-light-excited PersL than Zn3Ga2Ge2O10:Cr. Its potential applications in luminescence anticounterfeiting and bioimaging were demonstrated using a visible/NIR dual-channel PersL flower painting and a CTCY-labeled bone screw for in situ reactivable PersL imaging using red light illumination instead of X-ray, respectively. This study not only provides a new NIR PersL material but also will add to our understanding in developing other potential red-light- or even NIR-activable PersL materials with perovskite-like structures.

2.
Biomaterials ; 314: 122779, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39305536

ABSTRACT

Orthopedic implants made of biodegradable magnesium (Mg) provide an alternative to nondegradable implants for fracture repair. Widely reported to be pro-osteogenic, Mg implants are also believed to be anti-inflammatory and anti-osteoclastic, but this is difficult to reconcile with the early clinical inflammation observed around these implants. Here, by surveying implant healing in a rat bone model, we determined the cellular responses and structural assembly of bone correlated with the surface changes of Mg implants inherent in degradation. We show that, compared to titanium, both high-purity (99.998 %) and clinical-grade, rare earth-alloyed (MgYREZr) Mg implants create an initial, transient proinflammatory environment that facilitates inducible nitric oxide synthase-mediated macrophage polarization, osteoclastogenesis, and neoangiogenesis programs. While this immunomodulation subsequently reinforces reparative osteogenesis at the surface of both Mg implants, the faster degradation of high-purity Mg implants, but not MgYREZr implants, elicits a compositional alteration in the interfacial bone and a previously unknown proadipogenic response with persistent low-grade inflammation in the surrounding bone marrow. Beyond the need for rigorous tailoring of Mg implants, these data highlight the need to closely monitor osseointegration not only at the immediate implant surface but also in the peri-implant bone and adjacent bone marrow.

3.
ACS Biomater Sci Eng ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227180

ABSTRACT

With the accelerating trend of global aging, bone damage caused by orthopedic diseases, such as osteoporosis and fractures, has become a shared international event. Traffic accidents, high-altitude falls, and other incidents are increasing daily, and the demand for bone implant treatment is also growing. Although extensive research has been conducted in the past decade to develop medical implants for bone regeneration and healing of body tissues, due to their low biocompatibility, weak bone integration ability, and high postoperative infection rates, pure titanium alloys, such as Ti-6A1-4V and Ti-6A1-7Nb, although widely used in clinical practice, have poor induction of phosphate deposition and wear resistance, and Ti-Zr alloy exhibits a lack of mechanical stability and processing complexity. In contrast, the Ti-Ni alloy exhibits toxicity and low thermal conductivity. Nonthermal plasma (NTP) has aroused widespread interest in synthesizing and modifying implanted materials. More and more researchers are using plasma to modify target catalysts such as changing the dispersion of active sites, adjusting electronic properties, enhancing metal carrier interactions, and changing their morphology. NTP provides an alternative option for catalysts in the modification processes of oxidation, reduction, etching, coating, and doping, especially for materials that cannot tolerate thermodynamic or thermosensitive reactions. This review will focus on applying NTP technology in bone implant material modification and analyze the overall performance of three common types of bone implant materials, including metals, ceramics, and polymers. The challenges faced by NTP material modification are also discussed.

4.
J Biomed Mater Res A ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319410

ABSTRACT

Ceramic additive manufacturing currently relies on binders or high-energy lasers, each with limitations affecting final product quality and suitability for medical applications. To address these challenges, our laboratory has devised a surface activation technique for ceramic particles that eliminates the necessity for polymer binders or high-energy lasers in ceramic additive manufacturing. We utilized this method to 3D print bioactive SiC orthopedic screws and evaluated their properties. The study's findings reveal that chemical oxidation of SiC activated its surface, enabling 3D printing of orthopedic screws in a binder jet printer. Post-processing impregnation with NaOH and/or NH4OH strengthened the scaffold by promoting silica crystallization or partial conversion of silicon oxide into silicon nitride. The silica surface of the SiC 3D printed orthopedic screws facilitated osteoblast and neuron adhesion and extensive axon synthesis. The silicate ions released from the 3D printed SiC screws favorably modulated macrophage immune responses toward an M1 phenotype as indicated by the inhibition of TNFα secretions and of reactive oxygen species (ROS) expression along with the promotion of IL6R shedding. In contrast, under the same experimental conditions, Ti ions released from Ti6Al4V discs promoted macrophage TNFα secretion and ROS expression. In vivo tests demonstrated direct bone deposition on the SiC scaffold and a strong interfacial bond between the implanted SiC and bone. Immunostaining showed innervation, mineralization, and vascularization of the newly formed bone at the interface with SiC. Taken altogether, the 3D printed SiC orthopedic screws foster a favorable environment for wound healing and bone regeneration. The novel 3D printing method, based on ceramic surface activation represents a significant advancement in ceramic additive manufacturing and is applicable to a wide variety of materials.

5.
Int J Oral Implantol (Berl) ; 17(3): 297-306, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283223

ABSTRACT

An advantage of treated implant surfaces is their increased degree of hydrophilicity and wettability compared with untreated, machined, smooth surfaces that are hydrophobic. The present preclinical in vivo study aimed to compare the two implant surface types, namely SLActive (Straumann, Basel, Switzerland) and nanohydroxyapatite (Hiossen, Englewood Cliffs, NJ, USA), in achieving early osseointegration. The authors hypothesised that the nanohydroxyapatite surface is comparable to SLActive for early bone-implant contact. Six male mixed foxhounds underwent mandibular premolar and first molar extraction, and the sockets healed for 42 days. The mandibles were randomised to receive implants with either SLActive (control group) or nanohydroxyapatite surfaces (test group). A total of 36 implants were placed in 6 animals, and they were sacrificed at 2 weeks (2 animals), 4 weeks (2 animals) and 6 weeks (2 animals) after implant surgery. When radiographic analysis was performed, the difference in bone level between the two groups was statistically significant at 4 weeks (P = 0.024) and 6 weeks (P = 0.008), indicating that the crestal bone level was better maintained for the test group versus the control group. The bone-implant contact was also higher for the test group at 2 (P = 0.012) and 4 weeks (P = 0.011), indicating early osseointegration. In conclusion, this study underscored the potential of implants with nanohydroxyapatite surfaces to achieve early osseointegration.


Subject(s)
Dental Implants , Durapatite , Mandible , Osseointegration , Surface Properties , Animals , Osseointegration/drug effects , Male , Durapatite/pharmacology , Durapatite/chemistry , Dogs , Mandible/surgery , Tooth Socket/surgery , Tooth Socket/diagnostic imaging , Dental Prosthesis Design , Random Allocation , Tooth Extraction , Dental Implantation, Endosseous/methods , Molar/surgery , Titanium , Wettability
6.
J Biomed Mater Res B Appl Biomater ; 112(9): e35481, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39213170

ABSTRACT

This study uses finite element analysis to investigate the potential application of shorter dental implants as a substitute for longer implants in the lower jaw (mandible). FEA allows the evaluation of the stress patterns around the implant-bone interface, a critical factor for successful osseointegration. Ten models were generated, encompassing five long (L1-L5) and five short implant models (S1-S5) with variations in diameter and length. Hypermesh software was utilized to meticulously prepare the FEA models, ensuring accurate mesh generation. The FEA simulations were conducted under four distinct loading scenarios (100 N occlusal load, 40 N lateral load, 100 N oblique at 30°, and 100 N oblique at 45°) to realistically mimic the forces exerted during biting, using an ABAQUS CAE solver. The results revealed that the von Mises stress generated within the short implant models was demonstrably lower compared to their long implants. Additionally, a significant drop in stress was observed with increasing the diameter of the short implants, to a certain diameter range. These findings suggest the potential for successful substitution of long implant model L4 with short implant model S4 due to the demonstrably lower stress values achieved. Furthermore, the data indicates the possibility of utilizing short implant models S3 and S5 as alternatives to long implant models L3 and L5, respectively. These observations hold significant promise for evaluating the feasibility of replacing long implants with shorter variants, potentially leading to a reduction in implant-related failures.


Subject(s)
Dental Implants , Finite Element Analysis , Mandible , Humans , Stress, Mechanical , Feasibility Studies
7.
Heliyon ; 10(14): e34594, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39114081

ABSTRACT

This study investigates the feasibility of coating Ni-Ti alloy with sea buckthorn extract via a hydrothermal method for targeted delivery of beneficial phenolic compounds to bone tissue. The qualitative analysis confirmed the presence of flavonoids and tannins in sea buckthorn extract, supporting its osteogenic potential. The microhardness of the NiTi alloy substrate was suitable for biomedical applications, and successful coating was achieved without compromising its properties. NiTi alloy samples were coated with 18.1, 20.1, and 12.4 mg of extract, respectively. Comprehensive evaluations confirmed the successful integration of the extract onto the alloy's surface. The coated system exhibited sustained release properties over five days, with the highest release occurring on the first day (on average 32.1 % for the first peak and 72.1 % for the second peak), as determined by HPLC analysis. The findings demonstrate the potential of this novel approach in developing dual-functionality implants for bone health promotion. Overall, this study underscores the promising potential of Ni-Ti alloy coated with sea buckthorn extract as a targeted drug delivery system for bone tissue.

8.
J Mech Behav Biomed Mater ; 158: 106681, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151255

ABSTRACT

Multifunctional materials have been described to meet the diverse requirements of implant materials for femoral components of uncemented total knee replacements. These materials aim to combine the high wear and corrosion resistance of oxide ceramics at the joint surfaces with the osteogenic potential of titanium alloys at the bone-implant interface. Our objective was to evaluate the biomechanical performance of hybrid material-based femoral components regarding mechanical stress within the implant during cementless implantation and stress shielding (evaluated by strain energy density) of the periprosthetic bone during two-legged squat motion using finite element modeling. The hybrid materials consisted of alumina-toughened zirconia (ATZ) ceramic joined with additively manufactured Ti-6Al-4V or Ti-35Nb-6Ta alloys. The titanium component was modeled with or without an open porous surface structure. Monolithic femoral components of ATZ ceramic or Co-28Cr-6Mo alloy were used as reference. The elasticity of the open porous surface structure was determined within experimental compression tests and was significantly higher for Ti-35Nb-6Ta compared to Ti-6Al-4V (5.2 ± 0.2 GPa vs. 8.8 ± 0.8 GPa, p < 0.001). During implantation, the maximum stress within the ATZ femoral component decreased from 1568.9 MPa (monolithic ATZ) to 367.6 MPa (Ti-6Al-4V/ATZ), 560.9 MPa (Ti-6Al-4V/ATZ with an open porous surface), 474.9 MPa (Ti-35Nb-6Ta/ATZ), and 648.4 MPa (Ti-35Nb-6Ta/ATZ with an open porous surface). The strain energy density increased at higher flexion angles for all models during the squat movement. At ∼90° knee flexion, the strain energy density in the anterior region of the distal femur increased by 25.7 % (Ti-6Al-4V/ATZ), 70.3 % (Ti-6Al-4V/ATZ with an open porous surface), 43.7 % (Ti-35Nb-6Ta/ATZ), and 82.5% (Ti-35Nb-6Ta/ATZ with an open porous surface) compared to monolithic ATZ. Thus, the hybrid material-based femoral component decreases the intraoperative fracture risk of the ATZ part and considerably reduces the risk of stress shielding of the periprosthetic bone.


Subject(s)
Arthroplasty, Replacement, Knee , Femur , Finite Element Analysis , Materials Testing , Femur/surgery , Biomechanical Phenomena , Stress, Mechanical , Mechanical Phenomena , Porosity , Titanium/chemistry , Alloys/chemistry , Zirconium/chemistry
9.
J Funct Biomater ; 15(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39057313

ABSTRACT

Magnesium alloys are some of the most convenient biodegradable materials for bone fracture treatment due to their tailorable degradation rate, biocompatibility, and mechanical properties resembling those of bone. Despite the fact that magnesium-based implants and ZX00 (Mg-0.45Zn-0.45Ca in wt.%), in particular, have been shown to have suitable degradation rates and good osseointegration, knowledge gaps remain in our understanding of the impact of their degradation properties on the bone's ultrastructure. Bone is a hierarchically structured material, where not only the microstructure but also the ultrastructure are important as properties like the local mechanical response are determined by it. This study presents the first comparative analysis of bone ultrastructure parameters with high spatial resolution around ZX00 and Ti implants after 6, 12, and 24 weeks of healing. The mineralization was investigated, revealing a significant decrease in the lattice spacing of the (002) Bragg's peak closer to the ZX00 implant in comparison to Ti, while no significant difference in the crystallite size was observed. The hydroxyapatite platelet thickness and osteon density demonstrated a decrease closer to the ZX00 implant interface. Correlative indentation and strain maps obtained by scanning X-ray diffraction measurements revealed a higher stiffness and faster mechanical adaptation of the bone surrounding Ti implants as compared to the ZX00 ones. Thus, the results suggest the incorporation of Mg2+ ions into the bone ultrastructure, as well as a lower degree of remodeling and stiffness of the bone in the presence of ZX00 implants than Ti.

10.
J Orthop Res ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017392

ABSTRACT

Despite the success of standard antiseptic irrigation solutions in reducing periprosthetic joint infection (PJI) rates, there is still a need for more effective solutions. Synergistic use of povidone-iodine (PI) and hydrogen peroxide (H2O2) has shown promising results; however, the optimal solution concentration balancing bactericidal activity and osseointegration remains unknown. This study aims to evaluate the impact of these antiseptic irrigation solutions on osseointegration and the bone-implant interface strength in vivo. Forty C57BL/6 mice underwent bilateral tibial implantation surgery and were randomly allocated into three groups receiving 0.3% PI, 10% PI mixed with 3% H2O2, or saline as irrigation solutions intraoperatively. Assessments were performed on postoperative Days 1 and 28, including plain radiographs, microcomputed tomography (microCT) evaluation, histological analysis, immunohistochemistry, and biomechanical pull-out testing. No wound complications were observed. MicroCT scans revealed no differences in peri-implant trabecular bone parameters. Biomechanical pull-out testing showed no differences in the bone-implant interface strength across groups. Histological analysis indicated no differences in bone and bone marrow percentage areas among treatment groups. Immunohistochemical analysis demonstrated no differences among groups in peri-implant osteocalcin, osterix, or endomucin-positive cells. In conclusion, using either antiseptic irrigation solution showed no differences in osseointegration parameters compared to the control group, demonstrating safety and the absence of toxicity. CLINICAL RELEVANCE: Dilute 0.3% povidone-iodine and a 1:1 combination of 10% povidone-iodine mixed with 3% hydrogen peroxide can be safely used during primary and revision total joint arthroplasty without compromising osseointegration or causing wound complications.

11.
Medicina (Kaunas) ; 60(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39064523

ABSTRACT

Background and Objectives: This study aimed to evaluate the histological and biochemical effects of capsaicin on implant osseointegration and oxidative stress. Materials and Methods: Male Wistar albino rats weighing between 250 and 300 g were used in this study. Twenty-four rats were randomly divided into three equal groups: implant + control (n = 8), implant + capsaicin-1 (n = 8), and implant + capsaicin-2 (n = 8). Additionally, 2.5 mm diameter and 4 mm length titanium implants were surgically integrated into the corticocancellous bone parts of the femurs. In the treatment groups, rats were injected intraperitoneally with 25 mg/kg (implant + capsaicin-1) and 50 mg/kg (implant + capsaicin-2) of capsaicin. No additional applications were made in the control group. Three rats in total died during and after the experiment as a result of the analyses performed on 21 animals. Results: The highest total antioxidant status value was found in capsaicin dose 2, according to the analysis. The control group had the highest total oxidant status and oxidative stress index values, while group 2 of capsaicin had the lowest. After analysis, we found that there was no observed positive effect on osteointegration in this study (p > 0.05), although the bone implant connection was higher in the groups treated with capsaicin. Conclusions: A positive effect on osteointegration was not observed in this study. This may be due to osteoclast activation. However, it was found that it has a positive effect on oxidative stress. Osteoclast activation may be the cause of this phenomenon. Capsaicin was found to have a positive effect on oxidative stress (p < 0.05). It was also observed to have a positive effect on oxidative stress.


Subject(s)
Capsaicin , Osseointegration , Oxidative Stress , Rats, Wistar , Titanium , Animals , Capsaicin/pharmacology , Capsaicin/administration & dosage , Osseointegration/drug effects , Male , Rats , Oxidative Stress/drug effects , Femur/drug effects , Femur/surgery , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/administration & dosage , Random Allocation
12.
Medicina (Kaunas) ; 60(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064584

ABSTRACT

Background and Objectives: Osteoporosis renders the use of traditional interbody cages potentially dangerous given the high risk of damage in the bone-implant interface. Instead, injected cement spacers can be applied as interbody devices; however, this technique has been mainly used in cervical spine surgery. This study aimed at investigating the biomechanical behavior of cement spacers versus traditional cages in lumbar spine surgery. Materials and Methods: Destructive monotonic axial compression testing was performed on 20 human cadaveric low-density lumbar segments from elderly donors (14 f/6 m, 70.3 ± 12.0 y) treated with either injected cement spacers (n = 10) or traditional cages (n = 10) without posterior instrumentation. Stiffness, failure load and displacement were compared. The effects of bone density, vertebral geometry and spacer contact area were evaluated. Results: Cement spacers demonstrated higher stiffness, significantly smaller displacement (p < 0.001) and a similar failure load compared to traditional cages. In the cage group, stiffness and failure load depended strongly on bone density and vertebral height, whereas failure displacement depended on vertebral anterior height. No such correlations were identified with cement spacers. Conclusions: Cement spacers used in lumbar interbody stabilization provided similar compression strength, significantly smaller failure displacement and a stiffer construct than traditional cages that provided benefits mainly for large and strong vertebrae. Cement stabilization was less sensitive to density and could be more beneficial also for segments with smaller and less dense vertebrae. In contrast to the injection of cement spacers, the optimal insertion of cages into the irregular intervertebral space is challenging and risks damaging bone. Further studies are required to corroborate these findings and the treatment selection thresholds.


Subject(s)
Bone Cements , Cadaver , Lumbar Vertebrae , Humans , Lumbar Vertebrae/surgery , Lumbar Vertebrae/physiology , Biomechanical Phenomena , Bone Cements/therapeutic use , Male , Aged , Female , Middle Aged , Aged, 80 and over , Bone Density , Compressive Strength , Weight-Bearing/physiology , Osteoporosis
13.
Drug Des Devel Ther ; 18: 2249-2256, 2024.
Article in English | MEDLINE | ID: mdl-38895174

ABSTRACT

Objective: Recently, a lot of research has been done around the world to popularize the osseointegration of dental implants. In this study, it was investigated the effect of local zoledronic acid application on implants with machined (MAC), resorbable blast materials (RBM), sandblasted and acid-etched (SLA) surface implants integrated in rat tibias. Methodology: A total of 60 female Wistar rats weighing between 270 and 300 g were used in the study. The rats were passing divided into six classes: controls; MAC (n = 10), RBM (n = 10), SLA (n = 10), and local zoledronic acid (LZA) applied groups; LZA-MAC (n = 10), LZA-RBM (n=10) and LZA-SLA (n = 10) and implants were surgically placement into rat tibias in general anesthesia. After a four-week experimental period, the biomechanical bone implant connection level was determined with reverse torque analysis. Results: Osseointegration levels were detected highly in SLA and RBM surface compared with the machined surfaced implants in both control and treatment groups (p < 0.05). Additionally, local application of zoledronic acid in both three groups; implants increased the biomechanic osseointegration level compared with the controls (p < 0.05). Conclusion: In this research, we observe that the local application of the zoledronic acid could increase the osseointegration, and RBM and SLA surface could be better than machined surfaced implants in terms of bone implant connection. In addition, local application of zoledronic acid may be a safer method than systemic application.


Subject(s)
Dental Implants , Osseointegration , Rats, Wistar , Zoledronic Acid , Animals , Zoledronic Acid/pharmacology , Zoledronic Acid/administration & dosage , Osseointegration/drug effects , Rats , Female , Surface Properties , Tibia/drug effects , Tibia/surgery , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/administration & dosage
14.
J Oral Implantol ; 50(4): 435-445, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38867376

ABSTRACT

The objectives of the study group focused on the following main topics related to the performance of 1- and 2-piece ceramic implants: defining bone-implant-contact percentages and its measurement methods, evaluating the pink esthetic score as an esthetic outcome parameter after immediate implantation, recognizing the different results of ceramic implant designs as redefined by the German Association of Oral Implantology, incorporating the patient report outcome measure to include satisfaction and improvement in oral health-related quality of life, and conducting preclinical studies to address existing gaps in ceramic implants. During the Joint Congress for Ceramic Implantology (2022), the study group evaluated 17 clinical trials published between 2015 and 2021. After extensive discussions and multiple closed sessions, consensus statements and recommendations were developed, incorporating all approved modifications. A 1-piece implant design features a coronal part that is fused to the implant body or interfaces with the postabutment restoration platform, undergoing transmucosal healing. Long-term evaluations of this implant design are supported by established favorable clinical evidence. Inaccuracies in the pink esthetic score and bone-implant-contact percentages were managed by establishing control groups for preclinical studies and randomizing clinical trials. The patient-reported outcome measures were adjusted to include an individual visual analog scale, collected from each clinical study, that quantified improved oral health and quality of life. Preclinical investigations should focus on examining the spread of ceramic debris and the impact of heat generation on tissue and cellular levels during drilling. Further technical advancements should prioritize wound management and developing safe drilling protocols.


Subject(s)
Ceramics , Esthetics, Dental , Humans , Dental Implants , Dental Prosthesis Design , Quality of Life , Consensus
15.
J Periodontal Res ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747072

ABSTRACT

Dental implant surfaces and their unique properties can interact with the surrounding oral tissues through epigenetic cues. The present scoping review provides current perspectives on surface modifications of dental implants, their impact on the osseointegration process, and the interaction between implant surface properties and epigenetics, also in peri-implant diseases. Findings of this review demonstrate the impact of innovative surface treatments on the epigenetic mechanisms of cells, showing promising results in the early stages of osseointegration. Dental implant surfaces with properties of hydrophilicity, nanotexturization, multifunctional coatings, and incorporated drug-release systems have demonstrated favorable outcomes for early bone adhesion, increased antibacterial features, and improved osseointegration. The interaction between modified surface morphologies, different chemical surface energies, and/or release of molecules within the oral tissues has been shown to influence epigenetic mechanisms of the surrounding tissues caused by a physical-chemical interaction. Epigenetic changes around dental implants in the state of health and disease are different. In conclusion, emerging approaches in surface modifications for dental implants functionalized with epigenetics have great potential with a significant impact on modulating bone healing during osseointegration.

16.
J Oral Biosci ; 66(2): 281-287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723946

ABSTRACT

BACKGROUND: The osseointegration of zirconia implants has been evaluated based on their implant fixture bonding with the alveolar bone at the optical microscopic level. Achieving nano-level bonding between zirconia and bone apatite is crucial for superior osseointegration; however, only a few studies have investigated nanoscale bonding. This review outlines zirconia osseointegration, including surface modification, and presents an evaluation of nanoscale zirconia-apatite bonding and its structure. HIGHLIGHT: Assuming osseointegration, the cells produced calcium salts on a ceria-stabilized zirconia substrate. We analyzed the interface between calcium salts and zirconia substrates using transmission electron microscopy and found that 1) the cell-induced calcium salts were bone-like apatite and 2) direct nanoscale bonding was observed between the bone-like apatite and zirconia crystals without any special modifications of the zirconia surface. CONCLUSION: Structural affinity exists between bone apatite and zirconia crystals. Apatite formation can be induced by the zirconia surface. Zirconia bonds directly with apatite, indicating superior osseointegration in vivo.


Subject(s)
Durapatite , Osseointegration , Zirconium , Zirconium/chemistry , Osseointegration/drug effects , Durapatite/chemistry , Surface Properties , Humans , Dental Implants , Apatites/chemistry
17.
Comput Biol Med ; 174: 108405, 2024 May.
Article in English | MEDLINE | ID: mdl-38613890

ABSTRACT

BACKGROUND: Uncemented femoral stem insertion into the bone is achieved by applying successive impacts on an inserter tool called "ancillary". Impact analysis has shown to be a promising technique to monitor the implant insertion and to improve its primary stability. METHOD: This study aims to provide a better understanding of the dynamic phenomena occurring between the hammer, the ancillary, the implant and the bone during femoral stem insertion, to validate the use of impact analyses for implant insertion monitoring. A dynamic 3-D finite element model of the femoral stem insertion via an impaction protocol is proposed. The influence of the trabecular bone Young's modulus (Et), the interference fit (IF), the friction coefficient at the bone-implant interface (µ) and the impact velocity (v0) on the implant insertion and on the impact force signal is evaluated. RESULTS: For all configurations, a decrease of the time difference between the two first peaks of the impact force signal is observed throughout the femoral stem insertion, up to a threshold value of 0.23 ms. The number of impacts required to reach this value depends on Et, v0 and IF and varies between 3 and 8 for the set of parameters considered herein. The bone-implant contact ratio reached after ten impacts varies between 60% and 98%, increases as a function of v0 and decreases as a function of IF, µ and Et. CONCLUSION: This study confirms the potential of an impact analyses-based method to monitor implant insertion and to retrieve bone-implant contact properties.


Subject(s)
Femur , Finite Element Analysis , Humans , Femur/physiology , Hip Prosthesis , Models, Biological , Biomechanical Phenomena/physiology , Elastic Modulus
18.
J Funct Biomater ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667566

ABSTRACT

In recent years, the use of zinc (Zn) alloys as degradable metal materials has attracted considerable attention in the field of biomedical bone implant materials. This study investigates the fabrication of porous scaffolds using a Zn-1Mg-0.1Sr alloy through a three-dimensional (3D) printing technique, selective laser melting (SLM). The results showed that the porous Zn-1Mg-0.1Sr alloy scaffold featured a microporous structure and exhibited a compressive strength (CS) of 33.71 ± 2.51 MPa, a yield strength (YS) of 27.88 ± 1.58 MPa, and an elastic modulus (E) of 2.3 ± 0.8 GPa. During the immersion experiments, the immersion solution showed a concentration of 2.14 ± 0.82 mg/L for Zn2+ and 0.34 ± 0.14 mg/L for Sr2+, with an average pH of 7.61 ± 0.09. The porous Zn-1Mg-0.1Sr alloy demonstrated a weight loss of 12.82 ± 0.55% and a corrosion degradation rate of 0.36 ± 0.01 mm/year in 14 days. The Cell Counting Kit-8 (CCK-8) assay was used to check the viability of the cells. The results showed that the 10% and 20% extracts significantly increased the activity of osteoblast precursor cells (MC3T3-E1), with a cytotoxicity grade of 0, which indicates safety and non-toxicity. In summary, the porous Zn-1Mg-0.1Sr alloy scaffold exhibits outstanding mechanical properties, an appropriate degradation rate, and favorable biosafety, making it an ideal candidate for degradable metal bone implants.

19.
Biomed Phys Eng Express ; 10(3)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564254

ABSTRACT

The high demand for bone grafts has motivated the development of implants with excellent osteogenic activity, whereas the risk of implant-associated infection, particularly given the rise of antimicrobial resistance, has compelled the development of implants with innovative antimicrobial strategies in which a small amount of bactericidal agent can effectively kill a wide range of bacteria. To induce antibacterial property, the surface of Grade-5 bone plate titanium implants used in clinical applications was modified using direct current (DC) sputter coating followed by thermal annealing. The 15 nm silver film-coated implants were thermally annealed in the furnace for 15 min at 750 °C. The modified implant surface's antibacterial efficacy againstEscherichia coli(E. coli),Staphylococcus aureus(S. aureus),Salmonella typhi, andMethicillin-resistant staphylococcus aureusbacteria has been assessed using a colony-forming assay. On the modified implant surface, the growth ofE. coliandS. aureusbacteria is reduced by 99.72%, while highly drug-resistant bacteria are inhibited by 96.59%. The MTT assay was used to assess the cytotoxicity of the modified bone-implant surface against NIH3T3 mouse fibroblast cells. The modified bone-implant surface promoted fibroblast growth and demonstrated good cytocompatibility. Furthermore, the mechanical properties of the implant were not harmed by this novel surface modification method. This method is simple and provides new insight into surface modification of commercial metallic implants to have effective antibacterial properties against various classes of bacteria.


Subject(s)
Alloys , Methicillin-Resistant Staphylococcus aureus , Silver , Animals , Mice , Titanium , Bone Plates , Escherichia coli , NIH 3T3 Cells , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology
20.
J Dent Res ; 103(5): 467-476, 2024 05.
Article in English | MEDLINE | ID: mdl-38616679

ABSTRACT

Implant osseointegration is reduced in patients with systemic conditions that compromise bone quality, such as osteoporosis, disuse syndrome, and type 2 diabetes. Studies using rodent models designed to mimic these compromised conditions demonstrated reduced bone-to-implant contact (BIC) or a decline in bone mineral density. These adverse effects are a consequence of disrupted intercellular communication. A variety of approaches have been developed to compensate for the altered microenvironment inherent in compromised conditions, including the use of biologics and implant surface modification. Chemical and physical modification of surface properties at the microscale, mesoscale, and nanoscale levels to closely resemble the surface topography of osteoclast resorption pits found in bone has proven to be a highly effective strategy for improving implant osseointegration. The addition of hydrophilicity to the surface further enhances osteoblast response at the bone-implant interface. These surface modifications, applied either alone or in combination, improve osseointegration by increasing proliferation and osteoblastic differentiation of osteoprogenitor cells and enhancing angiogenesis while modulating osteoclast activity to achieve net new bone formation, although the specific effects vary with surface treatment. In addition to direct effects on surface-attached cells, the communication between bone marrow stromal cells and immunomodulatory cells is sensitive to these surface properties. This article reports on the advances in titanium surface modifications, alone and in combination with novel therapeutics in animal models of human disease affecting bone quality. It offers clinically translatable perspectives for clinicians to consider when using different surface modification strategies to improve long-term implant performance in compromised patients. This review supports the use of surface modifications, bioactive coatings, and localized therapeutics as pragmatic approaches to improve BIC and enhance osteogenic activity from both structural and molecular standpoints.


Subject(s)
Bone-Implant Interface , Dental Implants , Disease Models, Animal , Osseointegration , Surface Properties , Osseointegration/physiology , Animals , Osteoblasts/physiology , Humans , Osteogenesis/physiology , Osteoclasts , Dental Implantation, Endosseous
SELECTION OF CITATIONS
SEARCH DETAIL