Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.588
Filter
1.
J Biomed Mater Res A ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963690

ABSTRACT

Approximately 5%-10% of fractures go on to delayed healing and nonunion, posing significant clinical, economic, and social challenges. Current treatment methods involving open bone harvesting and grafting are associated with considerable pain and potential morbidity at the donor site. Hence, there is growing interest in minimally invasive approaches such as bone marrow aspirate concentrate (BMAC), which contains mesenchymal stromal cells (MSCs), macrophages (Mφ), and T cells. However, the use of cultured or activated cells for treatment is not yet FDA-approved in the United States, necessitating further exploration of optimal cell types and proportions for effective bone formation. As our understanding of osteoimmunology advances, it has become apparent that factors from anti-inflammatory Mφ (M2) promote bone formation by MSCs. Additionally, M2 Mφ promote T helper 2 (Th2) cells and Treg cells, both of which enhance bone formation. In this study, we investigated the interactions among MSCs, Mφ, and T cells in bone formation and explored the potential of subsets of BMAC. Coculture experiments were conducted using primary MSCs, Mφ, and CD4+ T cells at specific ratios. Our results indicate that nonactivated T cells had no direct influence on osteogenesis by MSCs, while coculturing MSCs with Mφ and T cells at a ratio of 1:5:10 positively impacted bone formation. Furthermore, higher numbers of T cells led to increased M2 polarization and a higher proportion of Th2 cells in the early stages of coculture. These findings suggest the potential for enhancing bone formation by adjusting immune and mesenchymal cell ratios in BMAC. By understanding the interactions and effects of immune cells on bone formation, we can develop more effective strategies and protocols for treating bone defects and nonunions. Further studies are needed to investigate these interactions in vivo and explore additional factors influencing MSC-based therapies.

2.
Stem Cell Res Ther ; 15(1): 194, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956719

ABSTRACT

BACKGROUND: Repairation of bone defects remains a major clinical problem. Constructing bone tissue engineering containing growth factors, stem cells, and material scaffolds to repair bone defects has recently become a hot research topic. Nerve growth factor (NGF) can promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs), but the low survival rate of the BMSCs during transplantation remains an unresolved issue. In this study, we investigated the therapeutic effect of BMSCs overexpression of NGF on bone defect by inhibiting pyroptosis. METHODS: The relationship between the low survival rate and pyroptosis of BMSCs overexpressing NGF in localized inflammation of fractures was explored by detecting pyroptosis protein levels. Then, the NGF+/BMSCs-NSA-Sca bone tissue engineering was constructed by seeding BMSCs overexpressing NGF on the allograft bone scaffold and adding the pyroptosis inhibitor necrosulfonamide(NSA). The femoral condylar defect model in the Sprague-Dawley (SD) rat was studied by micro-CT, histological, WB and PCR analyses in vitro and in vivo to evaluate the regenerative effect of bone repair. RESULTS: The pyroptosis that occurs in BMSCs overexpressing NGF is associated with the nerve growth factor receptor (P75NTR) during osteogenic differentiation. Furthermore, NSA can block pyroptosis in BMSCs overexpression NGF. Notably, the analyses using the critical-size femoral condylar defect model indicated that the NGF+/BMSCs-NSA-Sca group inhibited pyroptosis significantly and had higher osteogenesis in defects. CONCLUSION: NGF+/BMSCs-NSA had strong osteogenic properties in repairing bone defects. Moreover, NGF+/BMSCs-NSA-Sca mixture developed in this study opens new horizons for developing novel tissue engineering constructs.


Subject(s)
Mesenchymal Stem Cells , Nerve Growth Factor , Osteogenesis , Rats, Sprague-Dawley , Tissue Scaffolds , Animals , Nerve Growth Factor/metabolism , Nerve Growth Factor/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Rats , Tissue Scaffolds/chemistry , Bone Regeneration , Allografts , Male , Tissue Engineering/methods , Pyroptosis , Sulfonamides/pharmacology , Cell Differentiation , Mesenchymal Stem Cell Transplantation/methods , Bone Transplantation/methods
3.
Heliyon ; 10(11): e32686, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961957

ABSTRACT

Periodontitis is an inflammatory disease characterized by the destruction of periodontal tissues, and the promotion of bone tissue regeneration is the key to curing periodontitis. Psoralen is the main component of Psoralea corylifolia Linn, and has multiple biological effects, including anti-osteoporosis and osteogenesis. We constructed a novel hydrogel loaded with psoralen (PSO) and stromal cell-derived factor-1 (SDF-1) for direct endogenous cell homing. This study aimed to evaluate the synergistic effects of PSO/SDF-1 on periodontal bone regeneration in patients with periodontitis. The results of CCK8, alkaline phosphatase (ALP) activity assay, and Alizarin Red staining showed that PSO/SDF-1 combination treatment promoted cell proliferation, chemotaxis ability, and ALP activity of PDLSCs. qRT-PCR and western blotting showed that the expression levels of alkaline phosphatase (ALP), dwarf-associated transcription factor 2 (RUNX2), and osteocalcin (OCN) gene were upregulated. Rat periodontal models were established to observe the effect of local application of the composite hydrogel on bone regeneration. These results proved that the PSO/SDF-1 combination treatment significantly promoted new bone formation. The immunohistochemical (IHC) results confirmed the elevated expression of ALP, RUNX2, and OCN osteogenic genes. PSO/SDF-1 composite hydrogel can synergistically regulate the biological function and promote periodontal bone formation. Thus, this study provides a novel strategy for periodontal bone regeneration.

4.
Sci Rep ; 14(1): 15749, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977767

ABSTRACT

Although bone dehiscence may occur during orthodontic tooth movement into the narrow alveolar ridge, a non-invasive prevention method is yet to be fully established. We show for the first time prevention of bone dehiscence associated with orthodontic tooth movement by prophylactic injection of bone anabolic agents in mice. In this study, we established a bone dehiscence mouse model by applying force application and used the granular type of scaffold materials encapsulated with bone morphogenetic protein (BMP)-2 and OP3-4, the receptor activator of NF-κB ligand (RANKL)-binding peptide, for the prophylactic injection to the alveolar bone. In vivo micro-computed tomography revealed bone dehiscence with decreased buccal alveolar bone thickness and height after force application, whereas no bone dehiscence was observed with the prophylactic injection after force application, and alveolar bone thickness and height were kept at similar levels as those in the control group. Bone histomorphometry analyses revealed that both bone formation and resorption parameters were significantly higher in the injection with force application group than in the force application without the prophylactic injection group. These findings suggest that the prophylactic local delivery of bone anabolic reagents can prevent bone dehiscence with increased bone remodelling activity.


Subject(s)
Anabolic Agents , Bone Morphogenetic Protein 2 , Tooth Movement Techniques , X-Ray Microtomography , Animals , Mice , Tooth Movement Techniques/adverse effects , Anabolic Agents/pharmacology , Anabolic Agents/administration & dosage , Male , Osteogenesis/drug effects , Bone Remodeling/drug effects , RANK Ligand/metabolism , Alveolar Process/drug effects , Alveolar Process/diagnostic imaging , Alveolar Process/pathology , Disease Models, Animal
5.
Adv Sci (Weinh) ; : e2403786, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978324

ABSTRACT

Periodontitis, a prevalent chronic inflammatory disease, poses significant challenges for effective treatment due to its complex etiology involving specific bacteria and the inflammatory immune microenvironment. Here, this study presents a novel approach for the targeted treatment of periodontitis utilizing the immunomodulatory and antibacterial properties of Embelin, a plant-derived compound, within an injectable hydrogel system. The developed Carboxymethyl Chitosan-Oxidized Dextran (CMCS-OD) hydrogel formed via dynamic chemical bonds exhibited self-healing capabilities and pH-responsive behavior, thereby facilitating the controlled release of Embelin and enhancing its efficacy in a dynamic oral periodontitis microenvironment. This study demonstrates that this hydrogel system effectively prevents bacterial invasion and mitigates excessive immune response activation. Moreover, it precisely modulates macrophage M1/M2 phenotypes and suppresses inflammatory cytokine expression, thereby fostering a conducive environment for bone regeneration and addressing periodontitis-induced bone loss. These findings highlight the potential of the approach as a promising strategy for the clinical management of periodontitis-induced bone destruction.

6.
Article in English | MEDLINE | ID: mdl-38979855

ABSTRACT

INTRODUCTION: Different protocols and procedures for sinus lift and implant placement are available, generally involving the use of grafts to increase the tissue volume and/or prevent the Schneiderian membrane from collapsing. Among xenografts, deproteinised bovine bone graft (DBBP) is frequently used in sinus lift procedures. Leaving an ungrafted space following membrane elevation has proven to have a bony regenerative potential as well. This study aimed to compare the clinical and histological features of sinus lift surgery performed with or without biomaterials. METHODS: Patients with severe maxillary posterior atrophy (residual bone height 2-6 mm and residual crest thickness ≥4 mm), and in need of sinus lift surgery to allow the placement of three implants were enrolled and randomly divided into two groups. They underwent sinus lifts with DBBP (control) or with a graftless technique (test) and immediate placement of two implants (a mesial and distal one). After 6 months, a bone sample was retrieved from the area between the previously inserted fixtures, and a third, central implant was placed. The collected bone samples were analyzed morphologically and histomorphometrically. The patients were provided with prosthetic restorations after 6 months and followed up for 5-12 years. RESULTS: Ten patients were enrolled in the test and nine in the control group. The 6-month follow-up showed in the control group an average augmentation of 10.31 mm (±2.12), while in the test group it was 8.5 mm (±1.41) and a success rate of 96.3% in the control and 86.7% in the test group (p > 0.05). The histological analysis evidenced the presence of new bone tissue surrounded by immature osteoid matrix in the test group, and a variable number of DBBP particles surrounded by an immature woven bone matrix in the control group. CONCLUSION: The results of the present trial indicate that, with residual bone height of 2-6 mm and residual crest thickness ≥4 mm, sinus lift surgery with or without biomaterials followed by implant restoration, produces similar clinical and histological outcomes.

7.
Int J Nanomedicine ; 19: 6359-6376, 2024.
Article in English | MEDLINE | ID: mdl-38946885

ABSTRACT

Background: Bone tissue engineering (BTE) is a promising alternative to autologous bone grafting for the clinical treatment of bone defects, and inorganic/organic composite hydrogels as BTE scaffolds are a hot spot in current research. The construction of nano-hydroxyapatite/gelatin methacrylate/oxidized sodium alginate (nHAP/GelMA/OSA), abbreviated as HGO, composite hydrogels loaded with bone morphogenetic protein 7 (BMP7) will provide a suitable 3D microenvironment to promote cell aggregation, proliferation, and differentiation, thus facilitating bone repair and regeneration. Methods: Dually-crosslinked hydrogels were fabricated by combining GelMA and OSA, while HGO hydrogels were formulated by incorporating varying amounts of nHAP. The hydrogels were physically and chemically characterized followed by the assessment of their biocompatibility. BMP7-HGO (BHGO) hydrogels were fabricated by incorporating suitable concentrations of BMP7 into HGO hydrogels. The osteogenic potential of BHGO hydrogels was then validated through in vitro experiments and using rat femoral defect models. Results: The addition of nHAP significantly improved the physical properties of the hydrogel, and the composite hydrogel with 10% nHAP demonstrated the best overall performance among all groups. The selected concentration of HGO hydrogel served as a carrier for BMP7 loading and was evaluated for its osteogenic potential both in vivo and in vitro. The BHGO hydrogel demonstrated superior in vitro osteogenic induction and in vivo potential for repairing bone tissue compared to the outcomes observed in the blank control, BMP7, and HGO groups. Conclusion: Using hydrogel containing 10% HGO appears promising for bone tissue engineering scaffolds, especially when loaded with BMP7 to boost its osteogenic potential. However, further investigation is needed to optimize the GelMA, OSA, and nHAP ratios, along with the BMP7 concentration, to maximize the osteogenic potential.


Subject(s)
Alginates , Bone Morphogenetic Protein 7 , Bone Regeneration , Durapatite , Gelatin , Hydrogels , Osteogenesis , Tissue Engineering , Tissue Scaffolds , Alginates/chemistry , Alginates/pharmacology , Animals , Bone Morphogenetic Protein 7/chemistry , Bone Morphogenetic Protein 7/pharmacology , Gelatin/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Hydrogels/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Osteogenesis/drug effects , Rats , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley , Methacrylates/chemistry , Male , Humans , Bone and Bones/drug effects
8.
Biomaterials ; 311: 122699, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38981153

ABSTRACT

The treatment of osteoporotic bone defects poses a challenge due to the degradation of the skeletal vascular system and the disruption of local bone metabolism within the osteoporotic microenvironment. However, it is feasible to modulate the disrupted local bone metabolism imbalance through enhanced vascularization, a theory termed "vascularization-bone metabolic balance". This study developed a 3D-printed polycaprolactone (PCL) scaffold modified with EPLQLKM and SVVYGLR peptides (PCL-SE). The EPLQLKM peptide attracts bone marrow-derived mesenchymal stem cells (BMSCs), while the SVVYGLR peptide enhances endothelial progenitor cells (EPCs) vascular differentiation, thus regulating bone metabolism and fostering bone regeneration through the paracrine effects of EPCs. Further mechanistic research demonstrated that PCL-SE promoted the vascularization of EPCs, activating the Notch signaling pathway in BMSCs, leading to the upregulation of osteogenesis-related genes and the downregulation of osteoclast-related genes, thereby restoring bone metabolic balance. Furthermore, PCL-SE facilitated the differentiation of EPCs into "H"-type vessels and the recruitment of BMSCs to synergistically enhance osteogenesis, resulting in the regeneration of normal microvessels and bone tissues in cases of femoral condylar bone defects in osteoporotic SD rats. This study suggests that PCL-SE supports in-situ vascularization, remodels bone metabolic translational balance, and offers a promising therapeutic regimen for osteoporotic bone defects.

9.
Int J Biol Macromol ; : 133775, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986979

ABSTRACT

Barrier membranes play a prominent role in guided bone regeneration (GBR), and polycaprolactone (PCL) is an attractive biomaterial for the fabrication of barrier membranes. However, these nanofiber membranes (NFMs) require modification to improve their biological activity. PCL-NFMs incorporating with laponite (LAP) achieve biofunctional modification. Decellularized extracellular matrix (dECM) could modulate cell behaviour. The present study combined dECM with PCL/LAP-NFMs to generate a promising strategy for bone tissue regeneration. Bone marrow mesenchymal stem cells (BMSCs) were cultured on NFMs and deposited with an abundant extracellular matrix (ECM), which was subsequently decellularized to obtain dECM-modified PCL/LAP-NFMs (PCL/LAP-dECM-NFMs). The biological functions of the membranes were evaluated by reseeding MC3T3-E1 cells in vitro and transplanting them into rat calvarial defects in vivo. These results indicate that PCL/LAP-dECM-NFMs were successfully constructed. The presence of dECM slightly improved the mechanical properties of the NFMs, which exhibited a Young's modulus of 0.269 MPa, ultimate tensile strength of 2.04 MPa and elongation at break of 51.62 %. In vitro, the PCL/LAP-dECM-NFMs had favourable cytocompatibility, and the enhanced hydrophilicity was conducive to cell adhesion, proliferation, and osteoblast differentiation. PCL/LAP-dECM-NFMs exhibited an excellent bone repair capacity in vivo. Overall, dECM-modified PCL/LAP-NFMs should be promising biomimetic barrier membranes for GBR.

11.
J Oral Implantol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953229

ABSTRACT

Cases of relatively safe dental implant treatment in patients with low-volume bisphosphonate (BP) have been gradually reported. Although bone augmentation is commonly used when the bone volume is insufficient for implant placement, the studies and case reports regarding the safety of bone augmentation in patients treated with BP remain insufficient. Herein, we report a case wherein bone augmentation was performed after BP treatment, with bone healing realized according to imaging, and we review the literature regarding BP and bone augmentation. A sixty-seven-year-old Japanese woman requested implant treatment for a hopeless lower right second molar. She had been taking minodronic acid hydrate (50 mg/4 wk) for 18 mo to treat steroid-induced osteoporosis. After obtaining informed consent, tooth extraction and bone augmentation within the extraction socket were performed. The tooth was extracted atraumatically to preserve the surrounding alveolar bone, and the extraction socket was intensely curetted. Subsequently, the socket was filled with carbonate apatite granules and covered with a biodegradable membrane, and the wound was sutured without tension. Although protracted wound healing without any symptoms of infection was observed, the wound healed completely. No clinical symptoms were observed, the color of the mucosa at the site was healthy, and imaging findings at a six month post-operation indicated that osteogenesis had progressed uneventfully.

12.
Bioact Mater ; 40: 227-243, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38973993

ABSTRACT

Limited cells and factors, inadequate mechanical properties, and necrosis of defects center have hindered the wide clinical application of bone-tissue engineering scaffolds. Herein, we construct a self-oxygenated 3D printed bioactive hydrogel scaffold by integrating oxygen-generating nanoparticles and hybrid double network hydrogel structure. The hydrogel scaffold possesses the characteristics of extracellular matrix; Meanwhile, the fabricated hybrid double network structure by polyacrylamide and CaCl2-crosslinked sodium carboxymethylcellulose endows the hydrogel favorable compressive strength and 3D printability. Furthermore, the O2 generated by CaO2 nanoparticles encapsulated in ZIF-8 releases steadily and sustainably because of the well-developed microporous structure of ZIF-8, which can significantly promote cell viability and proliferation in vitro, as well as angiogenesis and osteogenic differentiation with the assistance of Zn2+. More significantly, the synergy of O2 and 3D printed pore structure can prevent necrosis of defects center and facilitate cell infiltration by providing cells the nutrients and space they need, which can further induce vascular network ingrowth and accelerate bone regeneration in all areas of the defect in vivo. Overall, this work provides a new avenue for preparing cell/factor-free bone-tissue engineered scaffolds that possess great potential for tissue regeneration and clinical alternative.

13.
Mater Today Bio ; 27: 101120, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38975240

ABSTRACT

Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted "FPBS") for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair.

14.
Eur J Oral Sci ; : e13006, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989803

ABSTRACT

Lymphatics are involved in the resolution of inflammation and wound healing, but their role in the oral wound healing process after tooth extraction has never been investigated. We therefore sought to evaluate the healing process following the extraction of maxillary molars in two transgenic mouse models: K14-VEGFR3-Ig mice, which lack initial mucosal lymphatic vessels, and K14-VEGFC mice, which have hyperplastic mucosal lymphatics. Maxillary molars were extracted from both transgenic mouse types and their corresponding wild-type (WT) controls. Mucosal and alveolar bone healing were evaluated. A delayed epithelialization and bone regeneration were observed in K14-VEGFR3-Ig mice compared with their WT littermates. The hampered wound closure was accompanied by decreased levels of epidermal growth factor (EGF) and persistent inflammation, characterized by infiltrates of immune cells and elevated levels of pro-inflammatory markers in the wounds. Hyperplastic mucosal lymphatics did not enhance the healing process after tooth extraction in K14-VEGFC mice. The findings indicate that initial mucosal lymphatics play a major role in the initial phase of the oral wound healing process.

15.
Cureus ; 16(6): e62182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38993412

ABSTRACT

Bertolotti's syndrome is a syndrome in which the transverse process of the most caudal lumbar vertebra becomes enlarged and articulates with the sacral alar, causing back pain. Here, we report a case of an adolescent basketball player with Bertolotti's syndrome who was unable to resume playing despite conservative treatment and underwent an endoscopic partial transverse process and sacral alar resection. A 16-year-old male basketball player presented to our hospital with a chief complaint of left low back pain during exercise and prolonged sitting for over one month. No obvious neurological abnormality was found. X-rays and CT showed lumbosacral transitional vertebrae, and the left transverse process of the sixth lumbar vertebra articulated with the sacrum and iliac, which was the Castellvi classification IIA. A block injection into the articulated surface produced improvement in pain, but the effect was not sustained. Since the patient was refractory to conservative treatments, such as medication and physiotherapy, surgery was performed. During surgery, the articulated transverse process and sacral alar were partially resected endoscopically. Because of the proximity of the resection site to the S1 nerve root, intraoperative electromyography (free-run EMG) was used to detect nerve root irritation symptoms in real time. The patient had no postoperative complications, his low back pain improved immediately, and he returned to play basketball three months after surgery. One year after surgery, the bone resection site showed gradual bone regeneration, and two years after surgery, the transverse process and sacral alar showed a bony bridge. The transverse process was enlarged compared to immediately after surgery but remained smaller than that before surgery. The patient continued to play basketball for two years after surgery without back pain, and no symptoms due to bone regeneration appeared. In the present case, a partial resection of the transverse process and sacral alar was performed with good results. Because the bone resection site was close to the S1 nerve root, the use of an endoscope and intraoperative free-run EMG allowed for a safer procedure during the bone resection. In addition, the patient did not present with symptoms that would affect his basketball performance, although the bone regenerated and bridging occurred between the transverse process and sacral alar over a two-year postoperative course.

16.
Theranostics ; 14(10): 3859-3899, 2024.
Article in English | MEDLINE | ID: mdl-38994021

ABSTRACT

Osteoporosis is a systemic skeletal disease caused by an imbalance between bone resorption and formation. Current treatments primarily involve systemic medication and hormone therapy. However, these systemic treatments lack directionality and are often ineffective for locally severe osteoporosis, with the potential for complex adverse reactions. Consequently, treatment strategies using bioactive materials or external interventions have emerged as the most promising approaches. This review proposes twelve microenvironmental treatment targets for osteoporosis-related pathological changes, including local accumulation of inflammatory factors and reactive oxygen species (ROS), imbalance of mitochondrial dynamics, insulin resistance, disruption of bone cell autophagy, imbalance of bone cell apoptosis, changes in neural secretions, aging of bone cells, increased local bone tissue vascular destruction, and decreased regeneration. Additionally, this review examines the current research status of effective or potential biophysical and biochemical stimuli based on these microenvironmental treatment targets and summarizes the advantages and optimal parameters of different bioengineering stimuli to support preclinical and clinical research on osteoporosis treatment and bone regeneration. Finally, the review addresses ongoing challenges and future research prospects.


Subject(s)
Osseointegration , Osteoporosis , Humans , Osteoporosis/therapy , Animals , Reactive Oxygen Species/metabolism , Bone Regeneration , Autophagy , Bone and Bones/metabolism , Apoptosis , Bioengineering/methods
17.
Theranostics ; 14(10): 4014-4057, 2024.
Article in English | MEDLINE | ID: mdl-38994032

ABSTRACT

Background: The comprehensive management of diabetic bone defects remains a substantial clinical challenge due to the hostile regenerative microenvironment characterized by aggravated inflammation, excessive reactive oxygen species (ROS), bacterial infection, impaired angiogenesis, and unbalanced bone homeostasis. Thus, an advanced multifunctional therapeutic platform capable of simultaneously achieving immune regulation, bacterial elimination, and tissue regeneration is urgently designed for augmented bone regeneration under diabetic pathological milieu. Methods and Results: Herein, a photoactivated soft-hard combined scaffold system (PGCZ) was engineered by introducing polydopamine-modified zeolitic imidazolate framework-8-loaded double-network hydrogel (soft matrix component) into 3D-printed poly(ε-caprolactone) (PCL) scaffold (hard matrix component). The versatile PGCZ scaffold based on double-network hydrogel and 3D-printed PCL was thus prepared and features highly extracellular matrix-mimicking microstructure, suitable biodegradability and mechanical properties, and excellent photothermal performance, allowing long-term structural stability and mechanical support for bone regeneration. Under periodic near-infrared (NIR) irradiation, the localized photothermal effect of PGCZ triggers the on-demand release of Zn2+, which, together with repeated mild hyperthermia, collectively accelerates the proliferation and osteogenic differentiation of preosteoblasts and potently inhibits bacterial growth and biofilm formation. Additionally, the photoactivated PGCZ system also presents outstanding immunomodulatory and ROS scavenging capacities, which regulate M2 polarization of macrophages and drive functional cytokine secretion, thus leading to a pro-regenerative microenvironment in situ with enhanced vascularization. In vivo experiments further demonstrated that the PGCZ platform in conjunction with mild photothermal therapeutic activity remarkably attenuated the local inflammatory cascade, initiated endogenous stem cell recruitment and neovascularization, and orchestrated the osteoblast/osteoclast balance, ultimately accelerating diabetic bone regeneration. Conclusions: This work highlights the potential application of a photoactivated soft-hard combined system that provides long-term biophysical (mild photothermal stimulation) and biochemical (on-demand ion delivery) cues for accelerated healing of diabetic bone defects.


Subject(s)
Bone Regeneration , Hydrogels , Photothermal Therapy , Tissue Scaffolds , Animals , Mice , Bone Regeneration/drug effects , Photothermal Therapy/methods , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Indoles/chemistry , Indoles/pharmacology , Neovascularization, Physiologic/drug effects , Printing, Three-Dimensional , Osteogenesis/drug effects , Polyesters/chemistry , Diabetes Mellitus, Experimental/therapy , Male , Rats , Polymers/chemistry , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Angiogenesis
18.
Front Bioeng Biotechnol ; 12: 1421718, 2024.
Article in English | MEDLINE | ID: mdl-38988866

ABSTRACT

Introduction: The production of bone-like structural scaffolds through bone tissue engineering technology is a promising method for bone regeneration to repair bone defects. Deer antler, an easily harvested and abundantly sourced initial bone tissue structure, resembles the composition and structure of human cancellous bone and can serve as a new material for allogeneic bone transplantation. Methods: This study involved the preparation and characterization of antler powder/chitosan/ß-glycerophosphate sodium/polyvinyl alcohol (AP/CS/ß-GP/PVA) porous hydrogel scaffolds to verify their material properties and osteogenic mechanisms. The microstructure, hydrophilicity, and mechanical properties of the scaffolds were studied using Scanning Electron Microscopy (SEM), contact angle measurement, and a universal material testing machine. The interactions between the various components were investigated using Fourier-Transform Infrared Spectroscopy (FTIR). Biocompatibility, osteogenic properties, and expression of osteogenesis-related proteins of the scaffolds were evaluated through Cell Counting Kit-8 (CCK-8) assays, alkaline phosphatase staining, Alizarin Red staining, live/dead cell staining, and Western blot analysis. Results: The results showed that as the content of deer antler powder increased, both the hydrophilicity and mechanical properties of the scaffold materials improved, while the porosity slightly decreased with an increase in deer antler powder content. Cell culture experiments demonstrated that scaffolds with a higher proportion of deer antler powder were beneficial for the proliferation and differentiation of mouse pre-osteoblast (MC3T3-E1) cells, with the scaffolds containing 10% and 8% deer antler powder showing the best effects. The upregulation of RUNX2, OCN, OSX, and OPN protein expression may promote differentiation. Discussion: Therefore, the AP/CS/ß-GP/PVA hydrogel scaffolds have the potential to become a promising biomaterial for bone tissue engineering.

19.
Tissue Eng Regen Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955905

ABSTRACT

BACKGROUND: This study aimed to identify glycine analogs conducive to the formation of cell-absorbable nanocomplexes, enhancing collagen synthesis and subsequent osteogenesis in combination with BMP2 for improved bone regeneration. METHODS: Glycine and its derivatives were assessed for their effects on osteogenic differentiation in MC3T3-E1 cells and human bone marrow mesenchymal stem cells (BMSCs) under osteogenic conditions or with BMP2. Osteogenic differentiation was assessed through alkaline phosphatase staining and real-time quantitative polymerase chain reaction (RT-qPCR). Nanocomplex formation was examined via scanning electron microscopy, circular dichroism, and ultraviolet-visible spectroscopy. In vivo osteogenic effects were validated using a mouse calvarial defect model, and bone regeneration was evaluated through micro-computed tomography and histomorphometric analysis. RESULTS: Glycine, glycine methyl ester, and glycinamide significantly enhanced collagen synthesis and ALP activity in conjunction with an osteogenic medium (OSM). GA emerged as the most effective inducer of osteoblast differentiation marker genes. Combining GA with BMP2 synergistically stimulated ALP activity and the expression of osteoblast markers in both cell lines. GA readily formed nanocomplexes, facilitating cellular uptake through strong electrostatic interactions. In an in vivo calvarial defect mouse model, the GA and BMP2 combination demonstrated enhanced bone volume, bone volume/tissue volume ratio, trabecular numbers, and mature bone formation compared to other combinations. CONCLUSION: GA and BMP2 synergistically promoted in vitro osteoblast differentiation and in vivo bone regeneration through nanocomplex formation. This combination holds therapeutic promise for individuals with bone defects, showcasing its potential for clinical intervention.

20.
ACS Appl Bio Mater ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950103

ABSTRACT

Bone, a fundamental constituent of the human body, is a vital scaffold for support, protection, and locomotion, underscoring its pivotal role in maintaining skeletal integrity and overall functionality. However, factors such as trauma, disease, or aging can compromise bone structure, necessitating effective strategies for regeneration. Traditional approaches often lack biomimetic environments conducive to efficient tissue repair. Nanofibrous microspheres (NFMS) present a promising biomimetic platform for bone regeneration by mimicking the native extracellular matrix architecture. Through optimized fabrication techniques and the incorporation of active biomolecular components, NFMS can precisely replicate the nanostructure and biochemical cues essential for osteogenesis promotion. Furthermore, NFMS exhibit versatile properties, including tunable morphology, mechanical strength, and controlled release kinetics, augmenting their suitability for tailored bone tissue engineering applications. NFMS enhance cell recruitment, attachment, and proliferation, while promoting osteogenic differentiation and mineralization, thereby accelerating bone healing. This review highlights the pivotal role of NFMS in bone tissue engineering, elucidating their design principles and key attributes. By examining recent preclinical applications, we assess their current clinical status and discuss critical considerations for potential clinical translation. This review offers crucial insights for researchers at the intersection of biomaterials and tissue engineering, highlighting developments in this expanding field.

SELECTION OF CITATIONS
SEARCH DETAIL
...