Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.499
Filter
1.
World Neurosurg ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968995

ABSTRACT

BACKGROUND: Brainstem tumors represent ∼10% of pediatric brain tumors, ∼80% of these are diffuse midline glioma (DMG). Given invariably poor prognosis in DMG, there continues to be immense variation worldwide in performing biopsy of these lesions. Several contemporary studies in recent years have provided new data to elucidate the safety profile of biopsy and an updated meta-analysis is thus indicated. METHODS: We found 29 studies of pediatric brainstem biopsy in the last 20 years (2003-2023, 1002 children). We applied meta-analysis of proportions using a random-effects model to generate point estimates, confidence intervals, and measures of heterogeneity. RESULTS: 87% of procedures were stereotactic needle biopsies (of these, 62% with a frame, 14% without frame, and 24% robotic.) Biopsy resulted in a histological diagnosis ("technical yield") in 96.8% of cases (95% CI 95.4-98.2). Temporary complications were seen in 6% (95 CI 4-8), with the most common neurological complications being 1) cranial nerve dysfunction, 2) worsening or new ataxia, and 3) limb weakness. Permanent complications (excluding death) were seen in 1% (95% CI 0.5-2), most commonly including cranial nerve dysfunction and limb weakness. 5 deaths were reported in the entire pooled cohort of 1002 children (0.5%). CONCLUSIONS: When counseling families on the merits of brainstem biopsy in children, it is reasonable to state that permanent morbidity is rare (<2%). If biopsy is performed specifically to facilitate enrollment in clinical trials requiring a molecular diagnosis, the risks of biopsy outlined here should be weighed against potential benefits of trial enrollment.

2.
Surg Neurol Int ; 15: 195, 2024.
Article in English | MEDLINE | ID: mdl-38974563

ABSTRACT

Background: Neurenteric cysts are uncommon, benign endoderm-derived lesions that result from aberrant embryologic development of the notochord. They are typically located in the intradural extramedullary spinal cord and rarely located intracranially. Contrary to spinal-located cysts, intracranial cysts are rarer in the pediatric population. Clinically, they may present with symptoms of mass effect, or they can be incidentally discovered. Case Description: A 10-year-old healthy female child presented with recurrent headaches. The physical and neurological examination was unremarkable. Brain magnetic resonance imaging (MRI) showed a well-demarcated lesion anterior to the pontomedullary junction with striking T1 and T2/T2 fluid-attenuated inversion recovery high-signal intensity and a small rounded nodule within of low signal on T1, T2, and T2*. On initial conservative strategy with serial brain MRI, there was a progressive enlargement of the lesion with significant mass effect on the brainstem. The patient underwent a right retrosigmoid craniotomy, and the cyst wall was fenestrated and drained. Part of the cyst wall and the solid nodule were adherent to the brainstem and basilar artery and were not removed. The histologic findings were consistent with the diagnosis of a benign endodermal cyst. The postoperative period was uneventful. Conclusion: We report a successful surgical treatment of this rare congenital cyst located in the ventral brainstem. We present pre-and post-operative imaging findings, intraoperative microscopic images of the procedure, and a brief review of relevant clinical literature on the topic.

3.
J Avian Med Surg ; 38(2): 75-82, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980816

ABSTRACT

Owls, members of the avian order Strigiformes, are nocturnal birds of prey that are found worldwide except for Antarctica. Traumatized, free-ranging owls are commonly presented to veterinary hospitals and wildlife rehabilitation facilities with the goal of providing medical care and rehabilitation to enable release back into their natural habitat. Minimal guidelines exist for the release of wildlife, and whereas a need for functional vision is described in raptors, assessing and evaluating hearing is usually not mentioned. This can be problematic for nocturnal predators because hearing is the primary sense utilized by owls when hunting and navigating in their dark environment. The brainstem auditory evoked response (BAER) test is a minimally invasive, objective assessment of hearing commonly used in companion animals. To the authors' knowledge, routine or standardized BAER evaluation has not been reported in traumatized, free-ranging owls. In the following retrospective study, 31 free-ranging owls presented to the University of Georgia Veterinary Teaching Hospital for known or suspected trauma or being found in a debilitated state underwent BAER testing to assess for the presence of complete sensorineural hearing loss. Similar to assessment of hearing in companion animals, the BAER test was elicited using a broad click stimulus delivered at 85 dB nHL. In all owls, qualitative assessment and peak latency measurements of the BAER test reflected hearing ability. This study highlights the importance of hearing in nocturnal raptors, how BAER testing can aid in decision making regarding rehabilitation, and provides a foundation for further investigation of hearing loss in traumatized owls. We suggest that veterinarians working with free-ranging owls in a rehabilitation setting should consider BAER testing as part of routine diagnostic testing.


Subject(s)
Animals, Wild , Strigiformes , Animals , Strigiformes/physiology , Retrospective Studies , Bird Diseases/diagnosis , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Tests/veterinary , Female
4.
Hum Mol Genet ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981620

ABSTRACT

Hearing loss is the most common congenital sensory deficit worldwide and exhibits high genetic heterogeneity, making molecular diagnoses elusive for most individuals. Detecting novel mutations that contribute to hearing loss is crucial to providing accurate personalized diagnoses, tailored interventions, and improving prognosis. Copy number variants (CNVs) are structural mutations that are understudied, potential contributors to hearing loss. Here, we present the Abnormal Wobbly Gait (AWG) mouse, the first documented mutant exhibiting waltzer-like locomotor dysfunction, hyperactivity, circling behaviour, and profound deafness caused by a spontaneous CNV deletion in cadherin 23 (Cdh23). We were unable to identify the causative mutation through a conventional whole-genome sequencing (WGS) and variant detection pipeline, but instead found a linked variant in hexokinase 1 (Hk1) that was insufficient to recapitulate the AWG phenotype when introduced into C57BL/6J mice using CRISPR-Cas9. Investigating nearby deafness-associated genes revealed a pronounced downregulation of Cdh23 mRNA and a complete absence of full-length CDH23 protein, which is critical for the development and maintenance of inner ear hair cells, in whole head extracts from AWG neonates. Manual inspection of WGS read depth plots of the Cdh23 locus revealed a putative 10.4 kb genomic deletion of exons 11 and 12 that was validated by PCR and Sanger sequencing. This study underscores the imperative to refine variant detection strategies to permit identification of pathogenic CNVs easily missed by conventional variant calling to enhance diagnostic precision and ultimately improve clinical outcomes for individuals with genetically heterogenous disorders such as hearing loss.

5.
J Sleep Res ; : e14266, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972672

ABSTRACT

Rapid eye movement sleep is a state characterized by concomitant occurrence of rapid eye movements, electroencephalographic activation and muscle atonia. In this review, we provide up to date knowledge on the neuronal network controlling its onset and maintenance. It is now accepted that muscle atonia during rapid eye movement sleep is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. These neurons directly project and excite glycinergic/γ-aminobutyric acid-ergic pre-motoneurons localized in the ventromedial medulla. The sublaterodorsal tegmental nucleus rapid eye movement-on neurons are inactivated during wakefulness and non-rapid eye movement by rapid eye movement-off γ-aminobutyric acid-ergic neurons localized in the ventrolateral periaqueductal grey and the adjacent dorsal deep mesencephalic reticular nucleus. Melanin-concentrating hormone and γ-aminobutyric acid-ergic rapid eye movement sleep-on neurons localized in the lateral hypothalamus would inhibit these rapid eye movement sleep-off neurons initiating the state. Finally, the activation of a few limbic cortical structures during rapid eye movement sleep by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would be involved in the function(s) of rapid eye movement sleep. In summary, rapid eye movement sleep is generated by a brainstem generator controlled by forebrain structures involved in autonomic control.

6.
Clin Neurophysiol ; 165: 44-54, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38959535

ABSTRACT

OBJECTIVE: This study aimed to evaluate whether auditory brainstem response (ABR) using a paired-click stimulation paradigm could serve as a tool for detecting cochlear synaptopathy (CS). METHODS: The ABRs to single-clicks and paired-clicks with various inter-click intervals (ICIs) and scores for word intelligibility in degraded listening conditions were obtained from 57 adults with normal hearing. The wave I peak amplitude and root mean square values for the post-wave I response within a range delayed from the wave I peak (referred to as the RMSpost-w1) were calculated for the single- and second-click responses. RESULTS: The wave I peak amplitudes did not correlate with age except for the second-click responses at an ICI of 7 ms, and the word intelligibility scores. However, we found that the RMSpost-w1 values for the second-click responses significantly decreased with increasing age. Moreover, the RMSpost-w1 values for the second-click responses at an ICI of 5 ms correlated significantly with the scores for word intelligibility in degraded listening conditions. CONCLUSIONS: The magnitude of the post-wave I response for the second-click response could serve as a tool for detecting CS in humans. SIGNIFICANCE: Our findings shed new light on the analytical methods of ABR for quantifying CS.

7.
Clin Neurol Neurosurg ; 244: 108422, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38991392

ABSTRACT

We presented a case of a 34-year-old male with postoperative brainstem cavernous malformations complicated with LGI1 encephalitis and secondary hypertrophic olivary degeneration (HOD). Due to recurrent dizziness and headache, the patient was diagnosed as brainstem cavernous malformations with recurrent hemorrhage and underwent resection. He subsequently developed unexplained abnormal mental behavior 1 month after the surgery, and diagnosed with LGI1 encephalitis. Six months later, cranial MRI showed HOD. This condition is rare in clinical practice,and a complex mechanism underlies the occurrence.

8.
Curr Biol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39019036

ABSTRACT

Effective detection and avoidance from environmental threats are crucial for animals' survival. Integration of sensory cues associated with threats across different modalities can significantly enhance animals' detection and behavioral responses. However, the neural circuit-level mechanisms underlying the modulation of defensive behavior or fear response under simultaneous multimodal sensory inputs remain poorly understood. Here, we report in mice that bimodal looming stimuli combining coherent visual and auditory signals elicit more robust defensive/fear reactions than unimodal stimuli. These include intensified escape and prolonged hiding, suggesting a heightened defensive/fear state. These various responses depend on the activity of the superior colliculus (SC), while its downstream nucleus, the parabigeminal nucleus (PBG), predominantly influences the duration of hiding behavior. PBG temporally integrates visual and auditory signals and enhances the salience of threat signals by amplifying SC sensory responses through its feedback projection to the visual layer of the SC. Our results suggest an evolutionarily conserved pathway in defense circuits for multisensory integration and cross-modality enhancement.

9.
J Autism Dev Disord ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023803

ABSTRACT

We aim to determine the accessibility of gold-standard hearing assessments - audiogram or auditory brainstem response (ABR) - during the first 3 months of hearing health care for children with and without developmental disabilities. Electronic health records were examined from children (0-18 years) who received hearing health care at three hospitals. Children with developmental disabilities had a diagnosis of autism, cerebral palsy, Down syndrome, or intellectual disability. Assessments from the first 3 months were reviewed to determine if ≥ 1 audiogram or ABR threshold was recorded. To evaluate differences in assessment based on disability status, logistic regression models were built while accounting for age, race, ethnicity, sex, and site. Of the 131,783 children, 9.8% had developmental disabilities. Whereas 9.3% of children in the comparison group did not access a gold-standard assessment, this rate was 24.4% for children with developmental disabilities (relative risk (RR) = 3.79; p < 0.001). All subgroups were at higher risk relative to the comparison group (all p < 0.001): multiple diagnoses (RR = 13.24), intellectual disabilities (RR = 11.52), cerebral palsy (RR = 9.87), Down syndrome (RR = 6.14), and autism (RR = 2.88). Children with developmental disabilities are at high risk for suboptimal hearing evaluations that lack a gold-standard assessment. Failure to access a gold-standard assessment results in children being at risk for late or missed diagnosis for reduced hearing. Results highlight the need for (1) close monitoring of hearing by healthcare providers, and (2) advancements in testing methods and guidelines.

10.
Caspian J Intern Med ; 15(3): 527-534, 2024.
Article in English | MEDLINE | ID: mdl-39011434

ABSTRACT

Background: Hearing loss is an unknown complication of diabetes mellitus (DM). The aim of this study was to evaluate hearing function using auditory brainstem response (ABR) in diabetic patients. Methods: The present case-control study was performed on thirty diabetic patients as a case group and thirty healthy individuals as a control group. Baseline demographic information, HbA1c level, and duration of diabetes were obtained from all diabetic patients. In all subjects, the ABR and pure-tone audiometry (PTA) tests were performed and the results were analyzed using the t-test and logistic regression. Results: The absolute latency of I was significantly lower in diabetes patients. The absolute latency of III and the interpeak latencies (IPL) I-III were significantly higher in diabetic patients. No significant relationship was noticed in the absolute latency of V and the IPL I-V among diabetic patients in the right and left ears (P>0.05). Conclusion: The results of this study suggested that diabetes may cause central auditory dysfunction manifested on the absolute latency of III, the IPL I-III and III-V.

11.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005428

ABSTRACT

Sound sensitivity is one of the most common sensory complaints for people with autism spectrum disorders (ASDs). How and why sounds are perceived as overwhelming by affected people is unknown. To process sound information properly, the brain requires high activity and fast processing, as seen in areas like the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem. Recent work has shown dysfunction in mitochondria, which are the primary source of energy in cells, in a genetic model of ASD, Fragile X syndrome (FXS). Whether mitochondrial functions are also altered in sound-processing neurons, has not been characterized yet. To address this question, we imaged the MNTB in a mouse model of FXS. We stained MNTB brain slices from wild-type and FXS mice with two mitochondrial markers, TOMM20 and PMPCB, located on the Outer Mitochondrial Membrane and in the matrix, respectively. These markers allow exploration of mitochondrial subcompartments. Our integrated imaging pipeline reveals significant sex-specific differences in the degree of mitochondrial length in FXS. Significant differences are also observable in the overall number of mitochondria in male FXS mice, however, colocalization analyses between TOMM20 and PMPCB reveal that the integrity of these compartments is most disrupted in female FXS mice. We highlight a quantitative fluorescence microscopy pipeline to monitor mitochondrial functions in the MNTB from control or FXS mice and provide four complementary readouts. Our approach paves the way to understanding how cellular mechanisms important to sound encoding are altered in ASDs.

12.
Pharmacol Ther ; 260: 108683, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950869

ABSTRACT

Parkinson's disease (PD) is diagnosed by its cardinal motor symptoms that are associated with the loss of dopamine neurons in the substantia nigra pars compacta (SNc). However, PD patients suffer from various non-motor symptoms years before diagnosis. These prodromal symptoms are thought to be associated with the appearance of Lewy body pathologies (LBP) in brainstem regions such as the dorsal motor nucleus of the vagus (DMV), the locus coeruleus (LC) and others. The neurons in these regions that are vulnerable to LBP are all slow autonomous pacemaker neurons that exhibit elevated oxidative stress due to their perpetual influx of Ca2+ ions. Aggregation of toxic α-Synuclein (aSyn) - the main constituent of LBP - during the long prodromal period challenges these vulnerable neurons, presumably altering their biophysics and physiology. In contrast to pathophysiology of late stage parkinsonism which is well-documented, little is known about the pathophysiology of the brainstem during prodromal PD. In this review, we discuss ion channel dysregulation associated with aSyn aggregation in brainstem pacemaker neurons and their cellular responses to them. While toxic aSyn elevates oxidative stress in SNc and LC pacemaker neurons and exacerbates their phenotype, DMV neurons mount an adaptive response that mitigates the oxidative stress. Ion channel dysregulation and cellular adaptations may be the drivers of the prodromal symptoms of PD. For example, selective targeting of toxic aSyn to DMV pacemakers, elevates the surface density of K+ channels, which slows their firing rate, resulting in reduced parasympathetic tone to the gastrointestinal tract, which resembles the prodromal PD symptoms of dysphagia and constipation. The divergent responses of SNc & LC vs. DMV pacemaker neurons may explain why the latter outlive the former despite presenting LBPs earlier. Elucidation the brainstem pathophysiology of prodromal PD could pave the way for physiological biomarkers, earlier diagnosis and novel neuroprotective therapies for PD.


Subject(s)
Brain Stem , Ion Channels , Parkinson Disease , alpha-Synuclein , Humans , Animals , Brain Stem/metabolism , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Ion Channels/metabolism , Oxidative Stress , Lewy Bodies/metabolism
13.
Article in English | MEDLINE | ID: mdl-39012058

ABSTRACT

Development of the respiratory system can be affected by the use of drugs during pregnancy, as the prenatal phase is highly sensitive to pharmacological interventions, resulting in long-term consequences. The deleterious effects of external cannabinoids during gestation may be related to negative interference in central nervous system formation, cardiorespiratory system function, and behavioral disorders. Nevertheless, the impact of external cannabinoids on cardiorespiratory network development, chemosensitivity, and its future consequences in adulthood is still unclear. We evaluated the effects of prenatal exposure to a synthetic cannabinoid (WIN 55,212-2, 0.5 mg.kg-1.day-1) on the cardiorespiratory control and panic-like behavior of male and female rats in adulthood. Exogenous cannabinoid exposure during pregnancy resulted in a sex-dependent difference in breathing control. Specifically, males showed increased chemosensitivity to CO2 and O2, while females exhibited decreased sensitivity. Altered cardiovascular control was evident, with prenatally treated males and females being more susceptible to hypertension and tachycardia under adverse environmental conditions. Moreover, WIN-treated males exhibited higher fragmentation of sleep episodes, while females displayed anxiolytic and panicolytic behavioral responses to CO2. However, no changes were observed in the mechanical component of the respiratory system, and there were no neuroanatomical alterations, such as changes in the expression of CB1 receptors in the brainstem or in the quantification of catecholaminergic and serotonergic neurons. These findings highlight that external interference in cannabinoid signaling during fetal development causes sex-specific long-lasting effects for the cardiorespiratory system and behavioral responses in adulthood.

14.
Biomark Med ; 18(9): 431-439, 2024.
Article in English | MEDLINE | ID: mdl-39007837

ABSTRACT

Leptomeningeal metastasis (LM) is a devastating complication of malignancy. Diagnosis relies on both contrast enhancement on imaging and malignant cells in cerebral spinal fluid cytology. Though early detection and prompt intervention improves survival, the detection of LM is limited by false negatives. A rare brainstem imaging finding uncovered specifically in EGFR mutation-positive lung cancer patients may represent an early sign of LM. This sign demonstrates high signal on T2 fluid-attenuated inversion recovery and diffusion-weighted imaging sequences, but paradoxically lacks correlative contrast enhancement. Here we report a case of a 72-year-old female EGFR-positive lung cancer patient who developed this lesion following treatment with two first-generation EGFR tyrosine kinase inhibitors then showed subsequent response to osimertinib, an irreversible third-generation EGFR tyrosine kinase inhibitor.


A non-enhancing, T2 FLAIR hyperintense, diffusion-restricting brainstem lesion in an EGFR-positive lung cancer patient may represent an early indicator of leptomeningeal metastases.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Female , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/metabolism , Aged , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Brain Stem/pathology , Brain Stem/diagnostic imaging , Brain Stem/metabolism , Aniline Compounds/therapeutic use , Acrylamides/therapeutic use , Diffusion Magnetic Resonance Imaging , Indoles , Pyrimidines
15.
Radiol Case Rep ; 19(8): 3538-3544, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948902

ABSTRACT

Hypertrophic olivary degeneration (HOD) is a rare form of transsynaptic degeneration. It is caused by a damage at the Guillain-Mollaret triangle (GMT), which is defined by three anatomical structures: the dentate nucleus, the red nucleus, and the inferior olivary nucleus (ION). Clinically, it may be revealed by palatal myoclonus. On MRI, it appears as a unilateral or bilateral enlargement of the inferior olivary nucleus which shows a high signal intensity on T2-weighted images, with sometimes a cerebellar atrophy. Here we report 2 cases of healthy patients which present hemorrhagic brainstem cavernomas, complicated later by the development of palatal myoclonus and cerebellar ataxia, with MRI features corresponding to an (HOD) secondary to a (GMT) cavernoma. The purpose is to explain the mechanism of (HOD) subsequent to lesion in (GMT), and to describe magnetic resonance imaging features.

16.
Neurocrit Care ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951444

ABSTRACT

BACKGROUND: The apnea test (AT) is an important component in the determination of brain death/death by neurologic criteria (BD/DNC) and often entails disconnecting the patient from the ventilator followed by tracheal oxygen insufflation to ensure adequate oxygenation. To rate the test as positive, most international guidelines state that a lack of spontaneous breathing must be demonstrated when the arterial partial pressure of carbon dioxide (PaCO2) ≥ 60 mm Hg. However, the loss of positive end-expiratory pressure that is associated with disconnection from the ventilator may cause rapid desaturation. This, in turn, can lead to cardiopulmonary instability (especially in patients with pulmonary impairment and diseases such as acute respiratory distress syndrome), putting patients at increased risk. Therefore, this prospective study aimed to investigate whether a modified version of the AT (mAT), in which the patient remains connected to the ventilator, is a safer yet still valid alternative. METHODS: The mAT was performed in all 140 BD/DNC candidates registered between January 2019 and December 2022: after 10 min of preoxygenation, (1) positive end-expiratory pressure was increased by 2 mbar (1.5 mm Hg), (2) ventilation mode was switched to continuous positive airway pressure, and (3) apnea back-up mode was turned off (flow trigger 10 L/min). The mAT was considered positive when spontaneous breathing did not occur upon PaCO2 increase to ≥ 60 mm Hg (baseline 35-45 mm Hg). Clinical complications during/after mAT were documented. RESULTS: The mAT was possible in 139/140 patients and had a median duration of 15 min (interquartile range 13-19 min). Severe complications were not evident. In 51 patients, the post-mAT arterial partial pressure of oxygen (PaO2) was lower than the pre-mAT PaO2, whereas it was the same or higher in 88 cases. In patients with pulmonary impairment, apneic oxygenation during the mAT improved PaO2. In 123 cases, there was a transient drop in blood pressure at the end of or after the mAT, whereas in 12 cases, the mean arterial pressure dropped below 60 mm Hg. CONCLUSIONS: The mAT is a safe and protective means of identifying patients who no longer have an intact central respiratory drive, which is a critical factor in the diagnosis of BD/DNC. Clinical trial registration DRKS, DRKS00017803, retrospectively registered 23.11.2020, https://drks.de/search/de/trial/DRKS00017803.

17.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000030

ABSTRACT

This study aimed to investigate, for the first time, the potential role of the gigantocellular nucleus, a component of the reticular formation, in the pathogenetic mechanism of Sudden Infant Death Syndrome (SIDS), an event frequently ascribed to failure to arouse from sleep. This research was motivated by previous experimental studies demonstrating the gigantocellular nucleus involvement in regulating the sleep-wake cycle. We analyzed the brains of 48 infants who died suddenly within the first 7 months of life, including 28 SIDS cases and 20 controls. All brains underwent a thorough histological and immunohistochemical examination, focusing specifically on the gigantocellular nucleus. This examination aimed to characterize its developmental cytoarchitecture and tyrosine hydroxylase expression, with particular attention to potential associations with SIDS risk factors. In 68% of SIDS cases, but never in controls, we observed hypoplasia of the pontine portion of the gigantocellular nucleus. Alterations in the catecholaminergic system were present in 61% of SIDS cases but only in 10% of controls. A strong correlation was observed between these findings and maternal smoking in SIDS cases when compared with controls. In conclusion we believe that this study sheds new light on the pathogenetic processes underlying SIDS, particularly in cases associated with maternal smoking during pregnancy.


Subject(s)
Sudden Infant Death , Humans , Sudden Infant Death/pathology , Sudden Infant Death/etiology , Female , Male , Infant , Risk Factors , Case-Control Studies , Infant, Newborn , Pregnancy , Tyrosine 3-Monooxygenase/metabolism , Pons/pathology , Pons/metabolism , Reticular Formation/pathology , Reticular Formation/metabolism
18.
Pharmacol Res Perspect ; 12(4): e1204, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969959

ABSTRACT

Reversible axonal swelling and brainstem auditory evoked potential (BAEP) changes were observed in standard chronic (9-month) toxicology studies in dogs treated with ritlecitinib, an oral Janus kinase 3/tyrosine kinase expressed in hepatocellular carcinoma family kinase inhibitor, at exposures higher than the approved 50-mg human dose. To evaluate the clinical relevance of the dog toxicity finding, this phase 2a, double-blind study assessed BAEP changes and intraepidermal nerve fiber (IENF) histology in adults with alopecia areata treated with ritlecitinib. Patients were randomized to receive oral ritlecitinib 50 mg once daily (QD) with a 4-week loading dose of 200 mg QD or placebo for 9 months (placebo-controlled phase); they then entered the active-therapy extension and received ritlecitinib 50 mg QD (with a 4-week loading dose of 200 mg in patients switching from placebo). Among the 71 patients, no notable mean differences in change from baseline (CFB) in Waves I-V interwave latency (primary outcome) or Wave V amplitude on BAEP at a stimulus intensity of 80 dB nHL were observed in the ritlecitinib or placebo group at Month 9, with no notable differences in interwave latency or Wave V amplitude between groups. The CFB in mean or median IENF density and in percentage of IENFs with axonal swellings was minimal and similar between groups at Month 9. Ritlecitinib treatment was also not associated with an imbalanced incidence of neurological and audiological adverse events. These results provide evidence that the BAEP and axonal swelling finding in dogs are not clinically relevant in humans.


Subject(s)
Alopecia Areata , Evoked Potentials, Auditory, Brain Stem , Nerve Fibers , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Alopecia Areata/drug therapy , Alopecia Areata/pathology , Double-Blind Method , Evoked Potentials, Auditory, Brain Stem/drug effects , Nerve Fibers/drug effects , Nerve Fibers/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Animals , Dogs
19.
Environ Int ; 190: 108890, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39033732

ABSTRACT

BACKGROUND: The growing consensus links exposure to fine particulate matter (PM2.5) with an increased risk of respiratory diseases. However, little is known about the additional effects of particulate matter on brainstem function in allergic rhinitis (AR). Furthermore, it is unknown to what extent the PM2.5-induced effects in the brainstem affect the inflammatory response in AR. This study aimed to determine the effects, mechanisms and consequences of brainstem neural activity altered by allergenic stimulation and PM2.5 exposure. METHODS: Using an AR model of ovalbumin (OVA) elicitation and whole-body PM2.5 exposure, the metabolic profile of the brainstem post-allergen stimulation was characterized through in vivo proton magnetic resonance imaging (1H-MRS). Then, the transient receptor potential vanilloid-1 (TRPV1) neuronal expression and sensitivity in the trigeminal nerve in AR were investigated. The link between TRPV1 expression and brainstem differential metabolites was also determined. Finally, we evaluated the mediating effects of brainstem metabolites and the consequences in the brain-spleen axis in the inflammatory response of AR. RESULTS: Exposure to allergens and PM2.5 led to changes in the metabolic profiles of the brainstem, particularly affecting levels of glutamine (Gln) and glutamate (Glu). This exposure also increased the expression and sensitivity of TRPV1+ neurons in the trigeminal nerve, with the levels of TRPV1 expression closely linked to the brainstem metabolism of Glu and Gln. Moreover, allergens increased the activity of p38, while PM2.5 led to the phosphorylation of p38 and ERK, resulting in the upregulation of TRPV1 expression. The brainstem metabolites Glu and Gln were found to partially mediate the impact of TRPV1 on AR inflammation, which was supported by the presence of pro-inflammatory changes in the brain-spleen axis. CONCLUSION: Brainstem metabolites are altered under allergen stimulation and additional PM2.5 exposure in AR via sensitization of the trigeminal nerve, which exacerbates the inflammatory response via the brain-splenic axis.

20.
Magn Reson Imaging ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39033886

ABSTRACT

OBJECTIVES: This study aims to generate post-contrast MR images reducing the exposure of gadolinium-based contrast agents (GBCAs) for brainstem glioma (BSG) detection, simultaneously delineating the BSG lesion, and providing high-resolution contrast information. METHODS: A retrospective cohort of 30 patients diagnosed with brainstem glioma was included. Multi-contrast images, including pre-contrast T1 weighted (pre-T1w), T2 weighted (T2w), arterial spin labeling (ASL) and post-contrast T1w images, were collected. A multi-task generative model was developed to synthesize post-contrast T1w images and simultaneously segment BSG masks from the multi-contrast inputs. Performance evaluation was conducted using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and mean absolute error (MAE) metrics. A perceptual study was also undertaken to assess diagnostic quality. RESULTS: The proposed model achieved SSIM of 0.86 ±â€¯0.04, PSNR of 26.33 ±â€¯0.05 and MAE of 57.20 ±â€¯20.50 for post-contrast T1w image synthesis. Automated delineation of the BSG lesions achieved Dice similarity coefficient (DSC) score of 0.88 ±â€¯0.27. CONCLUSIONS: The proposed model can synthesize high-quality post-contrast T1w images and accurately segment the BSG region, yielding satisfactory DSC scores. CLINICAL RELEVANCE STATEMENT: The synthesized post-contrast MR image presented in this study has the potential to reduce the usage of gadolinium-based contrast agents, which may pose risks to patients. Moreover, the automated segmentation method proposed in this paper aids radiologists in accurately identifying the brainstem glioma lesion, facilitating the diagnostic process.

SELECTION OF CITATIONS
SEARCH DETAIL
...