Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Med Chem ; 269: 116337, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38537511

ABSTRACT

The global issue of antibiotic resistance is increasingly severe, highlighting the urgent necessity for the development of new antibiotics. Brevicidine, a natural cyclic lipopeptide, exhibits remarkable antimicrobial activity against Gram-negative bacteria. In this study, a comprehensive structure-activity relationship of Brevicidine was investigated through 20 newly synthesized cyclic lipopeptide analogs, resulting in the identification of an optimal linear analog 22. The sequence of analog 22 consisted of five d-amino acids and four non-natural amino acid 2,5-diaminovaleric acid (Orn) and conjugated with decanoic acid at N-terminal. Compared to Brevicidine, analog 22 was easier to synthesize, and exerted broad spectrum antimicrobial activity and excellent stability (t1/2 = 40.98 h). Additionally, analog 22 demonstrated a rapid bactericidal effect by permeating non-specifically through the bacterial membranes, thereby minimizing the likelihood of inducing resistance. Moreover, it exhibited remarkable efficacy in combating bacterial biofilms and reversing bacterial resistance to conventional antibiotics. Furthermore, it effectively suppressed the growth of bacteria in vital organs of mice infected with S. aureus ATCC 25923. In conclusion, analog 22 may represent a potential antimicrobial peptide for further optimization.


Subject(s)
Antimicrobial Peptides , Staphylococcus aureus , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Gram-Negative Bacteria , Lipopeptides/pharmacology , Microbial Sensitivity Tests
2.
Antimicrob Agents Chemother ; 67(5): e0001023, 2023 05 17.
Article in English | MEDLINE | ID: mdl-36912655

ABSTRACT

Due to the accelerated appearance of antimicrobial-resistant (AMR) pathogens in clinical infections, new first-in-class antibiotics, operating via novel modes of action, are desperately needed. Brevicidine, a bacterial nonribosomally produced cyclic lipopeptide, has shown potent and selective antimicrobial activity against Gram-negative pathogens. However, before our investigations, little was known about how brevicidine exerts its potent bactericidal effect against Gram-negative pathogens. In this study, we find that brevicidine has potent antimicrobial activity against AMR Enterobacteriaceae pathogens, with MIC values ranging between 0.5 µM (0.8 mg/L) and 2 µM (3.0 mg/L). In addition, brevicidine showed potent antibiofilm activity against the Enterobacteriaceae pathogens, with the same 100% inhibition and 100% eradication concentration of 4 µM (6.1 mg/L). Further mechanistic studies showed that brevicidine exerts its potent bactericidal activity by interacting with lipopolysaccharide in the outer membrane, targeting phosphatidylglycerol and cardiolipin in the inner membrane, and dissipating the proton motive force of bacteria. This results in metabolic perturbation, including the inhibition of ATP synthesis; the inhibition of the dehydrogenation of NADH; the accumulation of reactive oxygen species in bacteria; and the inhibition of protein synthesis. Finally, brevicidine showed a good therapeutic effect in a mouse peritonitis-sepsis model. Our findings pave the way for further research on the clinical applications of brevicidine to combat prevalent infections caused by AMR Gram-negative pathogens worldwide.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteria , Lipopeptides/pharmacology , Microbial Sensitivity Tests , Gram-Negative Bacteria
3.
Front Microbiol ; 14: 1304198, 2023.
Article in English | MEDLINE | ID: mdl-38173680

ABSTRACT

The antibiotic resistance of Acinetobacter baumannii poses a significant threat to global public health, especially those strains that are resistant to carbapenems. Therefore, novel strategies are desperately needed for the treatment of infections caused by antibiotic-resistant A. baumannii. In this study, we report that brevicidine, a bacterial non-ribosomally produced cyclic lipopeptide, shows synergistic effects with multiple outer membrane-impermeable conventional antibiotics against A. baumannii. In particular, brevicidine, at a concentration of 1 µM, lowered the minimum inhibitory concentration of erythromycin, azithromycin, and rifampicin against A. baumannii strains by 32-128-fold. Furthermore, mechanistic studies were performed by employing erythromycin as an example of an outer membrane-impermeable conventional antibiotic, which showed the best synergistic effects with brevicidine against the tested A. baumannii strains in the present study. The results demonstrate that brevicidine disrupted the outer membrane of A. baumannii at a concentration range of 0.125-4 µM in a dose-dependent manner. This capacity of brevicidine could help the tested outer membrane-impermeable antibiotics enter A. baumannii cells and thereafter exert their antimicrobial activity. In addition, the results show that brevicidine-erythromycin combination exerted strong A. baumannii killing capacity by the enhanced inhibition of adenosine triphosphate biosynthesis and accumulation of reactive oxygen species, which are the main mechanisms causing the death of bacteria. Interestingly, brevicidine and erythromycin combination showed good therapeutic effects on A. baumannii-induced mouse peritonitis-sepsis models. These findings demonstrate that brevicidine is a promising sensitizer candidate of outer membrane-impermeable conventional antibiotics for treating A. baumannii infections in the post-antibiotic age.

4.
Front Microbiol ; 12: 693117, 2021.
Article in English | MEDLINE | ID: mdl-34177875

ABSTRACT

The group of bacterial non-ribosomally produced peptides (NRPs) has formed a rich source for drug development. Brevicidine, a bacterial non-ribosomally produced cyclic lipo-dodecapeptide, displays selective antimicrobial activity against Gram-negative pathogens. Here, we show that brevicidineB, which contains a single substitution (Tyr2 to Phe2) in the amino acid sequence of the linear part of brevicidine, has a broadened antimicrobial spectrum, showing bactericidal activity against both Gram-negative (with a MIC value of 2 to 4 mg/L) and Gram-positive (with a MIC value of 2 to 8 mg/L) pathogens. Compared with an earlier reported member of the brevicidine family, the broadened antimicrobial spectrum of brevicidineB is caused by its increased membrane disruptive capacity on Gram-positive pathogens, which was evidenced by fluorescence microscopy assays. In addition, DiSC3(5) and resazurin assays show that brevicidine and brevicidineB exert their antimicrobial activity against Gram-negative bacteria via disrupting the proton motive force of cells. Notably, as a brevicidine family member, brevicidineB also showed neither hemolytic activity nor cytotoxicity at a high concentration of 64 mg/L. This study provides a promising antibiotic candidate (brevicidineB) with a broad antimicrobial spectrum, and provides novel insights into the antimicrobial mode of action of brevicidines.

5.
Cell Chem Biol ; 27(10): 1262-1271.e4, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32707039

ABSTRACT

The group of bacterial non-ribosomally produced peptides (NRPs) forms a rich source of antibiotics, such as daptomycin, vancomycin, and teixobactin. The difficulty of functionally expressing and engineering the corresponding large biosynthetic complexes is a bottleneck in developing variants of such peptides. Here, we apply a strategy to synthesize mimics of the recently discovered antimicrobial NRP brevicidine. We mimicked the molecular structure of brevicidine by ribosomally synthesized, post-translationally modified peptide (RiPP) synthesis, introducing several relevant modifications, such as dehydration and thioether ring formation. Following this strategy, in two rounds peptides were engineered in vivo, which showed antibacterial activity against Gram-negative pathogenic bacteria susceptible to wild-type brevicidine. This study demonstrates the feasibility of a strategy to structurally and functionally mimic NRPs by employing the synthesis and post-translational modifications typical for RiPPs. This enables the future generation of large genetically encoded peptide libraries of NRP-mimicking structures to screen for antimicrobial activity against relevant pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Ribosomes/metabolism , Tyrocidine/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Protein Conformation , Protein Processing, Post-Translational , Tyrocidine/chemistry , Tyrocidine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL