Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cytometry A ; 105(3): 214-221, 2024 03.
Article in English | MEDLINE | ID: mdl-38116677

ABSTRACT

High dimensional flow cytometry relies on multiple laser sources to excite the wide variety of fluorochromes now available for immunophenotyping. Ultraviolet lasers (usually solid state 355 nm) are a critical part of this as they excite the BD Horizon™ Brilliant Ultraviolet (BUV) series of polymer fluorochromes. The BUV dyes have increased the number of simultaneous fluorochromes available for practical high-dimensional analysis to greater than 40 for spectral cytometry. Immunologists are now seeking to increase this number, requiring both novel fluorochromes and additional laser wavelengths. A laser in the deep ultraviolet (DUV) range (from ca. 260 to 320 nm) has been proposed as an additional excitation source, driven by the on-going development of additional polymer dyes with DUV excitation. DUV lasers emitting at 280 and 320 nm have been previously validated for flow cytometry but have encountered practical difficulties both in probe excitation behavior and in availability. In this article, we validate an even shorter DUV 266 nm laser source for flow cytometry. This DUV laser provided minimal excitation of the BUV dyes (a desirable characteristic for high-dimensional analysis) while demonstrating excellent excitation of quantum nanoparticles (Qdots) serving as surrogate fluorochromes for as yet undeveloped DUV excited dyes. DUV 266 nm excitation may therefore be a viable candidate for expanding high-dimensional flow cytometry into the DUV range and providing an additional incidental excitation wavelength for spectral cytometry. Excitation in a spectral region with strong absorption by nucleic acids and proteins (260-280 nm) did result in strong autofluorescence requiring care in fluorochrome selection. DUV excitation of endogenous molecules may nevertheless have additional utility for label-free analysis applications.


Subject(s)
Fluorescent Dyes , Light , Fluorescent Dyes/metabolism , Flow Cytometry/methods , Lasers , Polymers
2.
Cytometry A ; 95(2): 227-233, 2019 02.
Article in English | MEDLINE | ID: mdl-30423208

ABSTRACT

Modern flow cytometers require multiple laser wavelengths to excite the wide variety of fluorescent probes now available for high-dimensional analysis. Ultraviolet (UV) lasers (typically solid state 355 nm) have become a critical excitation source for the Brilliant Ultraviolet (BUV) series of polymer fluorochromes. The BUV dyes have pushed the number of fluorescent probes available for simultaneous analysis to nearly 30, allowing an unprecedented level of precision for immune cell analysis. However, immunologists are already seeking analyze more than 30 simultaneous parameters, requiring both new fluorochromes and corresponding laser wavelengths. A group of polymer dyes requiring deep ultraviolet (UV) excitation (~280-300 nm) is currently under development, allowing the expansion of high-dimensional cytometry beyond the current 30 color limit. In this study, we evaluated a newly available laser emitting at 280 nm as a possible laser source for exciting these dyes. Since deep UV polymer dyes are not yet available, we used quantum nanoparticles (Qdots) as a surrogate probe to assess the utility of this laser wavelength for flow cytometry. Deep UV laser light was found to excite Qdots as well as traditional UV sources. Deep UV 280 nm did not excite BUV dyes well, suggesting that BUV and deep UV polymers will be spectrally compatible with low crossbeam spillover issues. Deep UV excitation did excite considerable autofluorescence in the violet to blue range, a limitation that will need to guide deep UV fluorochrome development. A deep UV 280 nm laser may therefore be the next essential wavelength for high-dimensional flow cytometry. © 2018 International Society for Advancement of Cytometry.


Subject(s)
Flow Cytometry/methods , Animals , Cell Line , Color , Fluorescent Dyes/chemistry , Lasers , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Polymers/chemistry , Quantum Dots/chemistry , Ultraviolet Rays
3.
Cytometry A ; 91(4): 314-325, 2017 04.
Article in English | MEDLINE | ID: mdl-28240810

ABSTRACT

Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry.


Subject(s)
Flow Cytometry/instrumentation , Flow Cytometry/methods , Immunophenotyping/instrumentation , Immunophenotyping/methods , Lasers , Animals , Humans , Mice
4.
Cytometry A ; 87(12): 1127-37, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25930008

ABSTRACT

Although multiple lasers are now standard equipment on most modern flow cytometers, ultraviolet (UV) lasers (325-365 nm) remain an uncommon excitation source for cytometry. Nd:YVO4 frequency-tripled diode pumped solid-state lasers emitting at 355 nm are now the primary means of providing UV excitation on multilaser flow cytometers. Although a number of UV excited fluorochromes are available for flow cytometry, the cost of solid-state UV lasers remains prohibitively high, limiting their use to all but the most sophisticated multilaser instruments. The recent introduction of the brilliant ultraviolet (BUV) series of fluorochromes for cell surface marker detection and their importance in increasing the number of simultaneous parameters for high-dimensional analysis has increased the urgency of including UV sources in cytometer designs; however, these lasers remain expensive. Near-UV laser diodes (NUVLDs), a direct diode laser source emitting in the 370-380 nm range, have been previously validated for flow cytometric analysis of most UV-excited probes, including quantum nanocrystals, the Hoechst dyes, and 4',6-diamidino-2-phenylindole. However, they remain a little-used laser source for cytometry, despite their significantly lower cost. In this study, the ability of NUVLDs to excite the BUV dyes was assessed, along with their compatibility with simultaneous brilliant violet (BV) labeling. A NUVLD emitting at 375 nm was found to excite most of the available BUV dyes at least as well as a UV 355 nm source. This slightly longer wavelength did produce some unwanted excitation of BV dyes, but at sufficiently low levels to require minimal additional compensation. NUVLDs are compact, relatively inexpensive lasers that have higher power levels than the newest generation of small 355 nm lasers. They can, therefore, make a useful, cost-effective substitute for traditional UV lasers in multicolor analysis involving the BUV and BV dyes.


Subject(s)
Electronics , Fluorescent Dyes/chemistry , Lasers , Ultraviolet Rays , Animals , Female , Male , Mice, Inbred C57BL , Spleen/cytology
SELECTION OF CITATIONS
SEARCH DETAIL