Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Heliyon ; 10(8): e29626, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38660269

ABSTRACT

Saccharina latissima is a brown seaweed used as a food ingredient. The aim of this work was to study possible differences between S. latissima chemical composition, color, mode of cultivation, harvesting period and site and its environmental conditions. Water temperature, salinity, radiation, and fluorescence were monitored in each harvesting site. Chemical composition of S. latissima varied greatly with period and site, with a high content of carbohydrates and ash. Crude protein content varied from 3.7 % to 12.8 %, with a higher concentration observed in wild samples harvested in Bas-St. Laurent (11.1-12.8 %). Cultivated seaweed also presented a high crude protein (12.2 %) and ash (52 % against 27 % in wild samples) concentrations, but crude fiber and carbohydrates concentrations were lower, reaching up to 2.7 and 1.9-fold, respectively, than those in wild seaweeds. S. latissima presented a more intense yellow color in June. A trend of darker and more green-colored seaweeds when cultivated in the end of summer was confirmed. Our results suggest that variations in chemical components and chromaticity of this species are probably affected by complex interactions of environmental conditions.

2.
Plants (Basel) ; 12(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37447006

ABSTRACT

Brown macroalgae represent one of the most proliferative groups of living organisms in aquatic environments. Due to their abundance, they often cause problems in aquatic and terrestrial ecosystems, resulting in health problems in humans and the death of various aquatic species. To resolve this, the application of Sargassum has been sought in different research areas, such as food, pharmaceuticals, and cosmetics, since Sargassum is an easy target for study and simple to obtain. In addition, its high content of biocompounds, such as polysaccharides, phenols, and amino acids, among others, has attracted attention. One of the valuable components of brown macroalgae is their polysaccharides, which present interesting bioactivities, such as antiviral, antimicrobial, and antitumoral, among others. There is a wide variety of methods of extraction currently used to obtain these polysaccharides, such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), subcritical water extraction (SCWE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and microwave-assisted extraction (MAE). Therefore, this work covers the most current information on the methods of extraction, as well as the purification used to obtain a polysaccharide from Sargassum that is able to be utilized as alginates, fucoidans, and laminarins. In addition, a compilation of bioactivities involving brown algae polysaccharides in in vivo and in vitro studies is also presented, along with challenges in the research and marketing of Sargassum-based products that are commercially available.

3.
J Microbiol Biotechnol ; 28(10): 1671-1682, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30178648

ABSTRACT

Alginate lyases (endo and exo-lyases) are required for the degradation of alginate into its constituting monomers. Efficient bioethanol production and extraction of bioactives from brown algae requires intensive use of these enzymes. Nonetheless, there are few commercial alginate lyase preparations, and their costs make them unsuitable for large scale experiments. A recombinant expression protocol has been developed in this study for producing seven endo-lyases and three exo-lyases as soluble and highly active preparations. Saccharification of alginate using 21 different endo/exo-lyase combinations shows that there is complementary enzymatic activity between some of the endo/exo pairs. This is probably due to favorable matching of their substrate biases for the different glycosidic bonds in the alginate molecule. Therefore, selection of enzymes for the best saccharification results for a given biomass should be based on screens comprising both types of lyases. Additionally, different incubation temperatures, enzyme load ratios, and enzyme loading strategies were assessed using the best four enzyme combinations for treating Macrocystis pyrifera biomass. It was shown that 30°C with a 1:3 endo/exo loading ratio was suitable for all four combinations. Moreover, simultaneous loading of endo-and exo-lyases at the beginning of the reaction allowed maximum alginate saccharification in half the time than when the exo-lyases were added sequentially.


Subject(s)
Alginates/metabolism , Industrial Microbiology/methods , Polysaccharide-Lyases/biosynthesis , Polysaccharide-Lyases/metabolism , Seaweed/chemistry , Biofuels , Cloning, Molecular , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression , Polysaccharide-Lyases/classification , Polysaccharide-Lyases/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Seaweed/metabolism , Temperature
4.
Metab Eng Commun ; 2: 76-84, 2015 Dec.
Article in English | MEDLINE | ID: mdl-34150511

ABSTRACT

Macroalgae have high potential to be an efficient, and sustainable feedstock for the production of biofuels and other more valuable chemicals. Attempts have been made to enable the co-fermentation of alginate and mannitol by Saccharomyces cerevisiae to unlock the full potential of this marine biomass. However, the efficient use of the sugars derived from macroalgae depends on the equilibrium of cofactors derived from the alginate and mannitol catabolic pathways. There are a number of strong metabolic limitations that have to be tackled before this bioconversion can be carried out efficiently by engineered yeast cells. An analysis of the redox balance during ethanol fermentation from alginate and mannitol by Saccharomyces cerevisiae using metabolic engineering tools was carried out. To represent the strain designed for conversion of macroalgae carbohydrates to ethanol, a context-specific model was derived from the available yeast genome-scale metabolic reconstructions. Flux balance analysis and dynamic simulations were used to determine the flux distributions. The model indicates that ethanol production is determined by the activity of 4-deoxy-l-erythro-5-hexoseulose uronate (DEHU) reductase (DehR) and its preferences for NADH or NADPH which influences strongly the flow of cellular resources. Different scenarios were explored to determine the equilibrium between NAD(H) and NADP(H) that will lead to increased ethanol yields on mannitol and DEHU under anaerobic conditions. When rates of mannitol dehydrogenase and DehRNADH tend to be close to a ratio in the range 1-1.6, high growth rates and ethanol yields were predicted. The analysis shows a number of metabolic limitations that are not easily identified through experimental procedures such as quantifying the impact of the cofactor preference by DEHU reductase in the system, the low flux into the alginate catabolic pathway, and a detailed analysis of the redox balance. These results show that production of ethanol and other chemicals can be optimized if a redox balance is achieved. A possible methodology to achieve this balance is presented. This paper shows how metabolic engineering tools are essential to comprehend and overcome this limitation.

5.
Rev. bras. farmacogn ; 23(4): 608-613, Aug. 2013. graf, tab
Article in English | LILACS | ID: lil-686637

ABSTRACT

It is widely accepted that the consumption of ω-3 polyunsaturated fatty acids has beneficial effects on human health. In this work, ten brown macroalgae species collected along the Portuguese west coast were studied for their fatty acids composition by GC-MS after alkaline hydrolysis and derivatization. The results of this survey showed that different macroalgae from the same region display distinct fatty acids profile. Concerning ω-3 polyunsaturated fatty acids, eicosapentaenoic acid was found in all but one species. Additionally, some species contained docosahexaenoic acid. Linoleic acid, an essential fatty acid of the ω-6 series, was present in all studied macroalgae. Fucus spiralis L. exhibited the highest amounts of monounsaturated fatty acids and of polyunsaturated fatty acids of the ω-3 and ω-6 series. The ω-6/ω-3 ratio in half of the studied species was lower than 1. This information reinforces the potential application of some brown macroalgae as dietary sources of polyunsaturated fatty acids.

SELECTION OF CITATIONS
SEARCH DETAIL