Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Food Chem Toxicol ; 188: 114682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657941

ABSTRACT

Butylated hydroxyanisole (BHA) is one of the most commonly used antioxidants and is widely used in food, but whether it causes vascular damage has not been clearly studied. The present study demonstrated for the first time that BHA reduced the viability of human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (BEND3) in a dose- and time-dependent manner. Moreover, BHA inhibited the migration and proliferation of vascular endothelial cells (ECs). Further analysis revealed that in ECs, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed the BHA-induced increase in Fe2+ and malonaldehyde (MDA) levels. Acridine orange staining demonstrated that BHA increased lysosomal permeability. At the protein level, BHA increased the expression of transcription factor EB (TFEB) and decreased the expression of glutathione peroxidase (GPX4), solute carrier family 7 member 11 (SLC7A11, xCT), and ferritin heavy chain 1 (FTH1). Moreover, these effects of BHA could be reversed by knocking down TFEB. In vivo experiments confirmed that BHA caused elevated pulse wave velocity (PWV) and reduced acetylcholine-dependent vascular endothelial diastole. In conclusion, BHA degrades GPX4, xCT, and FTH1 through activation of the TFEB-mediated lysosomal pathway and promotes ferroptosis, ultimately leading to vascular endothelial cell injury.


Subject(s)
Butylated Hydroxyanisole , Human Umbilical Vein Endothelial Cells , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Humans , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Butylated Hydroxyanisole/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Ferroptosis/drug effects , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Movement/drug effects , Ferritins/metabolism , Ferritins/genetics , Cyclohexylamines , Oxidoreductases , Phenylenediamines
2.
Toxics ; 12(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38251010

ABSTRACT

Butylated hydroxyanisole (BHA), a synthetic phenolic antioxidant (SPA), is now widely present in natural waters. To improve the degradation efficiency of BHA and reduce product toxicity, a combination of peroxymonosulfate (PMS) and Ferrate(VI) (Fe(VI)) was used in this study. We systematically investigated the reaction kinetics, mechanism and product toxicity in the degradation of BHA through the combined use of PMS and Fe(VI). The results showed that PMS and Fe(VI) have synergistic effects on the degradation of BHA. The effects of operational factors, including PMS dosage, pH and coexisting ions (Cl-, SO42-, HCO3-, K+, NH4+ and Mg2+), and different water matrices were investigated through a series of kinetic experiments. When T = 25 °C, the initial pH was 8.0, the initial BHA concentration was 100 µM, the initial concentration ratio of [PMS]0:[Fe(VI)]0:[BHA]0 was 100:1:1 and the degradation rate could reach 92.4% within 30 min. Through liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) identification, it was determined that the oxidation pathway of BHA caused by PMS/Fe(VI) mainly includes hydroxylation, ring-opening and coupling reactions. Density functional theory (DFT) calculations indicated that •OH was most likely to attack BHA and generate hydroxylated products. The comprehensive comparison of product toxicity results showed that the PMS/Fe(VI) system can effectively reduce the environmental risk of a reaction. This study contributes to the development of PMS/Fe(VI) for water treatment applications.

3.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569330

ABSTRACT

Cells produce free radicals and antioxidants when exposed to toxic compounds during cellular metabolism. However, free radicals are deleterious to lipids, proteins, and nucleic acids. Antioxidants neutralize and eliminate free radicals from cells, preventing cell damage. Therefore, the study aims to determine whether the antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) will ameliorate the maximum dose of acrylamide and alpha (α)-solanine synergistic toxic effects in exposed BEAS-2B cells. These toxic compounds are consumed worldwide by eating potato products. BEAS-2B cells were simultaneously treated with BHA 10 µM and BHT 20 µM and incubated in a 5% CO2 humidified incubator for 24 h, followed by individual or combined treatment with acrylamide (3.5 mM) and α-solanine (44 mM) for 48 h, including the controls. Cell morphology, DNA, RNA, and protein were analyzed. The antioxidants did not prevent acrylamide and α-solanine synergistic effects in exposed BEAS-2B cells. However, cell morphology was altered; polymerase chain reaction (PCR) showed reduced RNA constituents but not DNA. In addition, the toxic compounds synergistically inhibited AKT/PKB expression and its downstream genes. The study showed BHA and BHT are not protective against the synergetic toxic effects of acrylamide and α-solanine in exposed BEAS-2B cells.


Subject(s)
Antioxidants , Solanine , Antioxidants/pharmacology , Butylated Hydroxytoluene , Butylated Hydroxyanisole/pharmacology , Acrylamide/toxicity , Proteins , DNA , RNA
4.
ADMET DMPK ; 11(2): 185-199, 2023.
Article in English | MEDLINE | ID: mdl-37325114

ABSTRACT

A new mononuclear Co(II) complex with the formula [Co(HL)2Cl2] (1) (HL= N-(2-hydroxy-1-naphthylidene)-2-methyl aniline) has been synthesized and characterized by Fourier transform infrared spectroscopy, UV-Vis, elemental analysis and single crystal X-ray structure analysis. Single crystals of the complex [Co(HL)2Cl2] (1) were obtained through slow evaporation of an acetonitrile solution at room temperature. The crystal structure analysis revealed that the two Schiff base ligands create a tetrahedral geometry via oxygen atoms and two chloride atoms. The nano-size of [Co(HL)2Cl2] (2) have been synthesized by the sonochemical process. Characterization of nanoparticles (2) was carried out via X-ray powder diffraction (XRD), scanning electron microscopy (SEM), UV-Vis, and FT-IR spectroscopy. The average sample size synthesized via the sonochemical method was approximately 56 nm. In this work, a simple sensor based on a glassy carbon electrode modified with [Co(HL)2Cl2] nano-complex was developed ([Co(HL)2Cl2] nano-complex/GCE) for convenient and fast electrochemical detection of butylated hydroxyanisole (BHA). The modified electrode offers considerably improved voltammetric sensitivity toward BHA compared to the bare electrode. Applying linear differential pulse voltammetry, a good linear relationship of the oxidation peak current with respect to concentrations of BHA across the range of 0.5-150 µM and a detection limit of 0.12 µM was achieved. The [Co(HL)2Cl2] nano-complex/GCE sensor was applied to the determination of BHA in real samples successfully.

5.
J Environ Sci Health B ; 58(4): 334-344, 2023.
Article in English | MEDLINE | ID: mdl-36974485

ABSTRACT

A polypyrrole (PPy)-cotton pad sorbent enclosed in tea bag envelope was developed and used in micro-solid phase extraction (µ-SPE) for the determination of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). After extraction, the extract was qualified and quantified by a gas chromatograph equipped with a flame ionization detector (GC-FID). Parameters influencing this developed method and the efficiency of µ-SPE were studied and optimized. Under the optimal conditions, the developed method provided good linearity in a concentration range of 0.100-100 µg L-1 for BHA and 0.050-50 µg L-1 for BHT, respectively. The limits of detection were 39.27 ± 0.52 ng L-1 for BHA and 16.96 ± 0.17 ng L-1 for BHT. Satisfactory relative recoveries of BHA and BHT were achieved in the range from 86.8 ± 1.9 to 117.1 ± 2.3% with acceptable relative standard deviation (RSD) below 8.1%. Good reproducibility was obtained with RSDs < 3.1%, for n = 6. The developed adsorbent is easy to operate, low cost, eco-friendly, reusable, with high extraction efficiency, and was successfully applied in the simultaneous synthetic antioxidant determination of non-alcoholic beverage samples.


Subject(s)
Antioxidants , Polymers , Antioxidants/analysis , Butylated Hydroxytoluene/analysis , Pyrroles , Butylated Hydroxyanisole/analysis , Reproducibility of Results , Beverages , Tea
6.
Bioact Mater ; 24: 124-135, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36606255

ABSTRACT

Respiratory syncytial virus (RSV) is the most common cause of viral bronchiolitis among children worldwide, yet there is no vaccine for RSV disease. This study investigates the potential of cube and sphere-shaped cerium oxide nanoparticles (CNP) to modulate reactive oxygen (ROS) and nitrogen (RNS) species and immune cell phenotypes in the presence of RSV infection in vitro and in vivo. Cube and sphere-shaped CNP were synthesized by hydrothermal and ultrasonication methods, respectively. Physico-chemical characterization confirmed the shape of sphere and cube CNP and effect of various parameters on their particle size distribution and zeta potential. In vitro results revealed that sphere and cube CNP differentially modulated ROS and RNS levels in J774 macrophages. Specifically, cube CNP significantly reduced RSV-induced ROS levels without affecting RNS levels while sphere CNP increased RSV-induced RNS levels with minimal effect on ROS levels. Cube CNP drove an M1 phenotype in RSV-infected macrophages in vitro by increasing macrophage surface expression of CD80 and CD86 with a concomitant increase in TNFα and IL-12p70, while simultaneously decreasing M2 CD206 expression. Intranasal administration of sphere and cube-CNP were well-tolerated with no observed toxicity in BALB/c mice. Notably, cube CNP preferentially accumulated in murine alveolar macrophages and induced their activation, avoiding enhanced uptake and activation of other inflammatory cells such as neutrophils, which are associated with RSV-mediated inflammation. In conclusion, we report that sphere and cube CNP modulate macrophage polarization and innate cellular responses during RSV infection.

7.
Food Chem ; 387: 132899, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35405559

ABSTRACT

This study introduces an innovative procedure for the development of a molecularly imprinted electrochemical sensor for ultra-sensitive and specific recognition of butylated hydroxyanisole (BHA). First, a uniquely flower-like molybdenum disulfide/Ag nanoparticle-chitosan (MoS2/Ag NPs-CS) composite was prepared and used as a matrix to modify the electrode surface. Then, a layer of BHA-molecularly imprinted polymer was grown on the surface of the modified electrode by electropolymerization, with BHA as template molecule, which improved the specific recognition of the modified electrode to BHA. The MoS2/Ag NPs-CS material could not only increase the specific surface area of the electrode, accelerate the electron transport rate and mass transfer, but also promote the recognition of the polymer, so as to increase the current response and improve the performance of the electrochemical sensor. The prepared electrochemical sensor showed a wide linear range for BHA in the range of 1 × 10-9-1 × 10-4 mol/L with a detection limit of 7.9 × 10-9 mol/L. The recovery of BHA in several foods was from 95% to 103%. The sensor had good reproducibility, stability and excellent selectivity, and was successfully used for the detection of BHA in foods, providing a reliable detection method for sensitive, rapid and selective detection of BHA in complex food samples.


Subject(s)
Metal Nanoparticles , Molecular Imprinting , Butylated Hydroxyanisole , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Metal Nanoparticles/chemistry , Molecular Imprinting/methods , Molybdenum , Reproducibility of Results , Silver
8.
Saudi J Biol Sci ; 29(3): 1842-1852, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35280527

ABSTRACT

The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25-25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress.

9.
Shokuhin Eiseigaku Zasshi ; 63(1): 12-19, 2022.
Article in Japanese | MEDLINE | ID: mdl-35264517

ABSTRACT

In this study, we simultaneously determined three antioxidants, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and tert-butylhydroquinone (TBHQ), using HPLC equipped both with a photodiode array detector and a fluorescence detector in 25 minutes per sample. Due to the combined use of the two detectors, we could achieve improved target selectivity. Further, quantification at the specific wavelengths for each target substance particularly increased BHT detection sensitivity. This approach enabled us to avoid repeated measurements during daily inspections. Furthermore, detections were performed using LC-MS/MS instead of GC-MS to overcome the problem of helium gas shortage.In addition, we investigated antioxidant stability in standard solutions during storage. Although TBHQ was stable in methanol with ascorbic acid at -20℃, ascorbic acid storage has possibility to lead to decrease in BHT and BHA concentrations. We recognized that the mixture of BHT and BHA dissolved in methanol at 4℃ and that of BHT, BHA and TBHQ dissolved in methanol with ascorbic acid at -20℃ were suitable for about one year.


Subject(s)
Antioxidants , Tandem Mass Spectrometry , Butylated Hydroxyanisole/analysis , Chromatography, High Pressure Liquid , Chromatography, Liquid
10.
Drug Chem Toxicol ; 45(4): 1899-1906, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34013795

ABSTRACT

Butylated hydroxyanisole (BHA) and the chemically similar butylated hydroxytoluene (BHT) are widely used as antioxidants. Toxicity of BHA and BHT has been reported under in vitro and in vivo experimental conditions. However, the mechanism of BHA-induced toxic effects in cells is unclear. In this study, the cytotoxic effects of BHA and differences in cell death mechanism for BHA and BHT were investigated in rat thymocytes by flow cytometric analysis using a fluorescent probe. We observed a significant increase in propidium iodide fluorescence in the population of cells treated with 100 µM and 300 µM BHA (dead cells). Thymocytes treated with 100 µM BHA showed increased intracellular Ca2+ and Zn2+ levels and depolarized cell membranes. BHA (30-100 µM) decreased non-protein thiol content of cells, indicating decreased glutathione content. Co-stimulation with 100 µM BHA and 300 µM H2O2 acted synergistically to increase cell lethality. Moreover, BHA significantly increased caspase-3 activity and the number of annexin-V-positive cells in a concentration-dependent manner, indicating apoptosis. However, BHT reduced caspase-3 activity and increased the number of annexin-V-negative dead cells, indicating non-apoptotic cell death. Our results reveal the toxicity of BHA could be attributed to increased levels of intracellular Ca2+ and Zn2+, resulting in an increased vulnerability of rat thymocytes to oxidative stress. In addition, we demonstrate that whereas BHA induced apoptosis, BHT induced non-apoptotic cell death in rat thymocytes. Therefore, these results may support the safety of BHA, but also demonstrate the importance of performing toxicity evaluation at the cellular level besides the tissue level.


Subject(s)
Butylated Hydroxyanisole , Butylated Hydroxytoluene , Animals , Annexins , Antioxidants/pharmacology , Apoptosis , Butylated Hydroxyanisole/metabolism , Butylated Hydroxyanisole/toxicity , Butylated Hydroxytoluene/metabolism , Butylated Hydroxytoluene/toxicity , Calcium/metabolism , Caspase 3/metabolism , Hydrogen Peroxide/metabolism , Rats , Zinc/metabolism
11.
EFSA J ; 19(7): e06714, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34295440

ABSTRACT

Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of butylated hydroxy anisole (BHA) when used as a technological additive (antioxidant) in feed for cats. BHA is a waxy solid consisting for > 98.5% of the active substance, a mixture of 3-tert-butyl-4-hydroxyanisole and 2-tert-butyl-4-hydroxyanisole and is currently authorised for use in all animal species except in cats. In support of the safety of the additive for the target species, the applicant has submitted a tolerance study which demonstrated that BHA is tolerated by cats at a concentration up to 150 mg/kg complete feed. The additive should be considered a skin, eye irritant and a potential skin sensitiser. Exposure of the user via inhalation was considered unlikely; therefore, a risk is not expected. BHA is authorised as an antioxidant for food use at comparable use levels; therefore, no studies were required to demonstrate the efficacy of BHA as an antioxidant in complete feed for cats.

12.
Food Chem ; 357: 129771, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33894572

ABSTRACT

Considering the harm of BHA on humans, thorough research of the effect of BHA on the structure of serum albumin is necessary. The binding mechanisms of BHA with bovine serum albumin (BSA) and the effects of other three food additives (butylated hydroxytoluene, benzoic acid and citric acid) on BHA-BSA system were researched by multispectroscopy and molecular docking. The fluorescence quenching experiment results showed that the fluorescence quenching mechanism of BSA by BHA was static quenching. The binding constant ((5.70 ± 0.38) × 103 M-1 at 298 K) and thermodynamic parameters (ΔH = 110.8 ± 2.91 kJ·mol-1 and ΔS = 443.3 ± 9.30 J·mol-1·K-1) indicated that BHA and BSA formed a relatively stable complex through hydrophobic interaction. Three-dimensional fluorescence spectra confirmed the conformation changes of BSA due to the binding of BHA. Site marker competitive experiments and molecular docking proved that BHA could bind BSA into site I in subdomain IIA. The results of molecular docking showed that BHA formed hydrophobic interactions with amino acid residues (Ala290, Leu237, Leu259, Ile263 and Ile289). The presence of other food additives weakened the binding of BHA to BSA.

13.
Food Chem ; 353: 129488, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33714793

ABSTRACT

Synthetic phenolic antioxidants can interact with peroxides produced by food. This paper reviews correlation between BHA, BHT and TBHQ metabolism and harms they cause and provides a theoretical basis for rational use of BHA, BHT and TBHQ in food, and also put some attention on the transformation and metabolic products of PG. We introduce BHA, BHT, TBHQ, PG and their possible metabolic pathways, and discuss possible harms and their specific mechanisms responsible. Excessive addition or incorrect use of synthetic phenolic antioxidants results in carcinogenicity, cytotoxicity, oxidative stress induction and endocrine disrupting effects, which warrant attention. BHA carcinogenicity is related to production of metabolites TBHQ and TQ, and cytotoxic effect of BHA is the main cause of apoptosis induction. BHT carcinogenicity depends on DNA damage degree, and tumour promotion is mainly related to production of quinone methylation metabolites. TBHQ carcinogenicity is related to induction of metabolite TQ and enzyme CYP1A1.


Subject(s)
Antioxidants/chemical synthesis , Phenols/chemistry , Animals , Antioxidants/metabolism , Antioxidants/toxicity , Apoptosis/drug effects , Butylated Hydroxyanisole/chemistry , Butylated Hydroxyanisole/metabolism , Butylated Hydroxyanisole/toxicity , Butylated Hydroxytoluene/chemistry , Butylated Hydroxytoluene/metabolism , Butylated Hydroxytoluene/toxicity , Food Additives/chemistry , Food Additives/metabolism , Food Additives/toxicity , Humans , Hydroquinones/chemistry , Hydroquinones/metabolism , Hydroquinones/toxicity
14.
Br Poult Sci ; 62(4): 552-561, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33635179

ABSTRACT

1. This study investigated the growth performance, caecal microbiota, blood chemistry, splenic cytokines, serum immunoglobulins, carcase, meat quality and oxidative status of broiler chickens fed diets supplemented with Anacardium occidentale leaf powder (AOLP) in comparison with antibiotic and synthetic antioxidant.2. Three hundred and twenty, one-day old Arbor Acre broiler chicks were randomly allotted into four treatment groups consisting of eight pen replicates with 10 birds per pen. The treatment groups were T0, basal diet only; T1, basal diet + 0.4 g/kg oxytetracycline + 0.12 g/kg butylated hydroxyanisole (BHA); T2, basal diet + 2 g/kg AOLP and T3, basal diet + 4 g/kg AOLP. The birds were fed for 42 d when performance was assessed, and then euthanised.3. During 0-42 d, feed conversion ratio was higher (P = 0.033) in T0 birds compared with birds fed other diets. Diet did not affect carcase traits, organ weights, serum biochemical indices, and meat composition, pH, cook loss or meat colour. Supplemented birds had higher erythrocyte (P = 0.042) and haemoglobin (P = 0.025), and lower leukocytes (P = 0.012) compared with the T0 birds.4. Diet T3 upregulated (P = 0.020) splenic interleukin-10 compared with other diets. The T0 birds had higher (P < 0.05) interleukin-6 and serum IgG and IgM compared with the supplemented birds. Caecal E. coli and Salmonella spp. counts were higher (P < 0.05) in T0 birds than in the supplemented groups. Lactobacillus spp. counts were higher (P = 0.001) in T3 birds than in those fed other diets. Breast and thigh meat from the T0 birds had higher (P < 0.05) TBARS value, and carbonyl content compared to the supplemented birds. The T0 breast meat had higher drip loss (P = 0.001) than meat from the supplemented birds.5. The results suggested that AOLP exhibited antimicrobial and antioxidant properties that were comparable to the responses to oxytetracycline and BHA (T1) in broiler diets. Nonetheless, the efficacy of AOLP needs to be verified under disease challenge or compromised health condition.


Subject(s)
Anacardium , Microbiota , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Chickens , Diet/veterinary , Dietary Supplements/analysis , Escherichia coli , Meat/analysis , Plant Leaves
15.
Regul Toxicol Pharmacol ; 121: 104887, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33556417

ABSTRACT

Tumor data from rodent bioassays are used for cancer hazard classification with wide-ranging consequences. This paper presents a case study of the synthetic antioxidant butylated hydroxyanisole (BHA), which IARC classified as Group 2B ("possibly carcinogenic to humans") on the basis of forestomach tumors in rodents following chronic dietary exposure to high levels. IARC later determined that the mechanism by which BHA induces forestomach tumors is not relevant to humans; however, the classification has not been revoked. BHA was listed on California Proposition 65 as a direct consequence of the IARC classification, and there is widespread concern among consumers regarding the safety of BHA driven by the perception that it is a carcinogen. While many regulatory agencies have established safe exposure limits for BHA, the IARC classification and Proposition 65 listing resulted in the addition of BHA to lists of substances banned from children's products and products seeking credentials such as EPA's Safer Choice program, as well as mandatory product labeling. Classifications have consequences that many times pre-empt the ability to conduct an exposure-based risk-based assessment., It is imperative to consider human relevance of both the endpoint and exposure conditions as fundamental to hazard identification.


Subject(s)
Antioxidants/classification , Butylated Hydroxyanisole/classification , Carcinogens/classification , Food Additives/classification , Animals , Antioxidants/toxicity , Butylated Hydroxyanisole/toxicity , Carcinogens/toxicity , Food Additives/toxicity , Food Supply , Humans , Risk Assessment
16.
Environ Sci Pollut Res Int ; 28(10): 12041-12055, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32410194

ABSTRACT

This work analyses the performance and emission characteristics of biofuelled compression ignition (C.I) engine with the implementation of an antioxidant. Using the transesterification process with sodium hydroxide as a catalyst, the beef tallow methyl ester (BTME) was obtained from the beef tallow oil. Poor physical properties of biodiesel (beef tallow oil (BTO)) namely high viscosity and density cause atomization problems leading to higher smoke, hydrocarbon and carbon monoxide emissions. The purpose of this work is to enhance the performance aspects, to limit smoke emissions from BTO operation and to examine the possibility of direct use of neat BTO in CI engine. This research paves a way of investing the impact of binary blends of BHA and BTO on the research engine. The experiments were conducted on a single-cylinder four-stroke C.I engine using the following fuel compositions: 20% of BTME mixed with 80% diesel (B20), 1000 ppm mono-phenolic antioxidant (butylated hydroxyanisole (BHA)) mixed with the blends of B20 (B20 + BHA), and 100% diesel. Based on the experimental results, it was found that the brake thermal efficiency (BTE) increases by 1.8% and the brake specific fuel consumption (BSFC) decreases by 2.5% for the fuel blend B20 + BHA when compared with that for B20 fuel blend. Compared with the B20 blend, the blend B20 + BHA emits 12.2% lesser nitrogen oxide due to breaking chain reactions, scavenging the initiating radicals and reducing the concentration of reactive radicals.


Subject(s)
Biofuels , Gasoline , Antioxidants , Carbon Monoxide/analysis , Fats , Vehicle Emissions
17.
Hum Exp Toxicol ; 40(3): 425-438, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32909836

ABSTRACT

Butylated hydroxyanisole (BHA) has been widely used in the cosmetics, pharmaceutical, and food industries due to its antioxidant activity. Despite the antioxidant effects, reported adverse effects of BHA at the cellular level have made its use controversial. In this regard, this study was performed to elucidate the potential toxicity mechanism caused by BHA at the molecular level in zebrafish embryos. For this purpose, zebrafish embryos were exposed to BHA at levels of 0.5, 1, 5, 7.5 and 10 ppm and monitored at 24, 48, 72 and 96 hours. Survival rate, hatching rate and malformations were evaluated. We examined the potential for reactive oxygen species (ROS) production and apoptosis signalling accumulation in the whole body. Moreover, we evaluated histopathological and immunohistochemical (8-OHDG) characterization of the brain in zebrafish embryos at the 96th hour. We also examined apoptosis, histopathological and immunohistochemical (8-OHDG) characteristics in 96 hpf zebrafish larvae exposed to tertiary butylhydroquinone (TBHQ), one of the major metabolites of BHA, at doses of 0.5, 2.5, 3.75 and 5 ppm. Consequently, it has been considered that increased embryonic and larval malformations in this study may have been caused by ROS-induced apoptosis. After 96 h of exposure, positive 8-OHdG immunofluorescence, degenerative changes, and necrosis were observed in the brain of BHA and TBHQ-treated zebrafish larvae in a dose-dependent manner. BHA and TBHQ exposure could lead to an increase in 8-OHdG activities by resulting oxidative DNA damage. In particular, the obtained data indicate that the induction of ROS formation, occurring during exposure to BHA and/or multiple hydroxyl groups, could be responsible for apoptosis.


Subject(s)
Antioxidants/toxicity , Brain/drug effects , Butylated Hydroxyanisole/toxicity , Hydroquinones/toxicity , Teratogens/toxicity , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Animals , Apoptosis/drug effects , Brain/embryology , Brain/metabolism , Brain/pathology , DNA Damage , Embryo, Nonmammalian , Female , Head/abnormalities , Male , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Oxidative Stress/drug effects , Pericardium/abnormalities , Reactive Oxygen Species/metabolism , Tail/abnormalities , Zebrafish
18.
Talanta ; 223(Pt 1): 121689, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33303142

ABSTRACT

One of the most widely used synthetic antioxidants in food, butylated hydroxyanisole (BHA) has raised serious concerns due to its potential toxic effects on human health. Hence, elaboration of simple, effective and sensitive methods for BHA detection is pressing. In this regards, the present research work highlights a facile, simple, and fast synthesis approach for the development of an electrochemical sensor for the analysis of BHA in foodstuffs. In this study, the chitosan (CS) capped with gold nanoparticles (AuNPs) were self-assembled on a screen-printed carbon electrode (SPCE) and complete the elaboration of the molecularly imprinted polymer (MIP) sensor in the presence of BHA as templates. The electrochemical behaviour of the MIP sensor was investigated by using electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and cyclic voltammetry (CV). Similarly, the morphology of the electrodes surface of the different elaboration steps was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). In addition, the obtained results demonstrate satisfactory sensitivity and selectivity to BHA compared to interfering species, including ascorbic acid and citric acid. Under optimal experimental conditions, the MIP sensor exhibits responses proportional to concentrations over a range of 0.01-20 µg mL-1, with a low detection limit (LOD) of 0.001 µg mL-1 (signal-to-noise ratio S/N = 3). Besides, the reproducibility, stability, and repeatability of the MIP sensor were proven. Taking into account all these outcomes, the MIP sensor well demonstrates its ability towards the determination of BHA in food samples with a relative standard deviation (RSD ≤ 8%). Spectrophotometry was utilized as a validation method. Partial least squares (PLS) prediction models were constructed from the MIP sensor and spectrophotometer data with a regression coefficient (R = 0.99). According to the achieved outcomes, the MIP sensor could be a viable tool for food control.


Subject(s)
Biosensing Techniques , Chitosan , Metal Nanoparticles , Molecular Imprinting , Butylated Hydroxyanisole , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Reproducibility of Results
19.
Food Chem ; 342: 128246, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33277123

ABSTRACT

In this study, we have reported an electrochemical sensor for the determination of butylated hydroxyanisole (BHA) by electropolymerization of O-cresolphthalein complexone (OC) over the multiwalled carbon nanotubes (MWCNTs). In order to confirm the surface morphology, oxidation states, functional groups and charge transfer property of POC/MWCNTs electrode, the resulting POC film with MWCNTs electrode was characterized by spectroscopy, microscopy, and electrochemical techniques. The fabricated electrode was evaluated for its electrochemical performance in oxidation of BHA and the study showed that at POC/MWCNTs electrodes BHA oxidation occurred at 0.27 V. POC/MWCNTs electrode has shown a linear range for the detection of BHA from 0.33 µM to 110 µM with the detection limit of 0.11 µM (S/N = 3). Amperometric determination of BHA was also done using chronoamperometric techniques and the result was found to be linear. The real time analysis of sensors is also validated by analysing the packed potato chips samples.


Subject(s)
Butylated Hydroxyanisole/analysis , Electrochemistry/instrumentation , Food Analysis/instrumentation , Nanotubes, Carbon/chemistry , Phenolphthaleins/chemistry , Butylated Hydroxyanisole/chemistry , Electrodes , Oxidation-Reduction
20.
Toxicol Rep ; 7: 1296-1304, 2020.
Article in English | MEDLINE | ID: mdl-33024703

ABSTRACT

Acetaminophen (APAP) is used as a primary drug due to its antipyretic and analgesic activity. The mechanism of action of APAP toxicity in the liver is due to the depletion of glutathione which elicited free radicals generation. Therefore, the objective of our work is to investigate the APAP induced liver damage and its repair by free radical scavenging activity of cinnamon oil (CO) in male Wistar rats. To investigate the effects of CO at different doses (50, 100 and 200 mg/kg b.w.), animals were given a single oral dose of CO per day for 14 days between 12:00-1:00 PM. The biochemical changes, imbalance in oxidative markers, interleukins, caspases and histopathological studies were determined for quantifying the hepatoprotective effect of CO. One dose of APAP (2 g/kg b.w.) results in significant hepatotoxicity and marked increase the serum markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, albumin, total protein, content of lipid peroxidation (LPO), interleukins (IL-1ß, IL-6), caspase-3, -9 expression, DNA fragmentation and histopathological changes were observed. Significant decrease in the levels of LPO, interleukins IL-1ß, IL-6, caspase-3, -9 expressions, qualitative as well as quantitative determination of DNA fragments and histopathological changes were reversed by the administration of CO dose dependently. Furthermore, it also restores the depleted activity of antioxidative enzymes. Our study shows that an imbalance in the oxidative parameter in the liver by APAP is restored by treating the animals with CO.

SELECTION OF CITATIONS
SEARCH DETAIL
...