Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.453
Filter
1.
Water Environ Res ; 96(7): e11081, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023047

ABSTRACT

Powdered activated carbon (PAC) has better adsorption performance than granular activated carbon (GAC) and is widely used in water purification. In most cases, PAC is dosed into water directly, then precipitated as sludge, and landfilled. In this study, PAC was mixed with a polymer and dissolved in dimethylformamide (DMF) solvent to form a PAC-loaded membrane, which was then tested for chloroform removal. The chloroform adsorption capacity of the PAC membrane increased with increasing membrane thickness because of higher carbon loading. However, regardless of membrane thickness, the flux of the PAC membranes was similar since flux resistance predominantly occurred at the top dense polymer surface. This dense surface can be removed by sandpaper polishing, where the adsorption capacity of the polished PAC membranes was 20% higher than the unpolished membranes because of more even distribution of feed water on the polished surface. Removal of the dense surface via polishing increased the flux by 97% to 130%, exceeding the flux of typical household carbon block filters. Using DMF to regenerate the membrane recovered 48% to 66% of the initial adsorption capacity. Thermal regeneration of the exhausted PAC membrane at 250°C was more effective than DMF regeneration (both in terms of cost and performance), with 83% to 94% PAC membrane regeneration efficiency over four regeneration recycles. After four thermal regeneration cycles, flux increased by 300% and the membrane became brittle because of thermal aging of the polymer, indicating that a total of 6 h of regeneration time (equivalent to three cycles in this study) was the limit for effective PAC membrane performance. PRACTITIONER POINTS: Powdered activated carbon was immobilized on a membrane to remove chloroform from water. Thicker membranes increased adsorption capacity but did not impact flux. Flux and capacity increased using polishing to remove the dense polymer surface and more evenly distribute flow across the membrane. Thermal regeneration of the membrane at 250°C was effective for up to three cycles and outperformed solvent-based regeneration. PAC-loaded filters are relevant for applications such as household carbon block filtration.


Subject(s)
Charcoal , Chloroform , Membranes, Artificial , Polymers , Solvents , Water Pollutants, Chemical , Water Purification , Chloroform/chemistry , Water Purification/methods , Charcoal/chemistry , Solvents/chemistry , Polymers/chemistry , Water Pollutants, Chemical/chemistry , Adsorption
2.
Br Poult Sci ; : 1-8, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995227

ABSTRACT

1. The production of chicken meat has resulted in high volumes of byproducts, such as feathers, bones, skin, viscera, and feet. The structure of feathers is one of the most complex among vertebrates, with a central axis and lateral filamentary structures, providing rigidity, lightness, and flexibility. Chicken feathers are composed of proteins, lipids, and water, with the highest protein content, especially keratin, which is responsible for the material's rigidity.2. Industries still make little use of feathers, which are generally intended for the production of flour or organic fertilisers. These are low added value products, and discarded feathers can harm the environment.3. Keratin extraction techniques and resulting protein hydrolysates have been studied in chicken feathers. Acid, alkaline or enzymatic hydrolysis is the most commonly used method for obtaining molecules with functional properties such as antioxidant, antimicrobial, antihypertensive and antidiabetic activity.4. The development of keratin-based biodegradable films represents an area of interest for reducing the economic and environmental impacts caused by inappropriate disposal of feathers.

3.
Saudi J Biol Sci ; 31(8): 104033, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946846

ABSTRACT

Plant phenolics have been known for various biological activities. This study aims to extract and examine the presence of phenolics in Bao mango (Mangifera indica L. var.) peel ethanolic extract (MPE). Further, antioxidant, anti-diabetic (α-amylase, and α-glucosidase inhibitory activity), and anti- Alzheimer's disease (AD) (acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ß-secretase (BACE-1) inhibitory activity) efficacy of MPE were determined. The results indicated that mangiferin (8755.89 mg/ 100 g extract) was the major phenolic compound in MPE. An antioxidant mechanism revealed that MPE had a higher radical scavenging ability (4266.70 µmol TE/g extract) compared to reducing power (FRAP) or oxygen radical absorption capacity (ORAC). Further in-vitro enzyme inhibitory assay against diabetic and AD involved enzymes showed that MPE had stronger inhibitory action against an enzyme involved in diabetes compared to their standard drug (Acarbose) (P < 0.05). While a lower IC50 value was observed against AD-involved enzymes compared to their standard drug (donepezil) (P < 0.05). The results show that Thai Bao mango peel byproduct can be a potential source of nutraceuticals to lower diabetes and improve cognitive health.

4.
Trop Anim Health Prod ; 56(7): 219, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039346

ABSTRACT

Soybean molasses (SBMO) is a byproduct derived from the production of soy protein concentrate, obtained through solubilization in water and alcohol. The utilization of SBMO as an animal feed ingredient shows promising potential, primarily due to its low cost and as a potential energy concentrate. This study aimed to assess the intake, digestibility, ruminal parameters (pH and ruminal ammonia - NH3), nitrogen retention (NR) and microbial protein synthesis in grazing beef cattle supplemented with SBMO as a substitute for corn during the rainy season. Five Nellore (10-month-old) bulls with an average initial weight of 246 ± 11.2 kg were utilized in a 5 × 5 Latin square design. The animals were housed in five paddocks, each consisting of 0.34 ha of Marandu grass (Urochloa brizantha). Five isonitrogenous protein-energy supplements (300 g crude protein [CP]/kg supplement) were formulated, with SBMO replacing corn at varying levels (0, 0.25, 0.50, 0.75, or 1.00 g-1 g). The supplements were provided daily at a quantity of 2.0 kg-1 animal. The inclusion of SBMO at any level of corn substitution did not significantly affect the intake of pasture dry matter or total dry matter (P > 0.10). Likewise, the intake of CP and, consequently, the ruminal concentration of NH3 did not differ among the SBMO levels. Increasing the inclusion of SBMO did not have a significant impact on NR (P > 0.10), indicating that animals receiving supplements containing 100% SBMO as a substitute for corn may perform similarly to animals receiving supplements with 100% corn (0% SBMO). Soybean molasses represents a viable alternative energy source for grazing beef cattle during the rainy season and can entirely replace corn without adversely affecting animal nutritional performance.


Subject(s)
Animal Feed , Dietary Supplements , Digestion , Glycine max , Molasses , Rumen , Seasons , Animals , Cattle/physiology , Animal Feed/analysis , Molasses/analysis , Male , Glycine max/chemistry , Dietary Supplements/analysis , Rumen/metabolism , Zea mays/chemistry , Diet/veterinary , Animal Nutritional Physiological Phenomena , Rain , Nitrogen/metabolism
5.
Angew Chem Int Ed Engl ; : e202409303, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037504

ABSTRACT

Zn anode protection in Zn-ion batteries (ZIBs) face great challenges of high Zn utilization rate (i.e., depth of discharge, DOD) and high current density due to the large difficulty in obtaining an extreme overall RTC (relative texture coefficient) of Zn (002) plane. Through the potent interaction of Mn(III)aq and H+ with distinct Zn crystal planes under an electric field, large-size Zn foils with a breakthrough (002) plane RTC of 99% (i.e., close to Zn single crystal) are electrodeposited on texture-less substrates, which is also applicable from recycled Zn. The ultra-high (002) plane RTC remarkably enhances cyclic performance of the Zn anode (70% DOD @ 45.5 mA cm-2), and the DOD is even up to 95% (@ 28.1 mA cm-2) with an electrolyte additive of polyaniline. Furthermore, MnO2, the by-product of electrodeposition, is directly used as cathode of both coin cell and pouch battery, surpassing the cyclic performance exhibited by the majority of Zn||MnO2 batteries in previous instances. These results demonstrate the great potential of our strategy for high-performance, low-cost and large-scale ZIBs.

6.
Biotechnol Biofuels Bioprod ; 17(1): 93, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961423

ABSTRACT

BACKGROUND: Polyketide synthases (PKSs) are classified into three types based on their enzyme structures. Among them, type III PKSs, catalyzing the iterative condensation of malonyl-coenzyme A (CoA) with a CoA-linked starter molecule, are important synthases of valuable natural products. However, low efficiency and byproducts formation often limit their applications in recombinant overproduction. RESULTS: Herein, a rapid growth selection system is designed based on the accumulation and derepression of toxic acyl-CoA starter molecule intermediate products, which could be potentially applicable to most type III polyketides biosynthesis. This approach is validated by engineering both chalcone synthases (CHS) and host cell genome, to improve naringenin productions in Escherichia coli. From directed evolution of key enzyme CHS, beneficial mutant with ~ threefold improvement in capability of naringenin biosynthesis was selected and characterized. From directed genome evolution, effect of thioesterases on CHS catalysis is first discovered, expanding our understanding of byproduct formation mechanism in type III PKSs. Taken together, a whole-cell catalyst producing 1082 mg L-1 naringenin in flask with E value (evaluating product specificity) improved from 50.1% to 96.7% is obtained. CONCLUSIONS: The growth selection system has greatly contributed to both enhanced activity and discovery of byproduct formation mechanism in CHS. This research provides new insights in the catalytic mechanisms of CHS and sheds light on engineering highly efficient heterologous bio-factories to produce naringenin, and potentially more high-value type III polyketides, with minimized byproducts formation.

7.
Prev Nutr Food Sci ; 29(2): 228-236, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38974589

ABSTRACT

The ginger leaves contain terpenoids and phenolic compounds, such as gingerol and shogaol, which exert various physiological effects. This study focused on determining the optimal conditions for an enzyme (Ultimase MFC) extraction to enhance the bioactive components of underutilized ginger leaves using the response surface method. The extracted material was evaluated in terms of its yield and antioxidant capacity (total phenolic content, total flavonoid content, and activities of 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid). As a result, the optimal conditions included an enzyme concentration of 0.1% (v/v), a liquid-solid ratio of 33.939 mL/g, and an extraction time of 4 h. The optimized conditions resulted in an improvement in yield and antioxidant capacity, except for the total phenolic content of ginger leaves, when compared to the reference control extract. Additionally, the possibility of improving immunity was confirmed as nitric oxide and cytokines increased in macrophage cells compared with non-treatment control. Therefore, these extraction conditions enhance the potential industrial value of ginger leaves and underscore their promise as a natural ingredient for functional foods.

9.
Foods ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998508

ABSTRACT

The aim of this study was to analyze the content of fatty acids and tocopherols in various components (pulp, seeds, peel) of avocado (Persea americana), which are often neglected as by-products. In addition, the effects of different drying processes on these components were investigated and the health benefits of the main fatty acids contained in avocados were highlighted. The samples were subjected to three drying processes: hot air (HAD), vacuum (VD), and hot-air microwave (HAMD). In all parts of fresh avocado, oleic acid was the most abundant (41.28-57.93%), followed by palmitic acid (19.90-29.45%) and linoleic acid (8.44-14.95%). Drying led to a significant reduction in the oleic acid content, with palmitic acid showing the greatest stability. HAD resulted in higher levels of oleic acid and linoleic acid in dried pulp and peel samples compared with VD and HAMD, while HAMD had the highest content of α-linolenic acid in all parts. In addition, HAMD had the shortest drying time. HAMD duration was 35 min, which was 76.7% shorter than HAD (150 min) and 82.5% shorter than VD (200 min). Considering fatty acid retention and drying efficiency, HAMD appears to have been the most effective method, especially for the avocado peel. Remarkably, the avocado peel consistently contained higher total tocopherol, with δ-tocopherol generally being the most abundant form. The high content of tocopherols, oleic acid, and linoleic acid in the avocado peel suggests promising health benefits.

10.
Foods ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998569

ABSTRACT

Cinnamomum camphora seed kernels (CCSKs) are rich in phytochemicals, especially plant extracts. Phytochemicals play a vital role in therapy due to their strong antioxidant and anti-inflammatory activities. Extracts from CCSK can be obtained through multiple steps, including pretreatment, extraction and purification, and the purpose of pretreatment is to separate the oil from other substances in CCSKs. However, C. camphora seed kernel extracts (CKEs) were usually considered as by-products and discarded, and their potential bioactive values were underestimated. Additionally, little has been known about the effect of pretreatment on CKE. This study aimed to investigate the effects of pretreatment methods (including the solvent extraction method, cold pressing method, aqueous extraction method and sub-critical fluid extraction method) on the extraction yields, phytochemical profiles, volatile compounds and antioxidant capacities of different CKE samples. The results showed that the CKE samples were rich in phenolic compounds (15.28-20.29%) and alkaloids (24.44-27.41%). The extraction yield, bioactive substances content and in vitro antioxidant capacity of CKE pretreated by the sub-critical fluid extraction method (CKE-SCFE) were better than CKEs obtained by other methods. CKE pretreated by the solvent extraction method (CKE-SE) showed the best lipid emulsion protective capacity. Moreover, the volatile substances composition of the CKE samples was greatly influenced by the pretreatment method. The results provided a fundamental basis for evaluating the quality and nutritional value of CKE and increasing the economic value of by-products derived from CCSK.

11.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999042

ABSTRACT

Steamed ginseng water (SGW) is a by-product of the repeated thermal processing of red ginseng, which is characterized by a high bioactive content, better skin care activity, and a large output. However, its value has been ignored, resulting in environmental pollution and resource waste. In this study, UHPLC-Q-Exactive-MS/MS liquid chromatography-mass spectrometry and multivariate statistical analysis were conducted to characterize the compositional features of the repeated thermal-treated SGW. The antioxidant activity (DPPH, ABTS, FRAP, and OH) and chemical composition (total sugars, total saponins, and reducing and non-reducing sugars) were comprehensively evaluated based on the entropy weighting method. Four comparison groups (groups 1 and 3, groups 1 and 5, groups 1 and 7, and groups 1 and 9) were screened for 37 important common difference markers using OPLS-DA analysis. The entropy weight method was used to analyze the weights of the indicators; the seventh SGW sample was reported to have a significant weight. The results of this study suggest that heat treatment time and frequency can be an important indicator value for the quality control of SGW cycling operations, which have great potential in antioxidant products.


Subject(s)
Antioxidants , Panax , Tandem Mass Spectrometry , Panax/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods , Hot Temperature , Saponins/chemistry , Saponins/analysis , Plant Extracts/chemistry
12.
J Food Sci ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39030846

ABSTRACT

This study aimed to enhance the solubility and digestibility of macadamia protein isolate (MPI) for potential utilization in the food industry. The impact of dry- and moist-heat treatments at various temperatures (80, 90, and 100°C) and durations (15 and 30 min) on macadamia protein's microstructure, solubility, molecular weight, secondary and tertiary structure, thermal stability, and digestibility were investigated and evaluated. The heating degree was found to cause roughening of the MPI surface. The solubility of MPI after dry-heat treatment for 15 min at 100°C reached 290.96 ± 2.80% relative to that of untreated protein. Following heat treatment, the bands of protein macromolecules disappeared, while MPI was stretched by vibrations of free and hydrogen-bonded hydroxyl groups. Additionally, an increase in thermal stability was observed. After heat treatment, hydrophobic groups inside the protein are exposed. Heat treatment significantly improved the in vitro digestibility of MPI, reaching twice that of untreated protein. The results also demonstrated that dry- and moist-heat treatments have distinct impacts on MPI, while heating temperature and duration affect the degree of modification. With a decreased ordered structure and increased random coil content, the dry-heat treatment significantly enhanced the in vitro digestibility of MPI. The digestibility of MPI after dry-heat treatment for 30 min at 90°C increased by 77.82 ± 2.80% compared to untreated protein. Consequently, compared to moist-heat treatment, dry-heat treatment was more effective in modifying macadamia protein. Dry-heat treatment of 30 min at 90°C was determined as the optimal condition. PRACTICAL APPLICATION: Heat treatment enhances MPI characteristics, potentially advancing macadamia-derived food production, including plant-based beverages and protein supplements.

13.
Front Nutr ; 11: 1407007, 2024.
Article in English | MEDLINE | ID: mdl-38903617

ABSTRACT

Introduction: 2-Amino-1-methyl-6-phenylimidazole [4,5-b] pyridine (PhIP), a heterocyclic amine (HAA), is found in meat products heated at high temperatures. However, PhIP is a mutagenic and potential carcinogenic compound. Cassiae semen, a type of medicine and food homology plant, is abundant in China and has been less applied for inhibiting heterocyclic amines. Methods: To investigate the inhibitory effect of cassiae semen extract on PhIP formation within a model system and elucidate the inhibitory mechanism, an ultrasonic-assisted method with 70% ethanol was used to obtain cassiae semen extract, which was added to a model system (0.6 mmol of phenylalanine: creatinine, 1:1). PhIP was analyzed by LC-MS to determine inhibitory effect. The byproducts of the system and the mechanism of PhIP inhibition were verified by adding the extract to a model mixture of phenylacetaldehyde, phenylacetaldehyde and creatinine. Results: The results indicated that PhIP production decreased as the concentration of cassiae semen extract increased, and the highest inhibition rate was 91.9%. Byproduct (E), with a mass-charge ratio of m/z 199.9, was detected in the phenylalanine and creatinine model system but was not detected in the other systems. The cassiae semen extract may have reacted with phenylalanine to produce byproduct (E), which prevented the degradation of phenylalanine by the Strecker reaction to produce phenylacetaldehyde. Discussion: Cassiae semen extract consumed phenylalanine, which is the precursor for PhIP, thus inhibiting the formation of phenylacetaldehyde and ultimately inhibiting PhIP formation. The main objective of this study was to elucidate the mechanism by which cassiae semen inhibit PhIP formation and establish a theoretical and scientific foundation for practical control measures.

14.
Front Nutr ; 11: 1340511, 2024.
Article in English | MEDLINE | ID: mdl-38903622

ABSTRACT

Introduction: The review titled Passion fruit by-products as a source of bioactive compounds for non-communicable disease prevention: extraction methods and mechanisms provide valuable insights into the health benefits and industrial applications of passion fruit waste. Passion fruits are a tropical and subtropical vine species, which produces edible fruits. Many food product types can be made from passion fruits. However, during passion fruit processing, large amounts of waste are released in to the environment. This review focuses on extraction methods of bioactive compounds from passion fruit by-products such as leaves, peels, seeds, and bagasse. Methods: This comprehensive review focuses on the bioactive compounds present in passion fruit by-products, emphasis on their mechanisms of action on non-communicable diseases. It also provides a detailed analysis of the extraction methods used to obtain these bioactive compounds, their potential industrial applications, and the factors that affect extraction efficiency. Results: This review encourages further research and innovation in utilization of passion fruit waste as a source of bioactive compounds for non- communicable disease prevention and their mechanisms of action. This can advance the circular economy. It also highlights the importance of sustainable and green extraction methods, which have gained attention due to environmental concerns. Discussion: Unlike previous reviews, this comprehensive article explores the potential health benefits of multiple passion fruit waste products. It also examines the possible applications of these extracts for industrial goods such as food additives, colorants, nutraceuticals, natural antioxidants, and antimicrobial agents. Overall, it contributes new information emphasizing the potential of passion fruit by-products as a source of bioactive, and the findings have implications for the scientific community and industry, promoting a deeper understanding of the health benefits and sustainable practices associated with passion fruit waste utilization.

15.
Foods ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928744

ABSTRACT

The aim of this work was to study the antioxidant potential of aqueous extracts obtained from different by-products. The effectiveness of these extracts was compared with that of rosemary extract. Total phenol carotenoid and vitamin C contents, as well as in vitro antioxidant activity, were assessed. Phenol content was positively correlated with in vitro antioxidant activity in extracts, while carotenoids showed a less clear relationship. Vitamin C was associated with antioxidant activity in lemon and pepper pomace extracts. Extracts from olive, grape, and lemon by-products displayed the highest antioxidant activity (radical scavenging activity), this being similar to the activity of rosemary extracts. Moreover, the phenolic profile of the extracts was analyzed, revealing diverse phenolic compounds. Rosemary extracts contained the highest variety and quantity of phenolic compounds, while olive pomace extracts were rich in hydroxytyrosol and 4-hydroxybenzoic acid. Lemon and pepper extracts contained high amounts of tyrosol, and tomato extracts had abundant epicatechin. The PCA analysis distinguished extracts based on in vitro antioxidant activity, phenol, carotenoid, and vitamin C content, along with their phenolic compound profiles. This study emphasizes the capacity of aqueous extract by-products as valuable sources of antioxidants and highlights the importance of understanding their bioactive components.

16.
J Biotechnol ; 392: 59-68, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906222

ABSTRACT

The edible plant oils production is associated with the release of different types of by-products. The latter represent cheap and available substrates to produce valuable compounds, such as flavours and fragrances, biologically active compounds and bio-based polymers. Elizabethkingia meningoseptica Oleate hydratases (Em_OhyA) can selectively catalyze the conversion of unsaturated fatty acids, specifically oleic acid, into hydroxy fatty acids, which find different industrial applications. In this study, Design-of-experiment (DoE) strategy was used to screen and identify conditions for reaching high yields in the reaction carried out by Escherichia coli whole-cell carrying the recombinant enzyme Em_OhyA using Waste Cooking Oils (WCO)-derived free fatty acids (FFA) as substrate. The identified reaction conditions for high oleic acid conversion were also tested on untreated triglycerides-containing substrates, such as pomace oil, sunflower oil, olive oil and oil mill wastewater (OMW), combining the triglyceride hydrolysis by the lipase from Candida rugosa and the E. coli whole-cell containing Em_OhyA for the production of hydroxy fatty acids. When WCO, sunflower oil and OMW were used as substrate, the one-pot bioconversion led to an increase of oleic acid conversion compared to the standard reaction. This work highlights the efficiency of the DoE approach to screen and identify conditions for an enzymatic reaction for the production of industrially-relevant products.

17.
J Food Sci Technol ; 61(7): 1326-1333, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38910929

ABSTRACT

The aim of this study was to use the malt bagasse by-product for developing high-dietary fibers cereal bars. Three formulations were tested and contained 0% (control), 19% and 24% of malt bagasse. The bars with malt bagasse were rich in dietary fiber and protein, with 6.06 and 26.35 g/100 g, respectively for samples with 19% of bagasse, and 8.43 and 26.22 g/100 g, respectively, for bars with 24% of this by-product. The total phenol content (TPC) of the bars with 19 and 24% of bagasse, was 100.37 and 192.13 mg GAE/100 g of sample, and the EC50 was 21.58 and 14.78 mg/mL (DPPH assay), respectively. The incorporation of this by-product into the formulations enhanced their TPC and antioxidant capacity. These samples had a high sensory acceptance. The formulation with the lowest malt bagasse concentration showed high global acceptance (56%) and purchase intention. The sensory attributes that pleased the tasters the most, rated as "liked moderately," were the color and odor of both bars. Cereal bars showed an improved nutritional composition and antioxidant capacity after malt bagasse addition, and the formulation with 19% should be the best choice among the tested formulations, when considering the set of nutritional and sensory aspects. The malt bagasse was successfully valorized as an ingredient in a functional food, whilst contributing to the environment.

19.
Water Res ; 260: 121945, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38908315

ABSTRACT

N-nitrosodimethylamine (NDMA) is a carcinogenic disinfection byproduct that forms during chloramine disinfection of municipal wastewater effluents which are increasingly used to augment drinking water supplies due to growing water scarcity. Knowledge of wastewater NDMA precursors is limited and the known pool of NDMA precursors has not closed the mass balance between precursor loading, precursor NDMA yield, and formed NDMA. Benzalkonium chlorides (BACs) are the most prevalent quaternary ammonium surfactants and have antimicrobial properties. The extensive utilization of BACs in household, commercial and industrial products has resulted in their detection in wastewater at elevated concentrations. We report the formation of a potent NDMA precursor, benzyldimethylamine (BDMA) from the biodegradation of BACs during activated sludge treatment. BDMA formation and NDMA formation potential (FP) were functions of BAC and mixed liquor suspended solids concentration at circumneutral pH, and the microbial community source. Sustained exposure to microorganisms reduced NDMA FP through successive dealkylation of BDMA to less potent precursors. BAC alkyl chain length (C8 - C16) had little impact on NDMA FP and BDMA formation because chain cleavage occurred at the C-N bond. Wastewater effluents collected from three facilities contained BDMA from 15 to 106 ng/L, accounting for an estimated 4 to 38 % of the NDMA precursor pool.


Subject(s)
Benzalkonium Compounds , Dimethylnitrosamine , Wastewater , Wastewater/chemistry , Dimethylnitrosamine/chemistry , Benzalkonium Compounds/chemistry , Water Pollutants, Chemical/chemistry , Bacteria , Biodegradation, Environmental , Waste Disposal, Fluid
20.
Sci Rep ; 14(1): 14425, 2024 06 23.
Article in English | MEDLINE | ID: mdl-38910145

ABSTRACT

The objective of this study was to investigate the effect of microencapsulated bioactive compounds from lemongrass mixed dragon fruit peel pellet (MiEn-LEDRAGON) supplementation on fermentation characteristics, nutrient degradability, methane production, and the microbial diversity using in vitro gas production technique. The study was carried out using a completely randomized design (CRD) with five levels of MiEn-LEDRAGON supplementation at 0, 1, 2, 3, and 4% of the total dry matter (DM) substrate. Supplementation of MiEn-LEDRAGON in the diet at levels of 3 or 4% DM resulted in increased (p < 0.05) cumulative gas production at 96 hours (h) of incubation time, reaching up to 84.842 ml/ 0.5 g DM. Furthermore, supplementation with 3% MiEn-LEDRAGON resulted in higher in vitro nutrient degradability and ammonia-nitrogen concentration at 24 h of the incubation time when compared to the control group (without supplementation) by 5.401% and 11.268%, respectively (p < 0.05). Additionally, supplementation with MiEn-LEDRAGON in the diet led to an increase in the population of Fibrobacter succinogenes at 24 h and Butyrivibrio fibrisolvens at 12 h, while decreasing the population of Ruminococcus albus, Ruminococcus flavefaciens, and Methanobacteriales (p < 0.05). Moreover, supplementation of MiEn-LEDRAGON in the diet at levels of 2 to 4% DM resulted in a higher total volatile fatty acids (VFA) at 24 h, reaching up to 73.021 mmol/L (p < 0.05). Additionally, there was an increased proportion of propionic acid (C3) and butyric acid (C4) at 12 h (p < 0.05). Simultaneously, there was a decrease in the proportion of acetic acid (C2) and the ratio of acetic acid to propionic acid (C2:C3), along with a reduction of methane (CH4) production by 11.694% when comparing to the 0% and 3% MiEn-LEDRAGON supplementation (p < 0.05). In conclusion, this study suggests that supplementing MiEn-LEDRAGON at 3% of total DM substrate could be used as a feed additive rich in phytonutrients for ruminants.


Subject(s)
Dietary Supplements , Fermentation , Gastrointestinal Microbiome , Rumen , Rumen/microbiology , Rumen/metabolism , Animals , Gastrointestinal Microbiome/drug effects , Methane/metabolism , Animal Feed/analysis , Phytochemicals , Fatty Acids, Volatile/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...