Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.911
Filter
1.
MedComm (2020) ; 5(7): e633, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952575

ABSTRACT

cAMP responsive element binding protein 3 (CREB3), belonging to bZIP family, was reported to play multiple roles in various cancers, but its role in hepatocellular carcinoma (HCC) is still unclear. cAMP responsive element binding protein 3 like 3 (CREB3L3), another member of bZIP family, was thought to be transcription factor (TF) to regulate hepatic metabolism. Nevertheless, except for being TFs, other function of bZIP family were poorly understood. In this study, we found CREB3 inhibited growth and metastasis of HCC in vitro and in vivo. RNA sequencing indicated CREB3 regulated AKT signaling to influence HCC progression. Mass spectrometry analysis revealed CREB3 interacted with insulin receptor (INSR). Mechanistically, CREB3 suppressed AKT phosphorylation by inhibiting the interaction of INSR with insulin receptor substrate 1 (IRS1). In our study, CREB3 was firstly proved to affect activation of substrates by interacting with tyrosine kinase receptor. Besides, CREB3 could act as a TF to transactivate RNA-binding motif protein 38 (RBM38) expression, leading to suppressed AKT phosphorylation. Rescue experiments further confirmed the independence between the two functional manners. In conclusion, CREB3 acted as a tumor suppressor in HCC, which inhibited AKT phosphorylation through independently interfering interaction of INSR with IRS1, and transcriptionally activating RBM38.

2.
Environ Health ; 23(1): 61, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961410

ABSTRACT

BACKGROUND: Drinking water at U.S. Marine Corps Base (MCB) Camp Lejeune, North Carolina was contaminated with trichloroethylene and other industrial solvents from 1953 to 1985. METHODS: A cohort mortality study was conducted of Marines/Navy personnel who, between 1975 and 1985, began service and were stationed at Camp Lejeune (N = 159,128) or MCB Camp Pendleton, California (N = 168,406), and civilian workers employed at Camp Lejeune (N = 7,332) or Camp Pendleton (N = 6,677) between October 1972 and December 1985. Camp Pendleton's drinking water was not contaminated with industrial solvents. Mortality follow-up was between 1979 and 2018. Proportional hazards regression was used to calculate adjusted hazard ratios (aHRs) comparing mortality rates between Camp Lejeune and Camp Pendleton cohorts. The ratio of upper and lower 95% confidence interval (CI) limits, or CIR, was used to evaluate the precision of aHRs. The study focused on underlying causes of death with aHRs ≥ 1.20 and CIRs ≤ 3. RESULTS: Deaths among Camp Lejeune and Camp Pendleton Marines/Navy personnel totaled 19,250 and 21,134, respectively. Deaths among Camp Lejeune and Camp Pendleton civilian workers totaled 3,055 and 3,280, respectively. Compared to Camp Pendleton Marines/Navy personnel, Camp Lejeune had aHRs ≥ 1.20 with CIRs ≤ 3 for cancers of the kidney (aHR = 1.21, 95% CI: 0.95, 1.54), esophagus (aHR = 1.24, 95% CI: 1.00, 1.54) and female breast (aHR = 1.20, 95% CI: 0.73, 1.98). Causes of death with aHRs ≥ 1.20 and CIR > 3, included Parkinson disease, myelodysplastic syndrome and cancers of the testes, cervix and ovary. Compared to Camp Pendleton civilian workers, Camp Lejeune had aHRs ≥ 1.20 with CIRs ≤ 3 for chronic kidney disease (aHR = 1.88, 95% CI: 1.13, 3.11) and Parkinson disease (aHR = 1.21, 95% CI: 0.72, 2.04). Female breast cancer had an aHR of 1.19 (95% CI: 0.76, 1.88), and aHRs ≥ 1.20 with CIRs > 3 were observed for kidney and pharyngeal cancers, melanoma, Hodgkin lymphoma, and chronic myeloid leukemia. Quantitative bias analyses indicated that confounding due to smoking and alcohol consumption would not appreciably impact the findings. CONCLUSION: Marines/Navy personnel and civilian workers likely exposed to contaminated drinking water at Camp Lejeune had increased hazard ratios for several causes of death compared to Camp Pendleton.


Subject(s)
Drinking Water , Military Personnel , Occupational Exposure , Humans , Male , Military Personnel/statistics & numerical data , Adult , Female , Cohort Studies , North Carolina/epidemiology , Drinking Water/analysis , Occupational Exposure/adverse effects , Middle Aged , Young Adult , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/adverse effects , Trichloroethylene/analysis , Mortality
3.
Front Endocrinol (Lausanne) ; 15: 1395028, 2024.
Article in English | MEDLINE | ID: mdl-38989001

ABSTRACT

Introduction: Biphasic insulin secretion is an intrinsic characteristic of the pancreatic islet and has clinical relevance due to the loss of first-phase in patients with Type 2 diabetes. As it has long been shown that first-phase insulin secretion only occurs in response to rapid changes in glucose, we tested the hypothesis that islet response to an increase in glucose is a combination of metabolism plus an osmotic effect where hypertonicity is driving first-phase insulin secretion. Methods: Experiments were performed using perifusion analysis of rat, mouse, and human islets. Insulin secretion rate (ISR) and other parameters associated with its regulation were measured in response to combinations of D-glucose and membrane-impermeable carbohydrates (L-glucose or mannitol) designed to dissect the effect of hypertonicity from that of glucose metabolism. Results: Remarkably, the appearance of first-phase responses was wholly dependent on changes in tonicity: no first-phase in NAD(P)H, cytosolic calcium, cAMP secretion rate (cAMP SR), or ISR was observed when increased D-glucose concentration was counterbalanced by decreases in membrane-impermeable carbohydrates. When D-glucose was greater than 8 mM, rapid increases in L-glucose without any change in D-glucose resulted in first-phase responses in all measured parameters that were kinetically similar to D-glucose. First-phase ISR was completely abolished by H89 (a non-specific inhibitor of protein kinases) without affecting first-phase calcium response. Defining first-phase ISR as the difference between glucose-stimulated ISR with and without a change in hypertonicity, the peak of first-phase ISR occurred after second-phase ISR had reached steady state, consistent with the well-established glucose-dependency of mechanisms that potentiate glucose-stimulated ISR. Discussion: The data collected in this study suggests a new model of glucose-stimulated biphasic ISR where first-phase ISR derives from (and after) a transitory amplification of second-phase ISR and driven by hypertonicity-induced rise in H89-inhibitable kinases likely driven by first-phase responses in cAMP, calcium, or a combination of both.


Subject(s)
Glucose , Insulin Secretion , Insulin , Animals , Insulin Secretion/drug effects , Glucose/metabolism , Rats , Humans , Insulin/metabolism , Mice , Male , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Cyclic AMP/metabolism , Calcium/metabolism
4.
Magn Reson Med ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988054

ABSTRACT

PURPOSE: To standardize T 2 $$ {}_2 $$ -weighted images from clinical Turbo Spin Echo (TSE) scans by generating corresponding T 2 $$ {}_2 $$ maps with the goal of removing scanner- and/or protocol-specific heterogeneity. METHODS: The T 2 $$ {}_2 $$ map is estimated by minimizing an objective function containing a data fidelity term in a Virtual Conjugate Coils (VCC) framework, where the signal evolution model is expressed as a linear constraint. The objective function is minimized by Projected Gradient Descent (PGD). RESULTS: The algorithm achieves accuracy comparable to methods with customized sampling schemes for accelerated T 2 $$ {}_2 $$ mapping. The results are insensitive to the tunable parameters, and the relaxed background phase prior produces better T 2 $$ {}_2 $$ maps compared to the strict real-value enforcement. It is worth noting that the algorithm works well with challenging T 2 $$ {}_2 $$ w-TSE data using typical clinical parameters. The observed normalized root mean square error ranges from 6.8% to 12.3% over grey and white matter, a clinically common level of quantitative map error. CONCLUSION: The novel methodological development creates an efficient algorithm that allows for T 2 $$ {}_2 $$ map generated from TSE data with typical clinical parameters, such as high resolution, long echo train length, and low echo spacing. Reconstruction of T 2 $$ {}_2 $$ maps from TSE data with typical clinical parameters has not been previously reported.

5.
J Ethnopharmacol ; 334: 118534, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986753

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese herb pairs are the most basic and compressed examples of Chinese herbal combinations and can be used to effectively explain the fundamental concepts of traditional Chinese medicine prescriptions. These pairings have gained significant interest due to their subtle therapeutic benefits, minimal side effects, and efficacy in treating complicated chronic conditions. The Banxia-Xiakucao Chinese herb pair (BXHP) consists of Pinellia ternata (Thunb.) Breit. (Banxia) and Prunella vulgaris L. (Xiakucao). This formula was documented in The Medical Classic of the Yellow Emperor approximately 2000 years ago,and clinical research has demonstrated that BXHP effectively treats insomnia. AIM OF THE STUDY: This study aimed to evaluate the efficacy and therapeutic mechanism of the BXHP through a comprehensive strategy involving network pharmacology, molecular docking, transcriptomics, and molecular biology experimental validation. MATERIALS AND METHODS: The composition of BXHP was characterized using the UPLC-Q-TOF-MS. The active compounds were screened to find drug-likeness compounds by analyzing the ADME data. To predict the molecular mechanism of BXHP in sleep deprivation (SD) by network pharmacology and molecular docking. We established a rat model of SD and the in vivo efficacy of BXHP was verified through the pentobarbital sodium righting reflex test, behavioral assays, enzyme-linked immunosorbent assay, transmission electron microscopy, HE staining, and Nissl staining, and the underlying molecular mechanism of BXHP in SD was revealed through transcriptomic and bioinformatic analyses in conjunction with quantitative real-time PCR, Western blot, and immunofluorescence staining. RESULTS: In the present study, we showed for the first time that BXHP reduced sleep latency, prolongs sleep duration, and improves anxiety; lowered serum CORT, IL6, TNF-α and MDA levels; decreased hypothalamic Glu levels; and elevated hypothalamic GABA and 5-HT levels in SD rats. We found 16 active compounds that acted on 583 targets, 145 of which are related to SD. By modularly dissecting the PPI network, we discovered three critical targets, Akt1, CREB1, and PRKACA, all of which play important roles in the effects of BXHP on SD. Molecular docking resulted in the identification of 16 active compounds that strongly bind to key targets. The results of GO and KEGG enrichment analyses of network pharmacology and transcriptomics focused on both the regulation of circadian rhythm and the cAMP signaling pathway, which strongly demonstrated that BXHP affects SD via the cAMP-PKA-CREB-Circadian rhythm pathway. Molecular biology experiments verified this hypothesis. Following BXHP administration, PKA and CREB phosphorylation levels were elevated in SD rats, the cAMP-PKA-CREB signaling pathway was activated, the expression levels of the biological clock genes CLOCK, p-BMAL1/BMAL1, and PER3 were increased, and the rhythmicity of the biological clock was improved. CONCLUSIONS: The active compounds in BXHP can activate the cAMP-PKA-CREB-Circadian rhythm pathway, improve the rhythmicity of the biological clock, promote sleep and ameliorate anxiety, which suggests that BXHP improves SD through a multicomponent, multitarget, multipathway mechanism. This study is important for the development of herbal medicines and clinical therapies for improving sleep deprivation.

6.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000389

ABSTRACT

This study aimed to produce single-chain recombinant Anguillid eel follicle-stimulating hormone (rec-eel FSH) analogs with high activity in Cricetulus griseus ovary DG44 (CHO DG44) cells. We recently reported that an O-linked glycosylated carboxyl-terminal peptide (CTP) of the equine chorionic gonadotropin (eCG) ß-subunit contributes to high activity and time-dependent secretion in mammalian cells. We constructed a mutant (FSH-M), in which a linker including the eCG ß-subunit CTP region (amino acids 115-149) was inserted between the ß-subunit and α-subunit of wild-type single-chain eel FSH (FSH-wt). Plasmids containing eel FSH-wt and eel FSH-M were transfected into CHO DG44 cells, and single cells expressing each protein were isolated from 10 and 7 clones. Secretion increased gradually during the cultivation period and peaked at 4000-5000 ng/mL on day 9. The molecular weight of eel FSH-wt was 34-40 kDa, whereas that of eel FSH-M increased substantially, with two bands at 39-46 kDa. Treatment with PNGase F to remove the N glycosylation sites decreased the molecular weight remarkably to approximately 8 kDa. The EC50 value and maximal responsiveness of eel FSH-M were approximately 1.23- and 1.06-fold higher than those of eel FSH-wt, indicating that the mutant showed slightly higher biological activity. Phosphorylated extracellular-regulated kinase (pERK1/2) activation exhibited a sharp peak at 5 min, followed by a rapid decline. These findings indicate that the new rec-eel FSH molecule with the eCG ß-subunit CTP linker shows potent activity and could be produced in massive quantities using the stable CHO DG44 cell system.


Subject(s)
Cricetulus , Follicle Stimulating Hormone , Recombinant Proteins , Animals , CHO Cells , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/metabolism , Glycosylation , Eels/genetics , Chorionic Gonadotropin/pharmacology , Chorionic Gonadotropin/genetics
7.
Microb Cell ; 11: 235-241, 2024.
Article in English | MEDLINE | ID: mdl-39040525

ABSTRACT

We recently characterized the competitive inhibition of cyclic AMP (cAMP) on three periplasmic acid phosphatases, AphAHi, NadNHi, and eP4 (HelHi), in Haemophilus influenzae Rd KW20. This inhibitory effect is vital for orchestrating the nutritional growth and competence development in KW20. Initially discovered in Escherichia coli, the function of AphA remains however obscure. This study investigates the regulation of E. coli aphA expression under nutrient starvation conditions. Using transcriptional reporters with truncated aphA promoter sequences, we found that starvations of carbon and phosphate, but not amino acid, stimulated aphA expression through distinct promoter regions. Deletions of crp or cyaA abolished aphA expression, confirming their crucial roles. Conversely, CytR deletion increased aphA expression, suggesting CytR's role as a repressor of aphA expression. Additionally, we extended the study of three other second messengers, i.e., cyclic GMP, cyclic UMP, and cyclic CMP, each sharing structural similarities with cAMP. Notably, cGMP competitively inhibits AphAHi's acid phosphatase activity akin to cAMP. In contrast, both cUMP and cCMP stimulate AphAHi's phosphatase activity in a concentration dependent manner. Collectively, these data imply a complicated connection between nucleotide metabolism, AphA, cyclic purine and pyrimidine nucleotides in bacterial nutrient uptake and natural competence.

8.
Inflamm Regen ; 44(1): 34, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39026335

ABSTRACT

BACKGROUND: Interstitial lung diseases (ILDs) are a diverse group of conditions characterized by inflammation and fibrosis in the lung. In some patients with ILD, a progressive fibrotic phenotype develops, which is associated with an irreversible decline in lung function and a poor prognosis. MAIN BODY: The pathological mechanisms that underlie this process culminate in fibroblast activation, proliferation, and differentiation into myofibroblasts, which deposit extracellular matrix proteins and result in fibrosis. Upstream of fibroblast activation, epithelial cell injury and immune activation are known initiators of fibrosis progression, with multiple diverse cell types involved. Recent years have seen an increase in our understanding of the complex and interrelated processes that drive fibrosis progression in ILD, in part due to the advent of single-cell RNA sequencing technology and integrative multiomics analyses. Novel pathological mechanisms have been identified, which represent new targets for drugs currently in clinical development. These include phosphodiesterase 4 inhibitors and other molecules that act on intracellular cyclic adenosine monophosphate signaling, as well as inhibitors of the autotaxin-lysophosphatidic acid axis and  α v  integrins. Here, we review current knowledge and recent developments regarding the pathological mechanisms that underlie progressive fibrotic ILD, including potential therapeutic targets. CONCLUSION: Knowledge of the pathological mechanisms that drive progressive fibrosis in patients with ILD has expanded, with the role of alveolar endothelial cells, the immune system, and fibroblasts better elucidated. Drugs that target novel mechanisms hold promise for expanding the future therapeutic armamentarium for progressive fibrotic ILD.

9.
Animals (Basel) ; 14(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998004

ABSTRACT

In vitro embryo production is a widely applied technique that allows the expansion of genetics and accelerated breeding programs. However, in cattle, this technique still needs improvement in order to reach quality and pregnancy rates comparable to in vivo-derived embryos. One of the limitations of this technique is related to in vitro maturation, where a heterogeneous population of oocytes is harvested from follicles and cultured in vitro in the presence of gonadotropic hormones to induce maturation. As a result, oocytes with different degrees of competence are obtained, resulting in a decrease in the quality and quantity of embryos obtained. A novel system based on the use of cyclic adenosine monophosphate (cAMP) modulators was developed to enhance bovine oocyte competence, although controversial results were obtained depending on the in vitro embryo production (IVP) system used in each laboratory. Thus, in the present work, we employed a reported cAMP protocol named Simulated Physiological Oocyte Maturation (SPOM) under our IVP system and analysed its effect on cytoplasmic maturation by measuring levels of stress-related genes and evaluating the activity and distribution of mitochondria as a marker for cytoplasmic maturation Moreover, we studied the effect of the cAMP treatment on nuclear maturation, cleavage, and blastocyst formation. Finally, we assessed the embryo quality by determining the hatching rates, total cell number per blastocyst, cryopreservation tolerance, and embryo implantation. We found that maturing oocytes in the presence of cAMP modulators did not affect nuclear maturation, although they changed the dynamic pattern of mitochondrial activity along maturation. Additionally, we found that oocytes subjected to cAMP modulators significantly improved blastocyst formation (15.5% vs. 22.2%, p < 0.05). Blastocysts derived from cAMP-treated oocytes did not improve cryopreservation tolerance but showed an increased hatching rate, a higher total cell number per blastocyst and, when transferred to hormonally synchronised recipients, produced pregnancies. These results reflect that the use of cAMP modulators during IVM results in competent oocytes that, after fertilisation, can develop in more blastocysts with a better quality than standard IVM conditions.

10.
Mol Med ; 30(1): 99, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982366

ABSTRACT

BACKGROUND: Enhanced glycolysis is a crucial metabolic event that drives the development of liver fibrosis, but the molecular mechanisms have not been fully understood. Lactate is the endproduct of glycolysis, which has recently been identified as a bioactive metabolite binding to G-protein-coupled receptor 81 (GPR81). We then questioned whether GPR81 is implicated in the development of liver fibrosis. METHODS: The level of GPR81 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and in transforming growth factor beta 1 (TGF-ß1)-activated hepatic stellate cells (HSCs) LX-2. To investigate the significance of GPR81 in liver fibrosis, wild-type (WT) and GPR81 knockout (KO) mice were exposed to CCl4, and then the degree of liver fibrosis was determined. In addition, the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) was supplemented in CCl4-challenged mice and TGF-ß1-activated LX-2 cells to further investigate the pathological roles of GPR81 on HSCs activation. RESULTS: CCl4 exposure or TGF-ß1 stimulation significantly upregulated the expression of GPR81, while deletion of GPR81 alleviated CCl4-induced elevation of aminotransferase, production of pro-inflammatory cytokines, and deposition of collagen. Consistently, the production of TGF-ß1, the expression of alpha-smooth muscle actin (α-SMA) and collagen I (COL1A1), as well as the elevation of hydroxyproline were suppressed in GPR81 deficient mice. Supplementation with DHBA enhanced CCl4-induced liver fibrogenesis in WT mice but not in GPR81 KO mice. DHBA also promoted TGF-ß1-induced LX-2 activation. Mechanistically, GPR81 suppressed cAMP/CREB and then inhibited the expression of Smad7, a negative regulator of Smad3, which resulted in increased phosphorylation of Smad3 and enhanced activation of HSCs. CONCLUSION: GPR81 might be a detrimental factor that promotes the development of liver fibrosis by regulating CREB/Smad7 pathway.


Subject(s)
Carbon Tetrachloride , Cyclic AMP Response Element-Binding Protein , Hepatic Stellate Cells , Liver Cirrhosis , Mice, Knockout , Receptors, G-Protein-Coupled , Signal Transduction , Smad7 Protein , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/chemically induced , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Hepatic Stellate Cells/metabolism , Smad7 Protein/metabolism , Smad7 Protein/genetics , Transforming Growth Factor beta1/metabolism , Male , Humans , Cell Line , Disease Models, Animal , Mice, Inbred C57BL , Gene Deletion
11.
Syst Biol Reprod Med ; 70(1): 195-203, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38972054

ABSTRACT

The presence of cyclic adenosine monophosphate (cAMP) has been considered to be a fundamental factor in ensuring meiotic arrest prior to ovulation. cAMP is regarded as a key molecule in the regulation of oocyte maturation. However, it has been reported that increased levels of intracellular cAMP can result in abnormal cytokinesis, with some MI oocytes leading to symmetrically cleaved 2-cell MII oocytes. Consequently, we aimed to investigate the effects of elevated intracellular cAMP levels on abnormal cytokinesis and oocyte maturation during the meiosis of mouse oocytes. This study found that a high concentration of isobutylmethylxanthine (IBMX) also caused chromatin/chromosomes aggregation (AC) after the first meiosis. The rates of AC increased the greater the concentration of IBMX. In addition, AC formation was found to be reversible, showing that the re-formation of the spindle chromosome complex was possible after the IBMX was removed. In human oocytes, the chromosomes aggregate after the germinal vesicle breakdown and following the first and second polar body extrusions (the AC phase), while mouse oocytes do not have this AC phase. The results of our current study may indicate that the AC phase in human oocytes could be related to elevated levels of intracytoplasmic cAMP.


Subject(s)
1-Methyl-3-isobutylxanthine , Chromatin , Oocytes , Animals , Oocytes/metabolism , Female , Chromatin/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , Mice , Humans , Meiosis/drug effects , Cyclic AMP/metabolism , Phosphodiesterase Inhibitors/pharmacology
12.
Life Sci ; 353: 122901, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997063

ABSTRACT

The pathogenesis of ulcerative colitis (UC), a chronic intestine inflammatory disease primarily affecting adolescents, remains uncertain. Contemporary studies suggest that a confluence of elements, including genetic predispositions, environmental catalysts, dysregulated immune responses, and disturbances in the gut microbiome, are instrumental in the initiation and advancement of UC. Among them, inflammatory activation and mucosal barrier damage caused by abnormal immune regulation are essential links in the development of UC. The impairment of the mucosal barrier is intricately linked to the interplay of various cellular mechanisms, including oxidative stress, autophagy, and programmed cell death. An extensive corpus of research has elucidated that level of cyclic adenosine 3',5'-monophosphate (cAMP) undergo modifications in the midst of inflammation and participate in a diverse array of cellular operations that mitigate inflammation and the impairment of the mucosal barrier. Consequently, a plethora of pharmacological agents are currently under development, with some advancing through clinical trials, and are anticipated to garner approval as novel therapeutics. In summary, cAMP exerts a crucial influence on the onset and progression of UC, with fluctuations in its activity being intimately associated with the severity of the disease's manifestation. Significantly, this review unveils the paramount role of cAMP in the advancement of UC, offering a tactical approach for the clinical management of individuals afflicted with UC.

13.
Immun Inflamm Dis ; 12(7): e1149, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031498

ABSTRACT

BACKGROUND: Bile acids (BAs) concentration can affect metabolic improvement caused by bariatric surgery and BA concentrations increase in patients after sleeve gastrectomy (SG). Here, how BAs after SG affect metabolism in nonalcoholic fatty liver disease (NAFLD) was studied. METHODS: Mice were given high-fat diet (HFD) to induce NAFLD and received SG surgery. Hepatic and fecal BA concentrations in mice were detected by liquid chromatography-tandem mass spectrometry method. BA-related genes were detected by quantitative real-time polymerase chain reaction. G protein BA receptor 1 (GPBAR1) expression was identified using western blot analysis. NAFLD mice after SG received GPBAR1 inhibitor Triamterene. The weight of mice and mice liver was detected. Mouse liver tissue was observed by hematoxylin-eosin and Oil Red O staining. Triglyceride (TG), nonesterified fatty acid (NEFA), and cyclic adenosine monophosphate (cAMP) levels in mouse liver tissue were analyzed by metabolic assay and enzyme-linked immune sorbent assay. RESULTS: SG boosted increase in hepatic total/conjugated BAs and related genes and GPBAR1 expression, and attenuated increase in fecal total BAs/muricholic acid in HFD-induced mice and increased fecal taurine-BAs in HFD-induced mice. Triamterene (72 mg/kg) reversed the inhibitory role of SG in HFD-induced increase of body weight, lipid accumulation, inflammatory cell infiltration, and increase of hepatic weight and TG/NEFA content, and counteracted the positive role of SG in HFD-induced increase of hepatic cAMP concentration in mice. CONCLUSIONS: BAs improve metabolism via activating GPBAR1 to increase cAMP in NAFLD mice after SG.


Subject(s)
Bile Acids and Salts , Cyclic AMP , Gastrectomy , Non-alcoholic Fatty Liver Disease , Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/surgery , Non-alcoholic Fatty Liver Disease/pathology , Bile Acids and Salts/metabolism , Cyclic AMP/metabolism , Male , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Liver/metabolism , Liver/surgery , Liver/pathology , Disease Models, Animal
14.
Front Pharmacol ; 15: 1387359, 2024.
Article in English | MEDLINE | ID: mdl-39027341

ABSTRACT

Background: Attention deficit hyperactivity disorder (ADHD), a prevalent neurodevelopmental disorder in children, can be effectively alleviated by the herbal preparation Long Mu Qing Xin Mixture (LMQXM), but its mechanism has not been fully elucidated. Objective: To scrutinize the potential pharmacological mechanisms by which LMQXM improves behavior in spontaneously hypertensive rats (SHR/NCrl). Methods: The SHR/NCrl rats were randomly stratified into the model (SHR) group, the methylphenidate hydrochloride (MPH) group, and groups subjected to varying dosages of LMQXM into the medium dose (MD) group with a clinically effective dose, the low dose (LD) group with 0.5 times the clinically effective dose, and high dose (HD) group with 2 times the clinically effective dose. Furthermore, the WKY/NCrl rats constituted the control group. The evaluation of behavior involved the open field test and the Morris water maze test. HPLC, LC-MS, ELISA, immunohistochemistry, Western blot, and RT-qPCR were utilized to scrutinize the catecholamine neurotransmitter content and the expression of proteins and genes associated with the dopamine receptor D1 (DRD1)/cAMP/protein kinase A (PKA)-cAMP response element-binding (CREB) pathway in prefrontal cortex (PFC) and striatum. Results: MPH and LMQXM ameliorated hyperactivity and learning and memory deficits of SHR/NCrl rats. Among them, LMQXM-MD and MPH also upregulated dopamine (DA), norepinephrine (NE), adenylate cyclase (AC) and cAMP levels, and the expression of proteins and genes associated with the DRD1/cAMP/PKA-CREB pathway in PFC and striatum of SHR/NCrl rats. PFC and striatum DA levels were also upregulated in the LMQXM-LD group as well as the striatum DA levels in the LMQXM-HD group, but there were no statistically significant differences in their NE levels compared to the SHR group. LMQXM-LD and LMQXM-HD also upregulated some DRD1/cAMP/PKA-CREB pathway-related proteins and gene expression, but the effects were discernibly disparate in PFC and striatum. Upon comprehensive analysis, LMQXM-MD appeared to be the most effective dose. Conclusion: Our study tentatively suggests that LMQXM may rectify hyperactivity and learning and memory deficits of SHR/NCrl rats by elevating catecholamine neurotransmitters in the PFC and striatum. This effect may be attributed to the potential activation of the DRD1/cAMP/PKA-CREB signaling pathway, which appears to achieve an optimal response at moderate doses.

15.
Acta Physiol (Oxf) ; : e14205, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031444

ABSTRACT

AIM: To identify the physiological role of the acid-base sensing enzyme, soluble adenylyl cyclase (sAC), in red blood cells (RBC) of the model teleost fish, rainbow trout. METHODS: We used: (i) super-resolution microscopy to determine the subcellular location of sAC protein; (ii) live-cell imaging of RBC intracellular pH (pHi) with specific sAC inhibition (KH7 or LRE1) to determine its role in cellular acid-base regulation; (iii) spectrophotometric measurements of haemoglobin-oxygen (Hb-O2) binding in steady-state conditions; and (iv) during simulated arterial-venous transit, to determine the role of sAC in systemic O2 transport. RESULTS: Distinct pools of sAC protein were detected in the RBC cytoplasm, at the plasma membrane and within the nucleus. Inhibition of sAC decreased the setpoint for RBC pHi regulation by ~0.25 pH units compared to controls, and slowed the rates of RBC pHi recovery after an acid-base disturbance. RBC pHi recovery was entirely through the anion exchanger (AE) that was in part regulated by HCO3 --dependent sAC signaling. Inhibition of sAC decreased Hb-O2 affinity during a respiratory acidosis compared to controls and reduced the cooperativity of O2 binding. During in vitro simulations of arterial-venous transit, sAC inhibition decreased the amount of O2 that is unloaded by ~11%. CONCLUSION: sAC represents a novel acid-base sensor in the RBCs of rainbow trout, where it participates in the modulation of RBC pHi and blood O2 transport though the regulation of AE activity. If substantiated in other species, these findings may have broad implications for our understanding of cardiovascular physiology in vertebrates.

16.
Brain Commun ; 6(4): fcae225, 2024.
Article in English | MEDLINE | ID: mdl-38983619

ABSTRACT

Members of the phosphodiesterase 4 (PDE4) enzyme family regulate the availability of the secondary messenger cyclic adenosine monophosphate (cAMP) and, by doing so, control cellular processes in health and disease. In particular, PDE4D has been associated with Alzheimer's disease and the intellectual disability seen in fragile X syndrome. Furthermore, single point mutations in critical PDE4D regions cause acrodysostosis type 2(ACRDYS2, also referred to as inactivating PTH/PTHrP signalling disorder 5 or iPPSD5), where intellectual disability is seen in ∼90% of patients alongside the skeletal dysmorphologies that are characteristic of acrodysostosis type 1 (ACRDYS1/iPPSD4) and ACRDYS2. Two contrasting mechanisms have been proposed to explain how mutations in PDE4D cause iPPSD5. The first mechanism, the 'over-activation hypothesis', suggests that cAMP/PKA (cyclic adenosine monophosphate/protein kinase A) signalling is reduced by the overactivity of mutant PDE4D, whilst the second, the 'over-compensation hypothesis' suggests that mutations reduce PDE4D activity. That reduction in activity is proposed to cause an increase in cellular cAMP, triggering the overexpression of other PDE isoforms. The resulting over-compensation then reduces cellular cAMP and the levels of cAMP/PKA signalling. However, neither of these proposed mechanisms accounts for the fine control of PDE activation and localization, which are likely to play a role in the development of iPPSD5. This review will draw together our understanding of the role of PDE4D in iPPSD5 and present a novel perspective on possible mechanisms of disease.

17.
Hand Clin ; 40(3): 409-420, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972685

ABSTRACT

Electrical stimulation is emerging as a perioperative strategy to improve peripheral nerve regeneration and enhance functional recovery. Despite decades of research, new insights into the complex multifaceted mechanisms of electrical stimulation continue to emerge, providing greater understanding of the neurophysiology of nerve regeneration. In this study, we summarize what is known about how electrical stimulation modulates the molecular cascades and cellular responses innate to nerve injury and repair, and the consequential effects on axonal growth and plasticity. Further, we discuss how electrical stimulation is delivered in preclinical and clinical studies and identify knowledge gaps that may provide opportunities for optimization.


Subject(s)
Electric Stimulation Therapy , Nerve Regeneration , Peripheral Nerve Injuries , Humans , Nerve Regeneration/physiology , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/physiopathology , Animals , Neuronal Plasticity/physiology
18.
Exp Physiol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890799

ABSTRACT

Osteocrin (OSTN) is an endogenous protein sharing structural similarities with the natriuretic peptides [NPs; atrial (ANP), B-type (BNP) and C-type (CNP) NP], which are hormones known for their crucial role in maintaining pressure/volume homeostasis. Osteocrin competes with the NPs for binding to the receptor involved in their clearance (NPR-C). In the present study, having identified, for the first time, the major circulating form of OSTN in human and ovine plasma, we examined the integrated haemodynamic, endocrine and renal effects of vehicle-controlled incremental infusions of ovine proOSTN (83-133) and its metabolism in eight conscious normal sheep. Incremental i.v. doses of OSTN produced stepwise increases in circulating concentrations of the peptide, and its metabolic clearance rate was inversely proportional to the dose. Osteocrin increased plasma levels of ANP, BNP and CNP in a dose-dependent manner, together with concentrations of their intracellular second messenger, cGMP. Increases in plasma cGMP were associated with progressive reductions in arterial pressure and central venous pressure. Plasma cAMP, renin and aldosterone were unchanged. Despite significant increases in urinary cGMP levels, OSTN administration was not associated with natriuresis or diuresis in normal sheep. These results support OSTN as an endogenous ligand for NPR-C in regulating plasma concentrations of NPs and associated cGMP-mediated bioactivity. Collectively, our findings support a role for OSTN in maintaining cardiovascular homeostasis.

19.
Front Rehabil Sci ; 5: 1285742, 2024.
Article in English | MEDLINE | ID: mdl-38884006

ABSTRACT

Peer-based community interventions have shown promise in improving health management and fostering coping skills and psychosocial functioning among individuals with a disability. Active Rehabilitation camps are examples of peer-based community interventions that provide structured, time-limited peer mentorship in conjunction with sports and leisure activities. These camps hold potential benefits for individuals with acquired neurological injury. However, the specific impact of Active Rehabilitation camps on children or individuals with acquired brain injury remains unexplored. In this longitudinal, qualitative study, we explored children with an acquired brain injury and their caregivers' experiences with an Active Rehabilitation camp in Norway through observations and interviews with nine children and ten caregivers. Using an abductive thematic analysis, we identified an overarching theme: Active Rehabilitation peer mentorship camps enrich the lives of children with acquired brain injury and their caregivers. The theme contains three sub-themes: (1) Interacting with peers made me wiser, (2) Nudging from peer mentors made me feel better, and (3) A sense of companionship through meeting peers. Peer mentorship, sports and leisure activities, and the safe camp atmosphere benefitted children with acquired brain injury and their caregivers. The children gained knowledge, motivation, and self-worth, and their caregivers had greater impetus to prioritize their children's independence. Meeting peers and peer mentors led to friendships and sustained social connections. The Self-Determination Theory was of assistance in explaining the informants' experiences. Active Rehabilitation camps provide children with acquired brain injury and their caregivers with an opportunity to develop better coping skills, improve psychological functioning, and build more robust social networks.

20.
Curr Issues Mol Biol ; 46(6): 6085-6099, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38921034

ABSTRACT

We produced a recombinant eel luteinizing hormone (rec-eel LH) analog with high potency in Chinese hamster ovary DG44 (CHO DG44) cells. The tethered eel LH mutant (LH-M), which had a linker comprising the equine chorionic gonadotropin (eLH/CG) ß-subunit carboxyl-terminal peptide (CTP) region (amino acids 115 to 149), was inserted between the ß-subunit and α-subunit of wild-type tethered eel LH (LH-wt). Monoclonal cells transfected with the tethered eel LH-wt and eel LH-M plasmids were isolated from five to nine clones of CHO DG44 cells, respectively. The secreted quantities abruptly increased on day 3, with peak levels of 5000-7500 ng/mL on day 9. The molecular weight of tethered rec-eel LH-wt was 32-36 kDa, while that of tethered rec-eel LH-M increased to approximately 38-44 kDa, indicating the detection of two bands. Treatment with the peptide N-glycanase F decreased the molecular weight by approximately 8 kDa. The oligosaccharides at the eCG ß-subunit O-linked glycosylation sites were appropriately modified post-translation. The EC50 value and maximal responsiveness of eel LH-M increased by approximately 2.90- and 1.29-fold, respectively, indicating that the mutant exhibited more potent biological activity than eel LH-wt. Phosphorylated extracellular regulated kinase (pERK1/2) activation resulted in a sharp peak 5 min after agonist treatment, with a rapid decrease thereafter. These results indicate that the new tethered rec-eel LH analog had more potent activity in cAMP response than the tethered eel LH-wt in vitro. Taken together, this new eel LH analog can be produced in large quantities using a stable CHO DG44 cell system.

SELECTION OF CITATIONS
SEARCH DETAIL
...