Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Zhonghua Nan Ke Xue ; 25(2): 103-109, 2019 Feb.
Article in Chinese | MEDLINE | ID: mdl-32216194

ABSTRACT

OBJECTIVE: To analyze the biological network regulation and key proteins of gene expression microarray in human normal prostate epithelial cells after treated with low-dose cadmium, and provide some new theoretical evidence for the pathogenesis of cadmium-related prostate cancer. METHODS: We downloaded 19 copies of gene chip data from the Gene Expression Omnibus (GEO), involving 9 samples of prostate epithelial cells exposed to low-dose cadmium and 10 cases of normal control. Using the Gene-Cloud of Biotechnology Informs platform, GenClip2.0 and Sytoscape 3.5.1, we screened differentially expressed genes, explored their protein interaction networks and biological pathways and, from the perspective of transcriptome, analyzed the changes in the genetic network of normal human prostate epithelial cells and their possible molecular biological functions after low-dose cadmium treatment. RESULTS: Totally, 1 050 (1.92%) differentially expressed genes were found in the prostate epithelial cells treated with low-dose cadmium, involved in such biological functions as the cell physiological process, MAPK regulation, regulation of intracellular signal transduction, and immunological effect. The HSP90AB1, BUB3 and PRKAR1A genes were the core nodes of the protein network, which showed statistically significant differences in their expressions and a correlation with the malignant transformation of normal cells. CONCLUSIONS: Low-dose cadmium can cause genetic changes in normal human prostate epithelial cells and the differentially expressed genes are mainly involved in such biological functions as the cell physiological process, MAPK regulation, regulation of intracellular signal transduction, and immunological effect.


Subject(s)
Cadmium/adverse effects , Computational Biology , Epithelial Cells/metabolism , Prostate/cytology , Transcriptome , Cell Cycle Proteins/metabolism , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Epithelial Cells/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , HSP90 Heat-Shock Proteins/metabolism , Humans , Male , Poly-ADP-Ribose Binding Proteins/metabolism
2.
National Journal of Andrology ; (12): 103-109, 2019.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-816852

ABSTRACT

Objective@#To analyze the biological network regulation and key proteins of gene expression microarray in human normal prostate epithelial cells after treated with low-dose cadmium, and provide some new theoretical evidence for the pathogenesis of cadmium-related prostate cancer.@*METHODS@#We downloaded 19 copies of gene chip data from the Gene Expression Omnibus (GEO), involving 9 samples of prostate epithelial cells exposed to low-dose cadmium and 10 cases of normal control. Using the Gene-Cloud of Biotechnology Informs platform, GenClip2.0 and Sytoscape 3.5.1, we screened differentially expressed genes, explored their protein interaction networks and biological pathways and, from the perspective of transcriptome, analyzed the changes in the genetic network of normal human prostate epithelial cells and their possible molecular biological functions after low-dose cadmium treatment.@*RESULTS@#Totally, 1 050 (1.92%) differentially expressed genes were found in the prostate epithelial cells treated with low-dose cadmium, involved in such biological functions as the cell physiological process, MAPK regulation, regulation of intracellular signal transduction, and immunological effect. The HSP90AB1, BUB3 and PRKAR1A genes were the core nodes of the protein network, which showed statistically significant differences in their expressions and a correlation with the malignant transformation of normal cells.@*CONCLUSIONS@#Low-dose cadmium can cause genetic changes in normal human prostate epithelial cells and the differentially expressed genes are mainly involved in such biological functions as the cell physiological process, MAPK regulation, regulation of intracellular signal transduction, and immunological effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...