Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.806
Filter
1.
Biol Psychiatry ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950809

ABSTRACT

BACKGROUND: Exaggerated responses to sensory stimuli, a hallmark of Fragile X syndrome (FXS), contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of FXS. Recent studies in Fmr1 KO mice have demonstrated differences in activity of cortical interneurons and a delayed switch in the polarity of GABA signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide, could rescue synaptic circuit phenotypes in primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS: We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS: We demonstrate that layer (L) 2/3 pyramidal neurons in S1 of Fmr1 KO mice show a higher frequency of synchronous events at postnatal day (P) 6 compared to wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (P5-P14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of L2/3 neurons in S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS: This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the FDA-approved diuretic bumetanide.

2.
Neuroinformatics ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951389

ABSTRACT

CADENCE is an open Python 3-written neuroinformatics tool with Qt6 graphic user interface for supervised calcium events detection. In neuronal ensembles recording during calcium imaging experiments, the output of instruments such as Celena X, Zeiss LSM 5 Live confocal microscope and Miniscope is a movie showing flashing cells somata. There are few pipelines to convert video to relative fluorescence ΔF/F, from simplest ImageJ plugins to sophisticated tools like MiniAn (Dong et al. in Elife 11, https://doi.org/10.7554/eLife.70661 , 2022). Minian, an open-source miniscope analysis pipeline. Elife, 11.). While in some areas of study relative fluorescence ΔF/F may be the desired result in itself, researchers of neuronal ensembles are typically interested in a more detailed analysis of calcium events as indirect proxy of neuronal electrical activity. For such analyses, researchers need a tool to infer calcium events from the continuous ΔF/F curve in order to create a raster representation of calcium events for later use in analysis software, such as Elephant (Denker, M., Yegenoglu, A., & Grün, S. (2018). Collaborative HPC-enabled workflows on the HBP Collaboratory using the Elephant framework. Neuroinformatics, 19.). Here we present such an open tool with supervised calcium events detection.

3.
Elife ; 122024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990761

ABSTRACT

Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.


Subject(s)
Dendrites , Synapses , Visual Cortex , Animals , Dendrites/physiology , Synapses/physiology , Mice , Visual Cortex/physiology , Visual Cortex/growth & development , Patch-Clamp Techniques , Mice, Inbred C57BL
4.
Exp Physiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979869

ABSTRACT

Gut motility undergoes a switch from myogenic to neurogenic control in late embryonic development. Here, we report on the electrical events that underlie this transition in the enteric nervous system, using the GCaMP6f reporter in neural crest cell derivatives. We found that spontaneous calcium activity is tetrodotoxin (TTX) resistant at stage E11.5, but not at E18.5. Motility at E18.5 was characterized by periodic, alternating high- and low-frequency contractions of the circular smooth muscle; this frequency modulation was inhibited by TTX. Calcium imaging at the neurogenic-motility stages E18.5-P3 showed that CaV1.2-positive neurons exhibited spontaneous calcium activity, which was inhibited by nicardipine and 2-aminoethoxydiphenyl borate (2-APB). Our protocol locally prevented muscle tone relaxation, arguing for a direct effect of nicardipine on enteric neurons, rather than indirectly by its relaxing effect on muscle. We demonstrated that the ENS was mechanosensitive from early stages on (E14.5) and that this behaviour was TTX and 2-APB resistant. We extended our results on L-type channel-dependent spontaneous activity and TTX-resistant mechanosensitivity to the adult colon. Our results shed light on the critical transition from myogenic to neurogenic motility in the developing gut, as well as on the intriguing pathways mediating electro-mechanical sensitivity in the enteric nervous system. HIGHLIGHTS: What is the central question of this study? What are the first neural electric events underlying the transition from myogenic to neurogenic motility in the developing gut, what channels do they depend on, and does the enteric nervous system already exhibit mechanosensitivity? What is the main finding and its importance? ENS calcium activity is sensitive to tetrodotoxin at stage E18.5 but not E11.5. Spontaneous electric activity at fetal and adult stages is crucially dependent on L-type calcium channels and IP3R receptors, and the enteric nervous system exhibits a tetrodotoxin-resistant mechanosensitive response. Abstract figure legend Tetrodotoxin-resistant Ca2+ rise induced by mechanical stimulation in the E18.5 mouse duodenum.

5.
J Neurochem ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898681

ABSTRACT

Kelch-like family member 17 (KLHL17), an actin-associated adaptor protein, is linked to neurological disorders, including infantile spasms and autism spectrum disorders. The key morphological feature of Klhl17-deficient neurons is impaired dendritic spine enlargement, resulting in the amplitude of calcium events being increased. Our previous studies have indicated an involvement of F-actin and the spine apparatus in KLHL17-mediated dendritic spine enlargement. Here, we show that KLHL17 further employs different mechanisms to control the expression of two types of glutamate receptors, that is, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and kainate receptors (KARs), to regulate dendritic spine enlargement and calcium influx. We deployed proteomics to reveal that KLHL17 interacts with N-ethylmaleimide-sensitive fusion protein (NSF) in neurons, with this interaction of KLHL17 and NSF enhancing NSF protein levels. Consistent with the function of NSF in regulating the surface expression of AMPAR, Klhl17 deficiency limits the surface expression of AMPAR, but not its total protein levels. The NSF pathway also contributes to synaptic F-actin distribution and the dendritic spine enlargement mediated by KLHL17. KLHL17 is known to act as an adaptor mediating degradation of the KAR subunit GluK2 by the CUL3 ubiquitin ligase complex, and Klhl17 deficiency impairs activity-dependent degradation of GluK2. Herein, we further demonstrate that GluK2 is critical to the increased amplitude of calcium influx in Klhl17-deficient neurons. Moreover, GluK2 is also involved in KLHL17-regulated dendritic spine enlargement. Thus, our study reveals that KLHL17 controls AMPAR and KAR expression via at least two mechanisms, consequently regulating dendritic spine enlargement. The regulatory effects of KLHL17 on these two glutamate receptors likely contribute to neuronal features in patients suffering from certain neurological disorders.

6.
J Neurosci Methods ; 409: 110178, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825241

ABSTRACT

During the last decade brain organoids have emerged as an attractive model system, allowing stem cells to be differentiated into complex 3D models, recapitulating many aspects of human brain development. Whilst many studies have analysed anatomical and cytoarchitectural characteristics of organoids, their functional characterisation has been limited, and highly variable between studies. Standardised, consistent methods for recording functional activity are critical to providing a functional understanding of neuronal networks at the synaptic and network level that can yield useful information about functional network phenotypes in disease and healthy states. In this study we outline a detailed methodology for calcium imaging and Multi-Electrode Array (MEA) recordings in brain organoids. To illustrate the utility of these functional interrogation techniques in uncovering induced differences in neural network activity we applied various stimulating media protocols. We demonstrate overlapping information from the two modalities, with comparable numbers of active cells in the four treatment groups and an increase in synchronous behaviour in BrainPhys treated groups. Further development of analysis pipelines to reveal network level changes in brain organoids will enrich our understanding of network formation and perturbation in these structures, and aid in the future development of drugs that target neurological disorders at the network level.

7.
Neurosci Res ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885881

ABSTRACT

Monitoring neural activity in individual neurons is crucial for understanding neural circuits and brain functions. The emergence of optical imaging technologies has dramatically transformed the field of neuroscience, enabling detailed observation of large-scale neuronal populations with both cellular and subcellular resolution. This transformation will be further accelerated by the integration of these imaging technologies and advanced big data analysis. Genetically encoded fluorescent indicators to detect neural activity with high signal-to-noise ratios are pivotal in this advancement. In recent years, these indicators have undergone significant developments, greatly enhancing the understanding of neural dynamics and networks. This review highlights the recent progress in genetically encoded calcium and voltage indicators and discusses the future direction of imaging techniques with big data analysis that deepens our understanding of the complexities of the brain.

8.
Cell Rep ; 43(6): 114348, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865245

ABSTRACT

The cortex and cerebellum form multi-synaptic reciprocal connections. We investigate the functional connectivity between single spiking cerebellar neurons and the population activity of the mouse dorsal cortex using mesoscale imaging. Cortical representations of individual cerebellar neurons vary significantly across different brain states but are drawn from a common set of cortical networks. These cortical-cerebellar connectivity features are observed in mossy fibers and Purkinje cells as well as neurons in different cerebellar lobules, albeit with variations across cell types and regions. Complex spikes of Purkinje cells preferably associate with the sensorimotor cortex, whereas simple spikes display more diverse cortical connectivity patterns. The spontaneous functional connectivity patterns align with cerebellar neurons' functional responses to external stimuli in a modality-specific manner. The tuning properties of subsets of cerebellar neurons differ between anesthesia and awake states, mirrored by state-dependent changes in their long-range functional connectivity patterns with mesoscale cortical activity.


Subject(s)
Cerebellum , Animals , Mice , Cerebellum/physiology , Male , Purkinje Cells/physiology , Mice, Inbred C57BL , Neural Pathways/physiology , Neurons/physiology , Action Potentials/physiology , Female
9.
Biomedicines ; 12(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927553

ABSTRACT

Kilohertz high-frequency spinal cord stimulation (kHF-SCS) is a rapidly advancing neuromodulatory technique in the clinical management of chronic pain. However, the precise cellular mechanisms underlying kHF-SCS-induced paresthesia-free pain relief, as well as the neural responses within spinal pain circuits, remain largely unexplored. In this study, using a novel preparation, we investigated the impact of varying kilohertz frequency SCS on dorsal horn neuron activation. Employing calcium imaging on isolated spinal cord slices, we found that extracellular electric fields at kilohertz frequencies (1, 3, 5, 8, and 10 kHz) induce distinct patterns of activation in dorsal horn neurons. Notably, as the frequency of extracellular electric fields increased, there was a clear and significant monotonic escalation in neuronal activity. This phenomenon was observed not only in superficial dorsal horn neurons, but also in those located deeper within the dorsal horn. Our study demonstrates the unique patterns of dorsal horn neuron activation in response to varying kilohertz frequencies of extracellular electric fields, and we contribute to a deeper understanding of how kHF-SCS induces paresthesia-free pain relief. Furthermore, our study highlights the potential for kHF-SCS to modulate sensory information processing within spinal pain circuits. These insights pave the way for future research aimed at optimizing kHF-SCS parameters and refining its therapeutic applications in the clinical management of chronic pain.

10.
bioRxiv ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38854102

ABSTRACT

Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with electrophysiological and optical imaging tools during sleep-wake cycles. We found that the activity of major glutamatergic cell populations in the DG is organized into in-fraslow oscillations (0.01 - 0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep. Further experiments revealed that the infraslow oscillation in the DG is modulated by rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by 5-HT1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

11.
Quant Imaging Med Surg ; 14(6): 3803-3815, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846313

ABSTRACT

Background: Virtual non-calcium (VNCa) imaging based on dual-energy computed tomography (CT) plays an increasingly important role in diagnosing spinal diseases. However, the utility of VNCa technology in the measurement of vertebral bone mineral density (BMD) is limited, especially the VNCa CT value at multiple calcium suppression levels and the slope of VNCa curve. This retrospective cross-sectional study aimed to explore the correlation between vertebral BMD and new VNCa parameters from dual-layer spectral detector CT. Methods: The dual-layer spectral detector CT and quantitative CT (QCT) data of 4 hydroxyapatite (HAP) inserts and 667 vertebrae of 234 patients (132 male and 102 female) who visited a university teaching hospital between April and May 2023 were retrospectively analyzed. The BMD values of 3 vertebrae (T12, L1, and L2) and inserts were measured using QCT, defined as QCT-BMD. The VNCa CT values and the slope λ of the VNCa attenuation curve of vertebrae and inserts were recorded. The correlations between VNCa parameters (VNCa CT value, slope λ) and QCT-BMD were analyzed. Results: For the vertebrae, the correlation coefficient ranged from -0.904 to 0.712 (all P<0.05). As the calcium suppression index (CaSI) increased, the correlation degree exhibited a decrease first and then increased, with the best correlation (r=-0.904, P<0.001) observed at the index of 25%. In contrast, the correlation coefficient for the inserts remained relatively stable (r=-0.899 to -1, all P<0.05). For the vertebrae, the values of 3 slopes λ (λ1, λ2, and λ3) derived from the VNCa attenuation curve were 6.50±1.99, 3.75±1.15, and 2.04±0.62, respectively. Regarding the inserts, the λ1, λ2, and λ3 values were 11.56 [interquartile range (IQR): 2.40-22.62], 6.68 (IQR: 1.39-13.49), and 3.63 (IQR: 0.75-7.8), respectively. For the vertebrae, all 3 correlation coefficients between 3 slopes λ and QCT-BMD were 0.956 (all P<0.05). For the inserts, the 3 correlation coefficients were 0.996, 0.998, and 1 (all P<0.05), respectively. Conclusions: A promising correlation was detected between VNCa CT parameters and QCT-BMD in vertebrae, warranting further investigation to explore the possibility of VNCa imaging to assess BMD.

12.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230240, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853555

ABSTRACT

Synaptic plasticity is a key cellular model for learning, memory and chronic pain. Most previous studies were carried out in rats and mice, and less is known about synaptic plasticity in non-human primates. In the present study, we used integrative experimental approaches to study long-term potentiation (LTP) in the anterior cingulate cortex (ACC) of adult tree shrews. We found that glutamate is the major excitatory transmitter and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid (AMPA) receptors mediate postsynaptic responses. LTP in tree shrews was greater than that in adult mice and lasted for at least 5 h. N-methyl-d-aspartic acid (NMDA) receptors, Ca2+ influx and adenylyl cyclase 1 (AC1) contributed to tree shrew LTP. Our results suggest that LTP is a major form of synaptic plasticity in the ACC of primate-like animals. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Gyrus Cinguli , Long-Term Potentiation , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Tupaiidae , Animals , Long-Term Potentiation/physiology , Gyrus Cinguli/physiology , Tupaiidae/physiology , Mice , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, AMPA/metabolism , Adenylyl Cyclases/metabolism , Glutamic Acid/metabolism , Male
13.
J Neurophysiol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842506

ABSTRACT

Our understanding of human brain function can be greatly aided by studying analogous brain structures in other organisms. One brain structure with neurochemical and anatomical homology throughout vertebrate species is the locus coeruleus (LC), a small collection of norepinephrine (NE) containing neurons in the brainstem that project throughout the central nervous system. The LC is involved in nearly every aspect of brain function, including arousal and learning, which has been extensively examined in rats and non-human primates using single unit recordings. Recent work has expanded into putative LC single unit electrophysiological recordings in a non-model species, the zebra finch. Given the importance of correctly identifying analogous structures as research efforts expand to other vertebrates, we suggest adoption of consensus anatomical and electrophysiological guidelines for identifying LC neurons across species when evaluating brainstem single unit spiking or calcium imaging. Such consensus criteria will allow for confident cross-species understanding of the roles of the LC in brain function and behavior.

14.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38854047

ABSTRACT

High resolution retinal imaging paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of activity dependent calcium changes in retinal ganglion cells (RGCs) at single cell resolution in the living eye. The inner limiting membrane (ILM) is a barrier for viral vectors, restricting transduction to a ring of RGCs serving the fovea in both humans and non-human primates (NHP). We evaluate peeling the ILM prior to intravitreal injection as a strategy to expand calcium imaging beyond the fovea in the NHP eye in vivo. Five Macaca fascicularis eyes (age 3-10y; n=3 individuals; 2M, 1F) underwent vitrectomy and 5 to 6-disc diameter ILM peel centered on the fovea prior to intravitreal delivery of 7m8:SNCG:GCaMP8s. Calcium responses from RGCs were recorded using a fluorescence adaptive optics scanning laser ophthalmoscope. In all eyes GCaMP was expressed throughout the peeled area, representing a mean 8-fold enlargement in area of expression relative to a control eye. Calcium recordings were obtained up to 11 degrees from the foveal center. RGC responses were comparable to the fellow control eye and showed no significant decrease over the 6 months post ILM peel, suggesting that RGC function was not compromised by the surgical procedure. In addition, we demonstrate that activity can be recorded directly from the retinal nerve fiber layer. This approach will be valuable for a range of applications in visual neuroscience including pre-clinical evaluation of retinal function, detecting vision loss, and assessing the impact of therapeutic interventions.

15.
Glia ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856149

ABSTRACT

Most excitatory synapses in the mammalian brain are contacted or ensheathed by astrocyte processes, forming tripartite synapses. Astrocytes are thought to be critical regulators of the structural and functional dynamics of synapses. While the degree of synaptic coverage by astrocytes is known to vary across brain regions and animal species, the reason for and implications of this variability remains unknown. Further, how astrocyte coverage of synapses relates to in vivo functional properties of individual synapses has not been investigated. Here, we characterized astrocyte coverage of synapses of pyramidal neurons in the ferret visual cortex and, using correlative light and electron microscopy, examined their relationship to synaptic strength and sensory-evoked Ca2+ activity. Nearly, all synapses were contacted by astrocytes, and most were contacted along the axon-spine interface. Structurally, we found that the degree of synaptic astrocyte coverage directly scaled with synapse size and postsynaptic density complexity. Functionally, we found that the amount of astrocyte coverage scaled with how selectively a synapse responds to a particular visual stimulus and, at least for the largest synapses, scaled with the reliability of visual stimuli to evoke postsynaptic Ca2+ events. Our study shows astrocyte coverage is highly correlated with structural metrics of synaptic strength of excitatory synapses in the visual cortex and demonstrates a previously unknown relationship between astrocyte coverage and reliable sensory activation.

16.
Curr Biol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38876103

ABSTRACT

While the neural basis of age-related decline has been extensively studied,1,2,3 less is known about changes in neural function during the pre-senescent stages of adulthood. Adult neural plasticity is likely a key factor in social insect age polyethism, where individuals perform different tasks as they age and divide labor in an age-dependent manner.4,5,6,7,8,9 Primarily, workers transition from nursing to foraging tasks,5,10 become more aggressive, and more readily display alarm behavior11,12,13,14,15,16 as they get older. While it is unknown how these behavioral dynamics are neurally regulated, they could partially be generated by altered salience of behaviorally relevant stimuli.4,6,7 Here, we investigated how odor coding in the antennal lobe (AL) changes with age in the context of alarm pheromone communication in the clonal raider ant (Ooceraea biroi).17 Similar to other social insects,11,12,16 older ants responded more rapidly to alarm pheromones, the chemical signals for danger. Using whole-AL calcium imaging,18 we then mapped odor representations for five general odorants and two alarm pheromones in young and old ants. Alarm pheromones were represented sparsely at all ages. However, alarm pheromone responses within individual glomeruli changed with age, either increasing or decreasing. Only two glomeruli became sensitized to alarm pheromones with age, while at the same time becoming desensitized to general odorants. Our results suggest that the heightened response to alarm pheromones in older ants occurs via increased sensitivity in these two core glomeruli, illustrating the importance of sensory modulation in social insect division of labor and age-associated behavioral plasticity.

17.
J Neurosci Methods ; 409: 110202, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906335

ABSTRACT

BACKGROUND: Fluorescence imaging of calcium dynamics in neuronal populations is powerful because it offers a way of relating the activity of individual cells to the broader population of nearby cells. The method's growth across neuroscience has particularly been driven by the introduction of sophisticated mathematical techniques related to motion correction, image registration, cell detection, spike estimation, and population characterization. However, for many researchers, making good use of these techniques has been difficult because they have been devised by different workers and impose differing - and sometimes stringent - technical requirements on those who seek to use them. NEW METHOD: We have built a simple toolbox of analysis routines that encompass the complete workflow for analyzing calcium imaging data. The workflow begins with preprocessing of data, includes motion correction and longitudinal image registration, detects active cells using constrained non-negative matrix factorization, and offers multiple options for estimating spike times and characterizing population activity. The routines can be navigated through a simple graphical user interface. Although written in MATLAB, a standalone version for researchers who do not have access to MATLAB is included. RESULTS: We have used the toolbox on two very different preparations: spontaneously active brain slices and microendoscopic imaging from deep structures in awake behaving mice. In both cases, the toolbox offered a seamless flow from raw data all the way through to prepared graphs. CONCLUSION: The field of calcium imaging has benefited from the development of numerous innovative mathematical techniques. Here we offer a simple toolbox that allows ordinary researchers to fully exploit these techniques.

18.
J Neural Eng ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38925109

ABSTRACT

Current neuronal imaging methods use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers. Our developed "CIS-NAIST" device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit. With this device, we monitored neuronal calcium dynamics during seizures across the different layers of the hippocampus. The CIS-NAIST device revealed distinct calcium activity patterns across the CA1, molecular interlayer, and dentate gyrus. Our findings indicated an elevated calcium amplitude activity specifically in the dentate gyrus compared to other layers. Then, leveraging the multi-layer data obtained from the device, we employed machine learning techniques for seizure classification and prediction. Using Long-Short Term Memory and Hidden Markov Models, we successfully classified seizure calcium activity and predicted seizure behavior based on the multi-layer imaging data. Taken together, our device can enable a minimally invasive method of seizure monitoring that can help elucidate the mechanisms of temporal lobe epilepsy. .

19.
Front Neurosci ; 18: 1368507, 2024.
Article in English | MEDLINE | ID: mdl-38690372

ABSTRACT

Introduction: Peripheral sensory neurons serve as the initial responders to the external environment. How these neurons react to different sensory stimuli, such as mechanical or thermal forces applied to the skin, remains unclear. Methods: Using in vivo two-photon Ca2+ imaging in the lumbar 4 dorsal root ganglion (DRG) of awake Thy1.2-GCaMP6s mice, we assessed neuronal responses to various mechanical (punctate or dynamic) and thermal forces (heat or cold) sequentially applied to the paw plantar surface. Results: Our data indicate that in normal awake male mice, approximately 14 and 38% of DRG neurons respond to either single or multiple modalities of stimulation. Anesthesia substantially reduces the number of responsive neurons but does not alter the ratio of cells exhibiting single-modal responses versus multi-modal responses. Following peripheral nerve injury, DRG cells exhibit a more than 5.1-fold increase in spontaneous neuronal activity and a 1.5-fold increase in sensory stimulus-evoked activity. As neuropathic pain resulting from nerve injury progresses, the polymodal nature of sensory neurons intensifies. The polymodal population increases from 39.1 to 56.9%, while the modality-specific population decreases from 14.7 to 5.0% within a period of 5 days. Discussion: Our study underscores polymodality as a significant characteristic of primary sensory neurons, which becomes more pronounced during the development of neuropathic pain.

20.
Front Cell Dev Biol ; 12: 1386141, 2024.
Article in English | MEDLINE | ID: mdl-38711618

ABSTRACT

Background: Retinal prostheses aim to restore vision by electrically stimulating the remaining viable retinal cells in Retinal Degeneration (RD) cases. Research in this field necessitates a comprehensive analysis of retinal ganglion cells' (RGCs) responses to assess the obtained visual acuity and quality. Here we present a novel animal model which facilitates the optical recording of RGCs activity in an RD rat. This model can significantly enhance the functional evaluation of vision restoration treatments. Methods: The development of the novel rat model is based on crossbreeding a retinal degenerated Royal College of Surgeons (RCS) rat with a transgenic line expressing the genetic calcium indicator GCaMP6f in the RGCs. Characterization of the model was achieved using Optical Coherence Tomography (OCT) imaging, histology, and electroretinography (ERG) at the ages of 4, 8, and 12 weeks. Additionally, optical recordings of RGCs function in response to ex-vivo subretinal electrical stimulations were performed. Results: Histological investigations confirmed the high expression of GCaMP6f in the RGCs and minimal expression in the inner nuclear layer (INL). OCT imaging and histological studies revealed the expected gradual retinal degeneration, as evident by the decrease in retinal thickness with age and the formation of subretinal debris. This degeneration was further confirmed by ERG recordings, which demonstrated a significant decrease in the b-wave amplitude throughout the degeneration process, culminating in its absence at 12 weeks in the GCaMP6f-RCS rat. Importantly, the feasibility of investigating subretinal stimulation was demonstrated, revealing a consistent increase in activation threshold throughout degeneration. Furthermore, an increase in the diameter of the activated area with increasing currents was observed. The spatial spread of the activation area in the GCaMP6f-RCS rat was found to be smaller and exhibited faster activation dynamics compared with the GCaMP6f-LE strain. Conclusion: This novel animal model offers an opportunity to deepen our understanding of prosthetically induced retinal responses, potentially leading to significant advancements in prosthetic interventions in visual impairments.

SELECTION OF CITATIONS
SEARCH DETAIL
...