Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
Add more filters











Publication year range
1.
Molecules ; 29(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39274942

ABSTRACT

The purpose of this study was to synthesize and structurally characterize ketocalixarenes (i.e., calixarenes where the bridging methylene bridges are replaced by carbonyl groups) derived from the largest "major" calixarene, namely p-tert-butylcalix[8]arene 3a. Ketocalix[8]arenes were synthesized by the oxidation of protected p-tert-butylcalix[8]arene derivatives. Octamethoxy-p-tert-butylketocalix[8]arene 6b was prepared by the photochemical reaction of the calixarene 3b with NBS in a CHCl3/H2O mixture. The oxidation of the methylene groups of octaacetoxy-p-tert-butylcalix[8]arene 3c was conducted by a reaction with CrO3 in Ac2O/AcOH. The basic hydrolysis of the acetate groups of the oxidation product yielded octahydroxy-p-tert-butylketocalix[8]arene 6a. In the crystal, the molecule adopts a saddle-like conformation of crystallographic C2 and idealized S4 symmetry. Strikingly, the array of OH/OH intramolecular hydrogen bonds present in the parent 3a is completely disrupted in 6a.

2.
Environ Sci Ecotechnol ; 21: 100422, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38746775

ABSTRACT

Remediating soil contaminated with polycyclic aromatic hydrocarbons (PAHs) presents a significant environmental challenge due to their toxic and carcinogenic properties. Traditional PAHs remediation methods-chemical, thermal, and bioremediation-along with conventional soil-washing agents like surfactants and cyclodextrins face challenges of cost, ecological harm, and inefficiency. Here we show an effective and environmentally friendly calixarene derivative for PAHs removal through soil washing. Thiacalix[4]arene tetrasulfonate (TCAS) has a unique molecular structure of a sulfonate group and a sulfur atom, which enhances its solubility and facilitates selective binding with PAHs. It forms host-guest complexes with PAHs through π-π stacking, OH-π interactions, hydrogen bonding, van der Waals forces, and electrostatic interactions. These interactions enable partial encapsulation of PAH molecules, aiding their desorption from the soil matrix. Our results show that a 0.7% solution of TCAS can extract approximately 50% of PAHs from contaminated soil while preserving soil nutrients and minimizing adverse environmental effects. This research unveils the pioneering application of TCAS in removing PAHs from contaminated soil, marking a transformative advancement in resource-efficient and sustainable soil remediation strategies.

3.
Chemistry ; 30(28): e202400174, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38456376

ABSTRACT

We report the synthesis of a series of amphiphilic p-sulfonatocalix[4]arenes with varying alkyl chain lengths (CX4-Cn) and their application as efficient counterion activators for membrane transport of cell-penetrating peptides (CPPs). The enhanced membrane activity is confirmed with the carboxyfluorescein (CF) assay in vesicles and by the direct cytosolic delivery of CPPs into CHO-K1, HCT 116, and KTC-1 cells enabling excellent cellular uptake of the CPPs into two cancer cell lines. Intracellular delivery was confirmed by fluorescence microscopy after CPP entry into live cells mediated by CX4-Cn, which was also quantified after cell lysis by fluorescence spectroscopy. The results present the first systematic exploration of structure-activity relationships for calixarene-based counterion activators and show that CX4-Cn are exceptionally effective in cellular delivery of CPPs. The dodecyl derivative, CX4-C12, serves as best activator. A first mechanistic insight is provided by efficient CPP uptake at 4 °C and in the presence of the endocytosis inhibitor dynasore, which indicates a direct translocation of the CPP-counterion complexes into the cytosol and highlights the potential benefits of CX4-Cn for efficient and direct translocation of CPPs and CPP-conjugated cargo molecules into the cytosol of live cells.


Subject(s)
Calixarenes , Cell-Penetrating Peptides , Cricetulus , Calixarenes/chemistry , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Humans , CHO Cells , Animals , Structure-Activity Relationship , Cell Line, Tumor , Phenols/chemistry , Endocytosis , Surface-Active Agents/chemistry
4.
Angew Chem Int Ed Engl ; 63(20): e202403062, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38421901

ABSTRACT

The highly strained, phenylene-derived organic cages are typically regarded as very rigid entities, yet their deformation potential and supramolecular properties remain underexplored. Herein, we report a pliable conjugated phenylene nanocage by synergistically merging rigid and flexible building blocks. The anisotropic cage molecule contains branched phenylene chains capped by a calix[6]arene moiety, the delicate conformational changes of which endow the cage with a remarkably deformable cavity. When complexing with fullerene guests, the cage showcases excellent guest-adaptivity, with its cavity volume capable of swelling by as much as 85 %.

5.
Polymers (Basel) ; 16(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399838

ABSTRACT

Polyimides are a polymer class that has been extensively investigated as a membrane material for gas separation owing to its interesting permselective properties in a wide range of operation temperatures and pressures. In order to improve their properties, the addition of different filler types is currently studied. p-tert-Butylcalix[n]arene macrocycles (PTBCs) with different cavity sizes (PTBC4, PTBC6, PTBC8) were used as fillers in a commercial thermoplastic polyimide, with a concentration in the range 1-9 wt%, to develop nanocomposite membranes for gas separation. The selected macrocycles are attractive organic compounds owing to their porous structure and affinity with organic polymers. The nanocomposite membranes were prepared in the form of films in which the polymeric matrix is a continuous phase incorporating the dispersed additives. The preparation was carried out according to a pre-mixing approach in a mutual solvent, and the solution casting was followed by a controlled solvent evaporation. The films were characterized by investigating their miscibility, morphology, thermal and spectral properties. The gas transport through these films was examined as a function of the temperature and also time. The results evidenced that the incorporation of the chosen nanoporous fillers can be exploited to enhance molecular transport, offering additional pathways and promoting rearrangements of the polymeric chains.

6.
Eur J Med Chem ; 264: 115994, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38070431

ABSTRACT

Because they hold together molecules by means of non-covalent interactions - relatively weak and thus, potentially reversible - the anionic calixarenes have become an interesting tool for efficiently binding a large range of ligands - from gases to large organic molecules. Being highly water soluble and conveniently biocompatible, they showed growing interest for many interdisciplinary fields, particularly in biology and medicine. Thanks to their intrinsic conical shape, they provide suitable platforms, from vesicles to bilayers. This is a valuable characteristic, as so they mimic the biologically functional architectures. The anionic calixarenes propose efficient alternatives for overcoming the limitations linked to drug delivery and bioavailability, as well as drug resistance along with limiting the undesirable side effects. Moreover, the dynamic non-covalent binding with the drugs enables predictable and on demand drug release, controlled by the stimuli present in the targeted environment. This particular feature instigated the use of these versatile, stimuli-responsive compounds for sensing biomarkers of diverse pathologies. The present review describes the recent achievements of the anionic calixarenes in the field of life science, from drug carriers to biomedical engineering, with a particular outlook on their applications for the diagnosis and treatment of different pathologies.


Subject(s)
Calixarenes , Calixarenes/chemistry , Drug Delivery Systems , Drug Carriers , Biological Availability , Drug Liberation
7.
Angew Chem Int Ed Engl ; 63(4): e202315691, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38038694

ABSTRACT

Calixarenes are among the most useful and versatile macrocycles in supramolecular chemistry. The one thing that has not changed in the 80 years since their discovery, despite numerous derivatizations, is their fully organic, covalent scaffolds. Here, we report a new type of organic-inorganic hybrid "calixarenes" constructed by means of coordination-driven assembly. Replacing acetate ligands on the {SiW10 Cr2 (OAc)2 } clusters with 5-hydroxyisophthalates allows these 95° inorganic building blocks to be linked into bowl-shaped, hybrid "calix[n]arenes" (n=3, 4). With a large concave cavity, the metal-organic calix[4]arene can accommodate nanometer-sized polyoxoanions in an entropically driven process. The development of hybrid variants of calixarenes is expected to expand the scope of their physicochemical properties, guest/substrate binding, and applications on multiple fronts.

8.
Talanta ; 269: 125450, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38042141

ABSTRACT

Bisphenol A (BPA) is one of key raw materials used in the production of epoxy resins and plastics, which has toxicological effects on humans by disrupting cell functions through a variety of cell signaling pathways. Therefore, it is of great significance to develop a simple, rapid, and accurate BPA detection method in real water samples. In this study, a ratiometric fluorescence method based on yellow-emitting surface-functionalized polymer dots (PFBT@L Pdots) and blue-emitting carbon dots (Cdots) was described for the detection of BPA. Pdots as the detecting part were synthesized by using highly fluorescent hydrophobic Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT) polymer and (R)-5,11,17,23-Tetra-tert-butyl-25,27-bis[(diphenylphosphinoyl)methoxy]-26-(3-oxabutyloxy)-28-[(1-phenylethyl)- carbamoylmethoxy]calix [4]arene (L) functionalizing ligand, and Cdots as internal reference were prepared by hydrothermal treatment of citric acid and urea. In the presence of BPA, chemical binding of the phosphorus atoms of nearby PFBT@L Pdots with BPA hydroxyl functional groups led to the aggregation of the PFBT@L Pdots aggregation and quenching their yellow emission, but the blue emission of Cdots, on the other hand, remained stable. The proposed PFBT@L Pdots probe was successfully applied for the detection of BPA in real water samples, and the results were in good agreement with those obtained by HPLC-FLD. To the best of our knowledge, this is the first report that the calixarene has been utilized to modify Pdots.

9.
Article in English | MEDLINE | ID: mdl-37927061

ABSTRACT

The discovery of lipid-hybrid nanosystems has offered potential solutions to various drug delivery and theranostic challenges. However, in many instances, the commonly used lipids and other components in these systems often pose challenges related to their solubility, physicochemical properties, immune compatibility, and limited synthetic tunability. In this work, we introduce a synthetically tunable supramolecular scaffold with amphiphilic characteristics based on the calix[4]arene macrocyclic system. We designed and synthesized two novel calix[4]arene-polyethylene glycol (PEG) conjugates, termed Cal-P1 and Cal-P2, and these were characterized utilizing a wide range of spectroscopic and analytical methods. The rational design of Cal-P1 and Cal-P2 demonstrates their utility in forming stable blended nanospheres with sustained drug release characteristics. The synergistic blending of PLGA and the calixarene scaffold (Cal-P1 and Cal-P2) in constructing long-lasting and controlled-release nanoparticles (NPs), which are optimized for encapsulating Nile Red dye, and their successful internalization and retention in HeLa cancer cells are demonstrated through in vitro assays. The potential of these NPs as sustained therapeutic carriers is investigated in vivo, showing improved retention compared to free dye with negligible toxicity. The successful design and construction of Cal-P1 and Cal-P2 nanosystems represent a new paradigm for addressing drug loading challenges, opening up opportunities for the development of highly efficient, synthetically tunable alternative adjuvants for drug encapsulation and delivery.

10.
Chem Asian J ; 18(22): e202300739, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37800724

ABSTRACT

A calix[4]arene-based gelator 1, with lower-rim mono triazolylpyridine group, capable of spontaneous self-assembly into microspheres in different ethanol/H2 O mixtures, is synthesized. The concentration-dependent 1 H NMR spectra and X-ray single-crystal structure of 1 provided evidence for self-assembly of gelator 1 via cooperative interactions of intermolecular noncovalent forces. Furthermore, metallogels by self-assembly of 1 was found to exhibit remarkable selectivity toward Hg2+ ions. 1 H NMR spectra support that Hg2+ ion was bound to the nitrogen atoms of two coordination sites of 1, which composed of triazole and pyridine. Moreover, the results of field emission scanning electron microscopy and rheology experiments indicated that Hg2+ ions not only enhanced the gelling ability of gelator 1 in ethanol but also led to morphological change of its self-assembly through metal-ligand interactions. Finally, the in situ gelation, triggered by mixing a gelator solution of 1 in ethanol with water samples such as deionized (DI), tap, and lake water, leads to the effective removal of Hg(II) from a water sample which reduced from 400 to 1.6 ppm.

11.
Molecules ; 28(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37836797

ABSTRACT

Since the discovery of polyphenolic resins 150 years ago, the study of polymeric compounds named calix[n]arene has continued to progress, and those skilled in the art perfectly know now how to modulate this phenolic ring. Consequently, calix[n]arenes are now used in a large range of applications and notably in therapeutic fields. In particular, the calix[4]arene exhibits multiple possibilities for regioselective polyfunctionalization on both of its rims and offers researchers the possibility of precisely tuning the geometry of their structures. Thus, in the crucial research of new antibacterial active ingredients, the design of calixarenes finds its place perfectly. This review provides an overview of the work carried out in this aim towards the development of intrinsically active prodrogues or metallic calixarene complexes. Out of all the work of the community, there are some excellent activities emerging that could potentially place these original structures in a very good position for the development of new active ingredients.


Subject(s)
Anti-Bacterial Agents , Calixarenes , Anti-Bacterial Agents/pharmacology , Calixarenes/pharmacology , Calixarenes/chemistry , Drug Resistance, Bacterial
12.
Angew Chem Int Ed Engl ; 62(45): e202312407, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37699200

ABSTRACT

Molecular differentiation by supramolecular sensors is typically achieved through sensor arrays, relying on the pattern recognition responses of large panels of isolated sensing elements. Here we report a new one-pot systems chemistry approach to differential sensing in biological solutions. We constructed an adaptive network of three cross-assembling sensor elements with diverse analyte-binding and photophysical properties. This robust sensing approach exploits complex interconnected sensor-sensor and sensor-analyte equilibria, producing emergent supramolecular and photophysical responses unique to each analyte. We characterize the basic mechanisms by which an adaptive network responds to analytes. The inherently data-rich responses of an adaptive network discriminate among very closely related proteins and protein mixtures without relying on designed protein recognition elements. We show that a single adaptive sensing solution provides better analyte discrimination using fewer response observations than a sensor array built from the same components. We also show the network's ability to adapt and respond to changing biological solutions over time.

13.
Bioorg Chem ; 139: 106742, 2023 10.
Article in English | MEDLINE | ID: mdl-37480816

ABSTRACT

Tumor selectivity is yet a challenge in chemotherapy-based cancer treatment. A series of calixarenes derivatized at the lower rim with 3-phenyl-1H-pyrazole units with variable upper-rim substituent and conformations of macrocyclic core, alkyl chain length between heterocycle and core, as well as phenolic monomer (5-(4-tert-butylphenyloxy)methoxy-3-phenyl-1H-pyrazole) have been synthesized and characterized in a range of therapeutically relevant cellular models (M-HeLa, MCF7, A-549, PC3, Chang liver, and Wi38) from different target organs/systems. Specific cytotoxicity for M-HeLa cells has been observed in tert-butylcalix[4]arene pyrazoles in 1,3-alternate (compound 7b) and partial cone (compound 7c) conformations with low mutagenicity and haemotoxicity and in vivo toxicity in mice. Compounds 7b,c have induced mitochondrial pathway of apoptosis of M-HeLa cells through caspase-9 activation preceded by the cell cycle arrest at G0/G1 phase. A concomitant overexpression of DNA damage markers in pyrazole-treated M-HeLa cells suggests that calixarene pyrazoles target DNA, which was supported by the presence of interactions between calixarenes and ctDNA at the air-water interface.


Subject(s)
Calixarenes , Neoplasms , Porifera , Humans , Animals , Mice , Calixarenes/pharmacology , HeLa Cells , Pyrazoles/pharmacology , Neoplasms/drug therapy
14.
Med Chem ; 19(10): 939-945, 2023.
Article in English | MEDLINE | ID: mdl-37403386

ABSTRACT

Calixarenes have always captured the attention of several researchers. They have the ability to entrap multiple molecules and form inclusion complexes with drugs due to their unique structure. Due to this property, they are being widely used in the development of several classes of drugs, most notably anticancer drugs. This review attempted to summarize the potential applications of calixarenes and its derivatives in the development of anticancer drugs, with a focus on the delivery of drug classes such as DNA intercalators, taxanes, DNA alkylators, and topoisomerase inhibitors. Calixarene-based macromolecular chemistry could therefore have a high potential for overcoming the toxicity of cancer chemotherapy and achieving targeted drug delivery.

15.
Front Chem ; 11: 1163178, 2023.
Article in English | MEDLINE | ID: mdl-37153526

ABSTRACT

A self-assembled tetrahedral cage results from two C 3-symmetry building blocks, namely, homooxacalix[3]arene tricarboxylate and uranyl cation, as demonstrated by X-ray crystallography. In the cage, four metals coordinate at the lower rim with the phenolic and ether oxygen atoms to shape the macrocycle with appropriate dihedral angles for tetrahedron formation, whereas four additional uranyl cations further coordinate at the upper-rim carboxylates to finalize the assembly. Counterions dictate the filling and porosity of the aggregates, whereas potassium induces highly porous structures, and tetrabutylammonium yields compact, densely packed frameworks. The tetrahedron metallo-cage complements our previous report (Pasquale et al., Nat. Commun., 2012, 3, 785) on uranyl-organic frameworks (UOFs) from calix[4]arene and calix[5]arene carboxylates (octahedral/cubic and icosahedral/dodecahedral giant cages, respectively) and completes the assembly of all five Platonic solids from just two chemical components.

16.
Bioorg Chem ; 138: 106613, 2023 09.
Article in English | MEDLINE | ID: mdl-37224739

ABSTRACT

We report the synthesis and biological characterization of a novel class of multivalent glycoconjugates as hit compounds for the design of new antiadhesive therapies against urogenital tract infections (UTIs) caused by uropathogenic E. coli strains (UPEC). The first step of UTIs is the molecular recognition of high mannose N-glycan expressed on the surface of urothelial cells by the bacterial lectin FimH, allowing the pathogen adhesion required for mammalian cell invasion. The inhibition of FimH-mediated interactions is thus a validated strategy for the treatment of UTIs. To this purpose, we designed and synthesized d-mannose multivalent dendrons supported on a calixarene core introducing a significant structural change from a previously described family of dendrimers bearing the same dendrons units on a flexible pentaerythritol scaffold core. The new molecular architecture increased the inhibitory potency against FimH-mediated adhesion processes by about 16 times, as assessed by yeast agglutination assay. Moreover, the direct molecular interaction of the new compounds with FimH protein was assessed by on-cell NMR experiments acquired in the presence of UPEC cells.


Subject(s)
Dendrimers , Escherichia coli , Animals , Ligands , Escherichia coli/metabolism , Dendrimers/pharmacology , Fimbriae Proteins/metabolism , Adhesins, Escherichia coli/metabolism , Mannose/pharmacology , Mannose/chemistry , Mammals/metabolism
17.
J Mol Model ; 29(4): 97, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36920568

ABSTRACT

CONTEXT: The molecular design of spatially preorganized molecules is one of the critical issues in organic chemistry. Molecular recognition and multipoint binding define them. They organize nanoscale assemblies and devices and stably form host-guest inclusion complexes. Not only is this kind of research important in theory but it also has applications. They are used to create the basic elements of sensory devices: elements of cellular electronics, functional nanofilms and coatings, molecular switches, etc. Thiacalix[4]arenes are a useful molecular platform for constructing a wide range of preorganized receptor structures. This research aims to examine the structure and spectra of distally substituted para-tert-butylthiacalix[4]arene aliphatic (C1) and aromatic (C2) esters. The comparison of the spectra of C1, C2, and C3 makes it possible to reveal the structures and H-bonds of these compounds. The structures and H-bonds of these compounds can be seen by analyzing the spectra of C1, C2, and C3. Calculations were made for the spectra of various C1 and C2 molecule conformations. The most stable conformation for C1 and C2 molecules is a distorted cone 2 (DC2) with the same ester group orientation. The pinched cone (PC) conformation is the most unstable. Thiacalixarene molecules' cavities shrink from 3.61 to 3.57 Å when aromatic ester groups take the place of aliphatic ester groups. Two OH groups are linked to an oxygen atom in the DC1 and DC2 conformations of the C1 and C2 molecules. H-bonds in C1 and C2 molecules affect the supramolecular characteristics of these molecules. A drop in ionization energy and increases in electron affinity, chemical potential, softness, electrophilicity index, and dipole moment occur when aliphatic esters are replaced with aromatic ones. METHODS: Disubstituted aliphatic and aromatic esters' IR, Raman, and NMR spectra have been investigated. The DFT/B3LYP/6-311G(d,p) method and the GAUSSIAN 09W software were used to determine the vibrational spectra of molecules and optimize their geometry. A gauge-independent (GIAO) approach was used to determine chemical shifts in the NMR spectra with respect to tetramethylsilane.

18.
Angew Chem Int Ed Engl ; 62(15): e202301460, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36785520

ABSTRACT

Chiral pyrrolic macrocycles continue to attract interest. However, their molecular design remains challenging. Here, we report a calixpyrrole-based chiral macrocyclic system, calix[1]furan[1]pyrrole[1]thiophene (1), synthesized from an oligoketone. Macrocycle 1 adopts a partial cone conformation in the solid state, and undergoes racemization via ring inversion. Molecular dynamics simulations revealed that inversion of the thiophene is the rate determining step. Pyrrole N-methylation suppressed racemization and permitted chiral resolution. Enantioselective N-methylation also occurred in the presence of a chiral ammonium salt, although the stereoselectivity is modest. A unique feature of 1 is that it acts as a useful synthetic precursor to yield several calix[n]furan[n]pyrrole[n]thiophene products (n=2-4), including a calix[12]pyrrole analogue that to our knowledge constitutes the largest calix[n]pyrrole-like species to be structurally characterized.

19.
Bioorg Med Chem ; 81: 117211, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36809721

ABSTRACT

Protein-protein interactions (PPIs) are essential in normal biological processes, but they can become disrupted or imbalanced in cancer. Various technological advancements have led to an increase in the number of PPI inhibitors, which target hubs in cancer cell's protein networks. However, it remains difficult to develop PPI inhibitors with desired potency and specificity. Supramolecular chemistry has only lately become recognized as a promising method to modify protein activities. In this review, we highlight recent advances in the use of supramolecular modification approaches in cancer therapy. We make special note of efforts to apply supramolecular modifications, such as molecular tweezers, to targeting the nuclear export signal (NES), which can be used to attenuate signaling processes in carcinogenesis. Finally, we discuss the strengths and weaknesses of using supramolecular approaches to targeting PPIs.


Subject(s)
Neoplasms , Proteins , Humans , Proteins/chemistry , Neoplasms/drug therapy , Carcinogenesis
20.
Chemistry ; 29(12): e202203213, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36382737

ABSTRACT

The calix[4]arene scaffold, blocked in the cone conformation through alkylation with long alkyl chains, and decorated at the upper rim with four guanidine or arginine units, effectively catalyzes the cleavage of the phosphodiester bond of DNA and RNA model compounds in water. An exhaustive kinetic investigation unequivocally points to the existence of spontaneous aggregation phenomena, driven by hydrophobic effect, occurring at different critical concentrations that depend on the identity of the compound. A pronounced superiority of the assembled structures compared with the monomers in solution was observed. Moreover, the catalytically active units, clustered on the macrocyclic tetrafunctional scaffold, were proved to efficiently cooperate in the catalytic mechanism and result in improved reaction rates compared to those of the monofunctional model compounds. The kinetic analysis is also integrated and corroborated with further experiments based on fluorescence spectroscopy and light scattering. The advantage of the supramolecular assemblies based on tetrafunctional calixarenes leads to believe that the active units can cooperate not only intramolecularly but also intermolecularly. The molecules in the aggregates can probably mold, flex and rearrange but, at the same time, keep an ordered structure that favors phosphodiester bond cleavage. This dynamic preorganization can allow the catalytic units to reach a better fitting with the substrates and perform a superior catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL