Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Genes (Basel) ; 12(4)2021 04 12.
Article in English | MEDLINE | ID: mdl-33921270

ABSTRACT

Some of the major impacts of climate change are expected in regions where drought stress is already an issue. Grain legumes are generally drought susceptible. However, tepary bean and its wild relatives within Phaseolus acutifolius or P. parvifolius are from arid areas between Mexico and the United States. Therefore, we hypothesize that these bean accessions have diversity signals indicative of adaptation to drought at key candidate genes such as: Asr2, Dreb2B, and ERECTA. By sequencing alleles of these genes and comparing to estimates of drought tolerance indices from climate data for the collection site of geo-referenced, tepary bean accessions, we determined the genotype x environmental association (GEA) of each gene. Diversity analysis found that cultivated and wild P. acutifolius were intermingled with var. tenuifolius and P. parvifolius, signifying that allele diversity was ample in the wild and cultivated clade over a broad sense (sensu lato) evaluation. Genes Dreb2B and ERECTA harbored signatures of directional selection, represented by six SNPs correlated with the environmental drought indices. This suggests that wild tepary bean is a reservoir of novel alleles at genes for drought tolerance, as expected for a species that originated in arid environments. Our study corroborated that candidate gene approach was effective for marker validation across a broad genetic base of wild tepary accessions.


Subject(s)
Phaseolus/growth & development , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Acclimatization , Crops, Agricultural/classification , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Droughts , Gene Expression Regulation, Plant , Gene-Environment Interaction , Mexico , Phaseolus/classification , Phaseolus/genetics , Stress, Physiological , United States
2.
Genes (Basel) ; 9(10)2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30257524

ABSTRACT

CFH and HTRA1 genes are traditional markers of increased risk of age-related macular degeneration (AMD) across populations. Recent findings suggest that additional genes-for instance, in the dystrophin-associated protein complex-might be promising markers for AMD. Here, we performed a case-control study to assess the effect of SGCD single nucleotide polymorphisms (SNPs), a member of this protein family, on AMD diagnosis and phenotype. We performed a case-control study of an under-studied population from Hispanics in Mexico City, with 134 cases with 134 unpaired controls. Cases were 60 years or older (Clinical Age-Related Maculopathy Staging (CARMS) grade 4⁻5, as assessed by experienced ophthalmologists following the American Association of Ophthalmology (AAO) guidelines), without other retinal disease or history of vitreous-retinal surgery. Controls were outpatients aged 60 years or older, with no drusen or retinal pigment epithelium (RPE) changes on a fundus exam and a negative family history of AMD. We examined SNPs in the SGCD gene (rs931798, rs140617, rs140616, and rs970476) by sequencing and real-time PCR. Genotyping quality checks and univariate analyses were performed with PLINK v1.90b3.42. Furthermore, logistic regression models were done in SAS v.9.4 and haplotype configurations in R v.3.3.1. After adjusting for clinical covariates, the G/A genotype of the SGCD gene (rs931798) significantly increases the odds of being diagnosed with AMD in 81% of cases (1.81; 95% CI 1.06⁻3.14; p = 0.031), especially the geographic atrophy phenotype (1.82; 95% CI 1.03⁻3.21; p = 0.038) compared to the G/G homozygous genotype. Moreover, the GATT haplotype in this gene (rs931798, rs140617, rs140616, and rs970476) is associated with lower odds of AMD (adjusted odds ratio (OR) 0.13; 95% CI 0.02⁻0.91; p = 0.041). SGCD is a promising gene for AMD research. Further corroboration in other populations is warranted, especially among other Hispanic ethnicities.

SELECTION OF CITATIONS
SEARCH DETAIL