Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
N Z Vet J ; 72(4): 191-200, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38650102

ABSTRACT

AIMS: To isolate canine respiratory coronavirus (CRCoV) and canine pneumovirus (CnPnV) in cell culture and to compare partial genomic sequences of CRCoV and CnPnV from New Zealand with those from other countries. METHODS: Oropharyngeal swab samples from dogs affected by canine infectious respiratory disease syndrome that were positive for CnPnV (n = 15) or CRCoV (n = 1) by virus-specific reverse transcriptase quantitative PCR (RT-qPCR) in a previous study comprised the starting material. Virus isolation was performed in HRT-18 cells for CRCoV and RAW 264.7 and Vero cells for CnPnV. The entire sequence of CnPnV G protein (1,266 nucleotides) and most (8,063/9,707 nucleotides) of the 3' region of CRCoV that codes for 10 structural and accessory proteins were amplified and sequenced. The sequences were analysed and compared with other sequences available in GenBank using standard molecular tools including phylogenetic analysis. RESULTS: Virus isolation was unsuccessful for both CRCoV and CnPnV. Pneumovirus G protein was amplified from 3/15 (20%) samples that were positive for CnPnV RNA by RT-qPCR. Two of these (NZ-048 and NZ-049) were 100% identical to each other, and 90.9% identical to the third one (NZ-007). Based on phylogenetic analysis of the G protein gene, CnPnV NZ-048 and NZ-049 clustered with sequences from the USA, Thailand and Italy in group A, and CnPnV NZ-007 clustered with sequences from the USA in group B. The characteristics of the predicted genes (length, position) and their putative protein products (size, predicted structure, presence of N- and O-glycosylation sites) of the New Zealand CRCoV sequence were consistent with those reported previously, except for the region located between open reading frame (ORF)3 (coding for S protein) and ORF6 (coding for E protein). The New Zealand virus was predicted to encode 5.9 kDa, 27 kDa and 12.7 kDa proteins, which differed from the putative coding capacity of this region reported for CRCoV from other countries. CONCLUSIONS: This report represents the first characterisation of partial genomic sequences of CRCoV and CnPnV from New Zealand. Our results suggest that the population of CnPnV circulating in New Zealand is not homogeneous, and that the viruses from two clades described overseas are also present here. Limited conclusions can be made based on only one CRCoV sequence, but the putative differences in the coding capacity of New Zealand CRCoV support the previously reported variability of this region. The reasons for such variability and its biological implications need to be further elucidated.


Subject(s)
Coronavirus, Canine , Dog Diseases , Genome, Viral , Phylogeny , Pneumovirus , Animals , Dogs , New Zealand/epidemiology , Coronavirus, Canine/genetics , Coronavirus, Canine/classification , Coronavirus, Canine/isolation & purification , Dog Diseases/virology , Dog Diseases/epidemiology , Pneumovirus/genetics , Pneumovirus/classification , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Vero Cells , Chlorocebus aethiops
2.
J Vet Diagn Invest ; 36(1): 46-55, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37968872

ABSTRACT

Canine respiratory coronavirus (CRCoV) is one of the main causative agents of canine infectious respiratory disease (CIRD), an illness whose epidemiology is poorly understood. We assessed the prevalence, risk factors, and genetic characterization of CRCoV in privately owned dogs in the Southeastern United States. We PCR-screened 189 nasal swabs from dogs with and without CIRD clinical signs for 9 CIRD-related pathogens, including CRCoV; 14% of dogs, all diagnosed with CIRD, were positive for CRCoV, with a significantly higher rate of cases in younger dogs and during warmer weather. Notably, the presence of CRCoV, alone or in coinfection with other CIRD pathogens, was statistically associated with a worse prognosis. We estimated a CRCoV seroprevalence of 23.7% retrospectively from 540 serum samples, with no statistical association to dog age, sex, or season, but with a significantly higher presence in urban counties. Additionally, the genomes of 6 CRCoVs were obtained from positive samples using an in-house developed targeted amplicon-based approach specific to CRCoV. Subsequent phylogeny clustered their genomes in 2 distinct genomic groups, with most isolates sharing a higher similarity with CRCoVs from Sweden and only 1 more closely related to CRCoVs from Asia. We provide new insights into CIRD and CRCoV epidemiology in the Southeastern United States and further support the association of CRCoV with more severe cases of CIRD. Additionally, we developed and successfully tested a new amplicon-based approach for whole-genome sequencing of CRCoV that can be used to further investigate the genetic diversity within CRCoVs.


Subject(s)
Coronavirus Infections , Coronavirus, Canine , Dog Diseases , Respiratory Tract Infections , Dogs , Animals , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/veterinary , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Canine/genetics , Seroepidemiologic Studies , Retrospective Studies , Southeastern United States/epidemiology
3.
Microbiol Spectr ; : e0226823, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37707446

ABSTRACT

Canine respiratory coronavirus (CRCoV) is associated with canine infectious respiratory disease complex. Although its detection has been reported worldwide, the genomic characteristics and evolutionary patterns of this virus remain poorly defined. In this study, 21 CRCoV sequences obtained from dogs in Thailand during two episodes (2013-2015, group A; 2021-2022, group B) were characterized and analyzed. The genomic characteristics of Thai CRCoVs changed from 2013 to 2022 and showed a distinct phylogenetic cluster. Phylogenetic analysis of the spike (S) genes divided the analyzed CRCoV strains into five clades. The full-length genome characterization revealed that all Thai CRCoVs possessed a nonsense mutation within the nonstructural gene located between the S and envelope genes, leading to a truncated putative nonstructural protein. Group B Thai CRCoV strains represented the signature nonsynonymous mutations in the S gene that was not identified in group A Thai CRCoVs, suggesting the ongoing evolutionary process of Thai CRCoVs. Although no evidence of recombination of Thai CRCoV strains was found, our analysis identified one Thai CRCoV strain as a potential parent virus for a CRCoV strain found in the United States. Selective pressure analysis of the hypervariable S region indicated that the CRCoV had undergone purifying selection during evolution. Evolutionary analysis suggested that the CRCoV was emerged in 1992 and was first introduced in Thailand in 2004, sharing a common ancestor with Korean CRCoV strains. These findings regarding the genetic characterization and evolutionary analysis of CRCoVs add to the understanding of CRCoVs. IMPORTANCE Knowledge of genomic characterization of the CRCoV is still limited and its evolution remains poorly investigated. We, therefore, investigated the full-length genome of CRCoV in Thailand for the first time and analyzed the evolutionary dynamic of CRCoV. Genomic characterization of Thai CRCoV strains revealed that they possess unique genome structures and have undergone nonsynonymous mutations, which have not been reported in previously described CRCoV strains. Our work suggests that the Thai CRCoVs were not undergone mutation through genetic recombination for their evolution. However, one Thai CRCoV strain PP158_THA_2015 was found to be a potential parent virus for the CRCoV strains found in the United States. This study provides an understanding of the genomic characterization and highlights the signature mutations and ongoing evolutionary process of CRCoV that could be crucial for monitoring in the future.

4.
N Z Vet J ; 69(4): 224-233, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33840356

ABSTRACT

AIMS: The aim of this study was to identify viruses associated with canine infectious respiratory disease syndrome (CIRDS) among a population of New Zealand dogs. METHODS: Convenience samples of oropharyngeal swabs were collected from 116 dogs, including 56 CIRDS-affected and 60 healthy dogs from various locations in New Zealand between March 2014 and February 2016. Pooled samples from CIRDS-affected (n = 50) and from healthy (n = 50) dogs were tested for the presence of canine respiratory viruses using next generation sequencing (NGS). Individual samples (n = 116) were then tested by quantitative PCR (qPCR) and reverse transcriptase qPCR (RT-qPCR) for specific viruses. Groups were compared using Fisher's exact or χ2 tests. The effect of explanatory variables (age, sex, type of household, presence of viral infection) on the response variable (CIRDS-affected or not) was tested using RR. RESULTS: Canine pneumovirus (CnPnV), canine respiratory coronavirus (CRCoV), canine herpesvirus-1 (CHV-1), canine picornavirus and influenza C virus sequences were identified by NGS in the pooled sample from CIRDS-affected but not healthy dogs. At least one virus was detected by qPCR/RT-qPCR in 20/56 (36%) samples from CIRDS dogs and in 23/60 (38%) samples from healthy dogs (p = 0.84). CIRDS-affected dogs were most commonly positive for CnPnV (14/56, 25%) followed by canine adenovirus-2 (CAdV-2, 5/56, 9%), canine parainfluenza virus (CpiV) and CHV-1 (2/56, 4% each), and CRCoV (1/56, 2%). Only CnPnV (17/60, 28%) and CAdV-2 (14/60, 23%) were identified in samples from healthy dogs, and CAdV-2 was more likely to be detected healthy than diseased dogs (RR 0.38; 95% CI = 0.15-0.99; p = 0.045). CONCLUSIONS: The frequency of detection of viruses traditionally linked to CIRDS (CAdV-2 and CPiV) among diseased dogs was low. This suggests that other pathogens are likely to have contributed to development of CIRDS among sampled dogs. Our data represent the first detection of CnPnV in New Zealand, but the role of this virus in CIRDS remains unclear. On-going monitoring of canine respiratory pathogens by NGS would be beneficial, as it allows rapid detection of novel viruses that may be introduced to the New Zealand canine population in the future. Such monitoring could be done using pooled samples to minimise costs. CLINICAL RELEVANCE: Testing for novel respiratory viruses such as CnPnV and CRCoV should be considered in all routine laboratory investigations of CIRDS cases, particularly in dogs vaccinated with currently available kennel cough vaccines.


Subject(s)
Dog Diseases/virology , Respiratory Tract Infections/veterinary , Virus Diseases/veterinary , Animals , Dog Diseases/epidemiology , Dogs , Female , High-Throughput Nucleotide Sequencing , Male , Molecular Epidemiology , New Zealand/epidemiology , Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Reverse Transcriptase Polymerase Chain Reaction , Virus Diseases/epidemiology
5.
Vet Pathol ; 57(4): 467-471, 2020 07.
Article in English | MEDLINE | ID: mdl-32369435

ABSTRACT

Discovered in 2003 at the Royal Veterinary College, London, canine respiratory coronavirus (CRCoV) is a betacoronavirus of dogs and major cause of canine infectious respiratory disease complex. Generally causing mild clinical signs of persistent cough and nasal discharge, the virus is highly infectious and is most prevalent in rehoming shelters worldwide where dogs are often closely housed and infections endemic. As the world grapples with the current COVID-19 pandemic, the scientific community is searching for a greater understanding of a novel virus infecting humans. Similar to other betacoronaviruses, SARS-CoV-2 appears to have crossed the species barrier, most likely from bats, clearly reinforcing the One Health concept. Veterinary pathologists are familiar with coronavirus infections in animals, and now more than ever this knowledge and understanding, based on many years of veterinary research, could provide valuable answers for our medical colleagues. Here I review the early research on CRCoV where seroprevalence, early immune response, and pathogenesis are some of the same key questions being asked by scientists globally during the current SARS-CoV-2 pandemic.


Subject(s)
Betacoronavirus , Coronavirus Infections/veterinary , Disease Models, Animal , Dog Diseases/virology , Animals , Antibodies, Viral/blood , Betacoronavirus/classification , Betacoronavirus/growth & development , Betacoronavirus/immunology , Chiroptera/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus OC43, Human/classification , Coronavirus, Bovine/classification , Dog Diseases/epidemiology , Dogs , Prevalence , Tumor Cells, Cultured
6.
Infect Genet Evol ; 82: 104290, 2020 08.
Article in English | MEDLINE | ID: mdl-32205264

ABSTRACT

Canine respiratory coronavirus (CRCoV) has been identified as a causative agent of canine infectious respiratory disease, an upper respiratory infection affecting dogs. The epidemiology is currently opaque, with an unclear understanding of global prevalence, pathology, and genetic characteristics. In this study, Swedish privately-owned dogs with characteristic signs of canine infectious respiratory disease (n = 88) were screened for CRCoV and 13 positive samples (14.7%, 8.4-23.7% [95% confidence interval (CI)]) were further sequenced. Sequenced Swedish CRCoV isolates were highly similar despite being detected in dogs living in geographically distant locations and sampled across 3 years (2013-2015). This is due to a single introduction into Swedish dogs in approximately 2010, as inferred by time structured phylogeny. Unlike other CRCoVs, there was no evidence of recombination in Swedish CRCoV viruses, further supporting a single introduction. Finally, there were low levels of polymorphisms, in the spike genes. Overall, we demonstrate that there is little diversity of CRCoV which is endemic in Swedish dogs.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus, Canine/genetics , Dog Diseases/virology , Animals , Coronavirus Infections/epidemiology , Coronavirus, Canine/isolation & purification , Dog Diseases/epidemiology , Dogs , Genetic Variation , Genome, Viral , Nasopharynx/virology , Phylogeny , Recombination, Genetic , Sweden/epidemiology
7.
Microbes Infect ; 22(4-5): 218-220, 2020.
Article in English | MEDLINE | ID: mdl-32194253

ABSTRACT

Outside the Hubei province, China, the mild form of infection and the progressive recover of the COVID-19 patients suggest the intervention of "unconventional" biological mechanisms worthy of attention. Based on the high-homology between the Spike protein epitopes of taxonomically-related coronaviruses, we hypothesized that past contact with infected dogs shield humans against the circulating SARS-CoV-2. Elseways, the recurrent virus exposure over a short time-lapse might result in the Antibody Dependent Enhancement, triggering the violent immune reaction responsible for the severe clinical outcomes observed in the Hubei province. Nevertheless, further experimental studies are desired for a confidential evaluation of the postulated hypotheses.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibody-Dependent Enhancement , Antigens, Viral/chemistry , Antigens, Viral/immunology , Betacoronavirus/classification , Betacoronavirus/immunology , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/veterinary , Dog Diseases/virology , Dogs , Epitopes/chemistry , Epitopes/immunology , Humans , Immunity , One Health , Pandemics , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Viral Tropism
8.
N Z Vet J ; 68(1): 54-59, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31513753

ABSTRACT

Aims: To determine the seroprevalence of canine respiratory coronavirus (CRCoV) in New Zealand dogs, and to explore associations with age, sex, breed, month, and geographical region of sampling and reported presence of clinical signs suggestive of respiratory disease.Methods: A total of 1,015 canine serum samples were randomly selected from submissions to a diagnostic laboratory between March and December 2014, and were analysed for CRCoV antibodies using a competitive ELISA. Logistic regression analysis was used to determine associations between seroprevalence of CRCoV and breed category, age, sex, sampling month, region, and reported health status of dogs.Results: Overall, 538/1,015 (53.0%) samples were seropositive for CRCoV, with 492/921 (53.4%) positive dogs in the North Island and 46/94 (49%) in the South Island. Age of dog, sampling month, region, and presence of abnormal respiratory signs were included in the initial logistic regression model. Seroprevalence was higher in dogs aged ≥3 compared with ≤2 years (p < 0.01). The lowest seroprevalence was observed in July (30/105; 28.5%) and August (32/100; 32%), and the highest in June (74/100; 74%). Seroprevalence in dogs from Auckland was higher than in dogs from the Hawkes Bay, Manawatu, Marlborough, and Waikato regions (p < 0.05). Abnormal respiratory signs (coughing, nasal discharge, or sneezing) were reported for 28/1,015 (2.8%) dogs sampled. Seroprevalence for CRCoV tended to be higher among dogs with respiratory signs (67.9 (95% CI = 47.6-83.4)%) than dogs with no reported respiratory signs (52.6 (95% CI = 49.5-55.7)%).Conclusions: Serological evidence of infection with CRCoV was present in more than half of the dogs tested from throughout New Zealand. Differences in CRCoV seroprevalence between regions and lack of seasonal pattern indicate that factors other than external temperatures may be important in the epidemiology of CRCoV in New Zealand.Clinical relevance: Our data suggest that CRCoV should be included in investigations of cases of infectious canine tracheobronchitis, particularly if these occur among dogs vaccinated with current vaccines, which do not include CRCoV antigens.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/veterinary , Coronavirus, Canine/immunology , Dog Diseases/epidemiology , Animals , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Canine/isolation & purification , Dog Diseases/blood , Dog Diseases/virology , Dogs , Enzyme-Linked Immunosorbent Assay/veterinary , Logistic Models , New Zealand/epidemiology , Seroepidemiologic Studies
9.
Viruses ; 11(4)2019 04 05.
Article in English | MEDLINE | ID: mdl-30959796

ABSTRACT

Despite high similarity of canine respiratory coronavirus (CRCoV), bovine coronavirus, (BCoV) and human coronavirus OC43 (HCoV-OC43), these viruses differ in species specificity. For years it was believed that they share receptor specificity, utilizing sialic acids for cell surface attachment, internalization, and entry. Interestingly, careful literature analysis shows that viruses indeed bind to the cell surface via sialic acids, but there is no solid data that these moieties mediate virus entry. In our study, using a number of techniques, we showed that all three viruses are indeed able to bind to sialic acids to a different extent, but these molecules render the cells permissive only for the clinical strain of HCoV-OC43, while for others they serve only as attachment receptors. CRCoV and BCoV appear to employ human leukocyte antigen class I (HLA-1) as the entry receptor. Furthermore, we identified heparan sulfate as an alternative attachment factor, but this may be related to the cell culture adaptation, as in ex vivo conditions, it does not seem to play a significant role. Summarizing, we delineated early events during CRCoV, BCoV, and HCoV-OC43 entry and systematically studied the attachment and entry receptor utilized by these viruses.


Subject(s)
Coronavirus OC43, Human/physiology , Coronavirus, Bovine/physiology , Coronavirus, Canine/physiology , Receptors, Virus/analysis , Virus Attachment , Cells, Cultured , Heparitin Sulfate/metabolism , Histocompatibility Antigens Class I/metabolism , Humans , Sialic Acids/metabolism
10.
Vet Microbiol ; 212: 31-38, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29173585

ABSTRACT

Canine infectious respiratory disease (CIRD) is a major cause of morbidity in dogs worldwide, and is associated with a number of new and emerging pathogens. In a large multi-centre European study the prevalences of four key emerging CIRD pathogens; canine respiratory coronavirus (CRCoV), canine pneumovirus (CnPnV), influenza A, and Mycoplasma cynos (M. cynos); were estimated, and risk factors for exposure, infection and clinical disease were investigated. CIRD affected 66% (381/572) of the dogs studied, including both pet and kennelled dogs. Disease occurrence and severity were significantly reduced in dogs vaccinated against classic CIRD agents, canine distemper virus (CDV), canine adenovirus 2 (CAV-2) and canine parainfluenza virus (CPIV), but substantial proportions (65.7%; 201/306) of vaccinated dogs remained affected. CRCoV and CnPnV were highly prevalent across the different dog populations, with overall seropositivity and detection rates of 47% and 7.7% for CRCoV, and 41.7% and 23.4% for CnPnV, respectively, and their presence was associated with increased occurrence and severity of clinical disease. Antibodies to CRCoV had a protective effect against CRCoV infection and more severe clinical signs of CIRD but antibodies to CnPnV did not. Involvement of M. cynos and influenza A in CIRD was less apparent. Despite 45% of dogs being seropositive for M. cynos, only 0.9% were PCR positive for M. cynos. Only 2.7% of dogs were seropositive for Influenza A, and none were positive by PCR.


Subject(s)
Coronavirus Infections/veterinary , Dog Diseases/epidemiology , Mycoplasma Infections/veterinary , Orthomyxoviridae Infections/veterinary , Pneumovirus Infections/veterinary , Respiratory Tract Infections/veterinary , Animals , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/veterinary , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Canine/isolation & purification , Dog Diseases/microbiology , Dogs , Epidemiological Monitoring , Europe/epidemiology , Influenza A virus/isolation & purification , Mycoplasma/isolation & purification , Mycoplasma Infections/epidemiology , Mycoplasma Infections/microbiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Pneumovirus/isolation & purification , Pneumovirus Infections/epidemiology , Pneumovirus Infections/virology , Prevalence , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology
11.
Virus Res ; 237: 7-13, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28506792

ABSTRACT

Although canine respiratory coronavirus (CRCoV) is an important respiratory pathogen that is prevalent in many countries, only one complete genome sequence of CRCoV (South Korea strain K37) has been obtained to date. Genome-wide analyses and recombination have rarely been conducted, as small numbers of samples and limited genomic characterization have previously prevented further analyses. Herein, we report a unique CRCoV strain, denoted strain BJ232, derived from a CRCoV-positive dog with a mild respiratory infection. Phylogenetic analysis based on complete genome of all available coronaviruses consistently show that CRCoV BJ232 is most closely related to human coronavirus OC43 (HCoV-OC43) and BCoV, forming a separate clade that split off early from other Betacoronavirus 1. Based on the phylogenetic and SimPlot analysis we propose that CRCoV-K37 was derived from genetic recombination between CRCoV-BJ232 and BCoV. In detail, spike (S) gene of CRCoV-K37 clustered with CRCoV-BJ232. However orf1ab, membrane (M) and nucleocapsid (N) genes were more related to Bovine coronavirus (BCoV) than CRCoV-B232. Molecular epidemic analysis confirmed the prevalence of CRCoV-BJ232 lineage around the world for a long time. Recombinant events among Betacoronavirus 1 may have implications for CRCoV transmissibility. All these findings provide further information regarding the origin of CRCoV.


Subject(s)
Betacoronavirus 1/genetics , Coronavirus, Canine/genetics , Coronavirus, Canine/isolation & purification , Recombination, Genetic , Animals , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus, Canine/classification , Dog Diseases/virology , Dogs , Korea , Molecular Epidemiology , Phylogeny , RNA, Viral/genetics , Respiratory Tract Infections/veterinary , Respiratory Tract Infections/virology , Sequence Analysis, DNA , Viral Proteins/genetics , Whole Genome Sequencing
12.
Sci China Life Sci ; 59(6): 615-21, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27084706

ABSTRACT

To characterize the antigenicity of nucleocapsid proteins (NP) derived from canine coronavirus (CCoV) and canine respiratory coronavirus (CRCoV) in China, the N genes of CCoV (CCoV-BJ70) and CRCoV (CRCoV-BJ202) were cloned from swabs obtained from diseased pet dogs in Beijing and then sequenced. The recombinant NPs (rNPs) were expressed in Escherichia coli and purified by nickel-affinity column and size exclusion chromatography. Sequencing data indicated that the N genes of CCoV-BJ70 and CRCoV-BJ202 belonging to two distinctly different groups were relatively conserved within each subgroup. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that rNPs of CCoV and CRCoV were expressed efficiently and isolated with a final purity of over 95%. Western blot analysis revealed the rNP from CRCoV could cross-react with mice antisera against human coronavirus (HCoV-229E, NL63, OC43, HKU1), while rNP of CCoV had cross-reactivity with only anti-sera against viruses belonging to the same group (HCoV-229E and NL63). In summary, CCoV and CRCoV rNPs were successfully expressed in E. coli and showed antigenic cross-reactivity with antisera raised against human coronaviruses. These findings indicate that further serologic studies on coronavirus infections at the animal-human interface are needed.


Subject(s)
Coronavirus, Canine/genetics , Coronavirus, Canine/immunology , Nucleocapsid Proteins/genetics , Amino Acid Sequence , Animals , Antigens, Viral/immunology , Blotting, Western , China , Cloning, Molecular , Dogs , Electrophoresis, Polyacrylamide Gel , Genes, Viral , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/immunology , Phylogeny , Sequence Homology, Amino Acid
13.
Article in English | WPRIM (Western Pacific) | ID: wpr-65506

ABSTRACT

Canine respiratory coronavirus (CRCoV) is commonly associated with canine kennel cough worldwide. Clinically infected dogs present coughing, sneezing, and nasal discharge. Severe infections may progress to pneumonia. Through serological surveys, CRCoV has been identified as a worldwide pathogen found in the respiratory tracts of dogs suffering from mild or severe respiratory disease. In this study, three dogs were obtained from a dog kennel. Over the previous 5 days, the dogs showed coughing, sneezing, and nasal discharge. To detect the etiologic pathogen, we performed multiplex RT-PCR (mRT-PCR) to amplify the genes encoding canine influenza virus matrix protein, canine distemper virus nucleocapsid protein, and CRCoV spike protein. Dot blotting was achieved with a CRCoV-specific probe. Nasal-secreting CRCoV was detected by the 442 bp CRCoV-positive PCR reaction in the nasal swabbing samples from dogs. Further, CRCoV-positive reactions by dot blot hybridization were detected in the nasal swabbing samples from dogs. In conclusion, we detected CRCoV in kenneled dogs with respiratory disease in Korea. Multiplex RT-PCR was able to detect successfully CRCoV infection in dogs. We suggest that mRT-PCR would be useful and effective for monitoring CRCoV infection in various kinds of dogs.


Subject(s)
Animals , Dogs , Coronavirus , Cough , Distemper Virus, Canine , Korea , Nucleocapsid Proteins , Orthomyxoviridae , Pneumonia , Polymerase Chain Reaction , Respiratory System , Sneezing
SELECTION OF CITATIONS
SEARCH DETAIL