Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Food Res Int ; 190: 114657, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945630

ABSTRACT

Because of its peculiar flavor, chili oil is widely used in all kinds of food and is welcomed by people. Chili pepper is an important raw material affecting its quality, and commercial chili oil needs to meet various production needs, so it needs to be made with different chili peppers. However, the current compounding method mainly relies on the experience of professionals and lacks the basis of objective numerical analysis. In this study, the chroma and capsaicinoids of different chili oils were analyzed, and then the volatile components were determined by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion migration spectrometer (GC-IMS) and electronic nose (E-nose). The results showed that Zidantou chili oil had the highest L*, b*, and color intensity (ΔE) (52.76 ± 0.52, 88.72 ± 0.89, and 118.84 ± 1.14), but the color was tended to be greenyellow. Xinyidai chili oil had the highest a* (65.04 ± 0.2). But its b* and L* were relatively low (76.17 ± 0.29 and 45.41 ± 0.16), and the oil was dark red. For capsaicinoids, Xiaomila chili oil had the highest content of capsaicinoids was 2.68 ± 0.07 g/kg, Tianjiao chili oil had the lowest content of capsaicinoids was 0.0044 ± 0.0044 g/kg. Besides, 96 and 54 volatile flavor substances were identified by GC-MS and GC-IMS respectively. And the main volatile flavor substances of chili oil were aldehydes, alcohols, ketones, and esters. A total of 11 key flavor compounds were screened by the relative odor activity value (ROAV). Moguijiao chili oil and Zidantou chili oil had a prominent grass aroma because of hexanal, while Shizhuhong chili oil, Denglongjiao chili oil, Erjingtiao chili oil, and Zhoujiao chili oil had a prominent floral aroma because of 2, 3-butanediol. Chili oils could be well divided into 3 groups by the partial least squares discriminant analysis (PLS-DA). According to the above results, the 10 kinds of chili oil had their own characteristics in color, capsaicinoids and flavor. Based on quantitative physicochemical indicators and flavor substances, the theoretical basis for the compounding of chili oil could be provided to meet the production demand more scientifically and accurately.


Subject(s)
Capsicum , Gas Chromatography-Mass Spectrometry , Plant Oils , Taste , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Capsicum/chemistry , Gas Chromatography-Mass Spectrometry/methods , Plant Oils/analysis , Plant Oils/chemistry , Electronic Nose , Capsaicin/analysis , Flavoring Agents/analysis , Color , Odorants/analysis
2.
Curr Top Med Chem ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778617

ABSTRACT

Introduced into law enforcement in 1976, the oleoresin capsicum (OC) spray has been labeled as one of the most significant and radical developments in law enforcement. However, epidemiological research on OC health effects is deficient, receiving little public support. The major responses to acute exposure to OC spray can be found in the pulmonary system. The molecular mechanism(s) involved in the action of capsaicinoids, the active constituents in OC, are complex cascades of reactions which end up in necrosis or apoptosis. OC may also damage and deplete biological redox systems in the epithelial lining fluids and within cells and mitochondria, modifying structural proteins and nucleic acids and leading to enzyme inactivation. Since there are no characteristic laboratory tests available for identification or confirmation of OC exposure, and on the basis of prevailing data, reassessment of the health risks of OC exposures in vulnerable populations and in-depth study of the molecular mechanics of receptors is the need of the hour for the development of effective countermeasures. This review aims to consider evidence for adverse effects of OC spray used in ways comparable to their application by law enforcement personnel and civilians, with possible treatment recommendations that are precedent for improved management.

3.
Foods ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38790778

ABSTRACT

Inspired by the proved dissolving power of vegetable oils for non-polar and low-polar natural compounds, animal fats with triglycerides as the major components were investigated as food-grade solvents in this study for the simultaneous extraction of carotenoids and capsaicinoids from Sichuan chili. The dissolving power of lard, beef tallow, chicken fat and basa fish oil in the extraction of er jing tiao chili was firstly compared, where animal oils with worse extraction ratios for carotenoids (0.79 mg/g in average) performed better for the extraction of capsaicinoids (0.65 mg/g in average). Furthermore, the solvent effect of animal fats on the oleo-extracts was evaluated in terms of fatty acid composition, oil quality indexes, crystal polymorphism, melting and crystallization behaviors, where no significant differences were observed between animal fats before and after extraction. The oxidative stability of animal fats could be 1.02- up to 2.73-fold enhanced after extraction and the pungency degree could reach the same spicy level as commercial hotpot oil. In addition, the Hansen solubility parameters of solvents and solutes were predicted for further theoretical miscibility study, which helps to make a better comprehension of the dissolving mechanism behind such oleo-extraction. Overall, animal fats demonstrated their considerable solvent power for extracting carotenoids and capsaicinoids simultaneously from Sichuan chili, which showed significant potential for developing a novel Sichuan spicy hotpot oil with enhanced flavor and stability.

4.
Food Chem ; 451: 139423, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38677135

ABSTRACT

Phospholipids can act as antioxidants in food. In this study, egg yolk phospholipids (EPL) and sunflower oil were utilized in making chili oil, and proton nuclear magnetic resonance spectroscopy was employed to quantify the concentrations of fatty acyl groups, carotenoids, capsaicinoids in chili oil according to their specific signals in the spectra. The results showed that the changes in the concentrations of fatty acyl groups in the control samples were greater than those in the EPL-treated samples at the same frying temperature, while the contents of carotenoids and capsaicinoids were significantly lower than those of the EPL-treated samples when fried at 150 °C (p < 0.05). Two-way ANOVA indicated that frying temperature and EPL treatment, as well as their interaction had significant impacts on the thermal-oxidative stability of chili oil (p < 0.05). The results suggest that EPL may act as antioxidants during frying, and EPL can improve the thermal-oxidative stability of chili oil.


Subject(s)
Capsaicin , Capsicum , Carotenoids , Cooking , Egg Yolk , Fatty Acids , Hot Temperature , Oxidation-Reduction , Phospholipids , Plant Oils , Egg Yolk/chemistry , Phospholipids/chemistry , Carotenoids/chemistry , Carotenoids/analysis , Plant Oils/chemistry , Capsaicin/chemistry , Capsaicin/analysis , Fatty Acids/chemistry , Capsicum/chemistry , Antioxidants/chemistry
5.
Food Chem ; 450: 139257, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640526

ABSTRACT

Unclear labeling of spiciness degrees on leisure sauced meat products is prone to resulting in customer complaints and commercial disputes. The content of capsaicinoids is the basis for evaluating the spiciness of food. In this work, an electrochemical sensor based on nickel nanoparticles modified carbon nanotubes (Ni-CNTs) and sulfonated reduced graphene oxide (S-rGO) was developed for the rapid detection of capsaicinoids content in leisure sauced meat products. The linear ranges of capsaicins are 0.01-100 µmol/L with ultra-low detection limits of 1 nmol/L. The outstanding performances are primarily due to the synergistic effect between Ni-CNTs and S-rGO. This effect not only created a three-dimensional stacked structure that improved the electrochemically active surface area, but also generated an internal electric field that improved the charge transfer rate. This work provides a basis for standardized evaluation of spiciness.


Subject(s)
Capsaicin , Electrochemical Techniques , Graphite , Meat Products , Nanotubes, Carbon , Nickel , Graphite/chemistry , Nanotubes, Carbon/chemistry , Capsaicin/analysis , Capsaicin/chemistry , Electrochemical Techniques/instrumentation , Nickel/chemistry , Nickel/analysis , Meat Products/analysis , Metal Nanoparticles/chemistry , Food Contamination/analysis , Limit of Detection
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124238, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38593543

ABSTRACT

A simple smartphone-based digital image colorimetry was proposed for the determination of total capsaicinoid content and the assessment of chili pepper pungency. The biobased solvent D-limonene was used for the first time to isolate analytes. Capsaicinoids were efficiently separated from chili pepper by solid-liquid extraction with D-limonene followed by partitioning of the analytes into the ammonium hydroxide solution to eliminate the matrix interference effect. For colorimetric detection of total capsaicinoid content, a selective chromogenic reaction was performed using Gibbs reagent (2,6-dichloroquinone-4-chloroimide). Measurements were performed using a smartphone-based setup and included image analysis with the program ImageJ. The limit of detection of the proposed procedure was 0.15 mg g-1. The intra-day repeatability did not exceed 10.0 %. The inter-day repeatability was less than 16.5 %. The comparison of the smartphone-based procedure with high-performance liquid chromatography showed satisfactory results.


Subject(s)
Capsaicin , Capsicum , Colorimetry , Plant Extracts , Smartphone , Capsicum/chemistry , Colorimetry/methods , Capsaicin/analysis , Capsaicin/analogs & derivatives , Plant Extracts/chemistry , Plant Extracts/analysis , Limit of Detection , Reproducibility of Results
7.
J Chromatogr A ; 1717: 464688, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38354595

ABSTRACT

Pentafluorophenyl (PFP) stationary phase is one of the most important phases after the C18 phase in terms of its applications. Three embedded polar groups (EPG)-containing stationary phases were newly synthesized to act the EPGs as additional interaction sites. The silica surface was initially modified with (3-aminopropyl)trimethoxysilane (APS). The APS-modified silicas were coupled with 2,3,4,5,6-pentafluorobenzoic acid, 2,3,4,5,6-pentafluorophenylacetic acid, and 2,3,4,5,6-pentafluoro-anilino(oxo)acetic acid to obtain Sil-PFP-BA, Sil-PFP-AA, and Sil-PFP-AN phases, respectively. The new phases were characterized by elemental analysis, ATR-FTIR, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The phases were evaluated with the Tanaka and Neue tests in reversed-phase liquid chromatography (RPLC). In addition, they were characterized as hydrophilic phases by the Tanaka test protocol used in hydrophilic interaction chromatography (HILIC) separation mode. The Sil-PFP-AA phase showed the highest molecular shape selectivity in RPLC, while Sil-PFP-AN achieved the highest separability in HILIC compared to the commercial PFP reference column. The Sil-PFP-AA phase was successfully applied for the analysis of capsaicinoids from real samples of fresh chili peppers (Capsicum spp.) in RPLC and the Sil-PFP-AN phase for vitamin C (ascorbic acid) in HILIC.


Subject(s)
Chromatography, Reverse-Phase , Silicon Dioxide , Chromatography, Reverse-Phase/methods , Silicon Dioxide/chemistry , Vitamins , Hydrophobic and Hydrophilic Interactions
8.
Heliyon ; 10(2): e24441, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304807

ABSTRACT

The cultivar of red pepper used in kimchi contributes to spiciness, red color, and fermentation characteristics. Capsaicinoids are the main components of red pepper. Therefore, understanding changes in metabolites during kimchi fermentation according to capsaicinoid concentration is necessary to control the quality of kimchi. The purpose of this study was to investigate the effect of capsaicinoids on metabolites during kimchi fermentation. To profile the effect of capsaicinoid concentrations on kimchi fermentation, five kimchi samples were prepared using different concentrations of capsaicinoids (4, 12, 30.7, 40.9, and 50.3 mg/kg) and stored at 4 °C for 28 days. During kimchi fermentation, pH, titratable acidity, capsaicinoid concentration, total viable and lactic acid bacteria, free sugars, amino acids, and microbial community were evaluated. Each result was statistically analyzed for changes in capsaicin concentration and fermentation time. The capsaicinoid concentration did not change during kimchi fermentation but the growth of lactic acid bacteria changed. According to the growth of lactic acid bacteria, free sugar, amino acids, and microbial community changed with the capsaicinoid concentration. Overall, the results of this study provide preliminary information on the use of red pepper and capsaicinoids in the kimchi industry.

9.
Nat Prod Res ; 38(4): 679-684, 2024.
Article in English | MEDLINE | ID: mdl-36905171

ABSTRACT

Neglected tropical diseases are significant causes of death and temporary or permanent disability for millions living in developing countries. Unfortunately, there is no effective treatment for these diseases. Thus, this work aimed to conduct a chemical analysis using HPLC/UV and GC/MS to identify the major constituents of the hydroalcoholic extracts of Capsicum frutescens and Capsicum baccatum fruits, evaluating these extracts and their constituents' schistosomicidal, leishmanicidal and trypanocidal activities. The results obtained for the extracts of C. frutescens are better when compared to those obtained for C. baccatum, which can be related to the different concentrations of capsaicin (1) present in the extracts. The lysis of trypomastigote forms results for capsaicin (1) led to a significant value of IC50 = 6.23 µM. Thus, the results point to capsaicin (1) as a possible active constituent in these extracts.


Subject(s)
Capsicum , Capsaicin/pharmacology , Chromatography, High Pressure Liquid , Plant Extracts/pharmacology , Plant Extracts/analysis , Camphor/analysis , Menthol/analysis , Fruit/chemistry
10.
J Oleo Sci ; 72(12): 1097-1111, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37989304

ABSTRACT

Herein we report the optimization of enzymatic hydrolysis of a mixture of capsaicinoids, capsaicin and dihydrocapsaicin obtained from chili peppers, and the utilization of the isolated fatty acids for the modification of coconut oil using enzyme catalyzed acidolysis. This work was carried out as the fatty acids that can be isolated from capsaicinoid hydrolysis have been shown to possess interesting biological properties. These biological properties could be better exploited by incorporating the fatty acids into a suitable delivery vehicle. The enzymatic hydrolysis of the mixture of capsaicin and dihydrocapsaicin was carried out using Novozym® 435 in phosphate buffer (pH 7.0) at 50℃. The enzyme catalyst could be reused in multiple cycles of the hydrolysis reaction. The desired 8-methyl-6-trans-nonenoic acid and 8-methylnonanoic acid were isolated from the hydrolysis reaction mixture using a simple extraction procedure with a 47.8% yield. This was carried out by first extracting the reaction mixture at pH 10 with ethyl acetate to remove any dissolved capsaicinoids and vanillyl amine side product. The fatty acids were isolated after adjustment of the pH of the reaction mixture to 5 and second extraction with ethyl acetate. The acidolysis of coconut oil with the obtained fatty acids was performed using Lipozyme® TL IM. The performance of the acidolysis reaction was evaluated using 1H-NMR spectroscopy and verified in selected cases using gas chromatography. The best performing conditions involved carrying out the acidolysis reaction at 60℃ with a 1.2 w/w ratio of the fatty acids to coconut oil and 10% enzyme loading for 72 h. This resulted in the incorporation of 26.61% and 9.86% of 8-methyl-6-trans-nonenoic acid and 8-methylnonanoic acid, respectively, into the modified coconut oil product. This product can act as a potential delivery vehicle for these interesting compounds.


Subject(s)
Capsaicin , Fatty Acids , Hydrolysis , Coconut Oil , Triglycerides/chemistry , Fatty Acids/chemistry , Acids
11.
Food Res Int ; 173(Pt 2): 113381, 2023 11.
Article in English | MEDLINE | ID: mdl-37803719

ABSTRACT

Amadori compounds (ACs), the first stable products of Maillard reaction, are detected in various products of fruits and vegetables, and show an antioxidant activity which can be related to beneficial effects in human health. In order to optimize the nutritional quality of a multi-ingredient tomato sauce (tomato puree - onion - olive oil - dried pepper), the fate of ACs during processing (drying, heating) and gastrointestinal digestion of a model meal was assessed as well as that of other microconstituents, i.e. carotenoids, phenolic compounds and capsaicinoids. The drying at 50 °C of fresh pepper induced the formation and accumulation of ACs after 6 days. During the heat treatment by microwave of multi-ingredient tomato sauce, Maillard reaction occurs in presence of dried pepper and the content in ACs in the tomato-based sauces increased (+33% to + 53%) depending of quantities of dried pepper added. The bioaccessibility of total ACs was 24-31% in duodenal phase and 18-22% in jejunal phase. Individual ACs have shown variable bioaccessibility, e.g. very high for Fru-Arg (50.8% to 71.3%), and very low for Fru-Met (1.8% to 2.2%). The kinetic monitoring of ACs in digestion medium showed that ACs are not stable (-46% in gastric phase, -49 % in intestinal phase) which indicated their potential degradation in the digestive tract. The presence of ACs in the multi-ingredients tomato sauces had no effect on the content of the other bioactive compounds monitored in the study and even promoted the bioaccessibility of total lycopene (+30%) but decreased the bioaccessibility of total phenolic compounds.


Subject(s)
Solanum lycopersicum , Humans , Food Handling , Carotenoids/analysis , Lycopene , Phenols/analysis , Digestion
12.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836615

ABSTRACT

The affinity of specific phenolic compounds (PCs) and capsaicinoids (CAPs) present in three Capsicum annuum varieties (Friariello, Cayenne and Dzuljunska Sipka) to the transient receptor potential vanilloid member 1 (TRPV1) was investigated by integrating an analytic approach for the simultaneous extraction and analysis through high-performance liquid chromatography coupled with ion trap mass spectrometry (HPLC/ITMS) and UV detection (HPLC-UV) of PCs and CAPs and structural bioinformatics based on the protein modelling and molecular simulations of protein-ligand docking. Overall, a total of 35 compounds were identified in the different samples and CAPs were quantified. The highest content of total polyphenols was recorded in the pungent Dzuljunska Sipka variety (8.91 ± 0.05 gGAE/Kg DW) while the lowest was found in the non-pungent variety Friariello (3.58 ± 0.02 gGAE/Kg DW). Protein modelling generated for the first time a complete model of the homotetrameric human TRPV1, and it was used for docking simulations with the compounds detected via the analytic approach, as well as with other compounds, as an inhibitor reference. The simulations indicate that different capsaicinoids can interact with the receptor, providing details on the molecular interaction, with similar predicted binding energy values. These results offer new insights into the interaction of capsaicinoids with TRPV1 and their possible actions.


Subject(s)
Capsicum , Humans , Capsicum/chemistry , Capsaicin/pharmacology , Capsaicin/analysis , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Mass Spectrometry , Phenols/pharmacology , Phenols/analysis , Fruit/chemistry
13.
Int J Mol Sci ; 24(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37762188

ABSTRACT

Pepper is a highly important vegetable globally, both economically and nutritionally. However, to efficiently select and identify genetic resources for pepper breeding programs, it is crucial to understand the association between important traits and genetic factors. In this study, we investigated the genetic basis of carotenoid and capsaicinoid content in 160 Capsicum chinense germplasms. The study observed significant variability in carotenoid and capsaicinoid content among the germplasms. Correlation analysis revealed a strong positive correlation between violaxanthin and antheraxanthin. In contrast, capsaicin and dihydrocapsaicin displayed negative correlations with individual carotenoids but exhibited a strong positive correlation between the two compounds (r = 0.90 ***). Genotyping-by-sequencing (GBS) was performed on 160 genotypes of pepper germplasm, which identified 47,810 high-quality SNPs. A comprehensive genome-wide association analysis was performed using these SNPs to identify SNPs associated with carotenoids and capsaicinoids, revealing 193 SNPs that exhibited significant associations. Specifically, 4 SNPs were associated with violaxanthin, 2 with antheraxanthin, 86 with capsorubin, 5 with capsanthin, 63 with zeaxanthin, 3 with ß-cryptoxanthin, and 2 with α-carotene. With further studies, the significantly associated SNPs identified in this study have the potential to be utilized for selecting pepper accessions with high carotenoid and capsaicinoid contents. Additionally, the genes associated with these significant SNPs will be used to understand their roles and involvement in the biosynthesis pathway of carotenoids and capsaicinoids. Understanding the function of these genes can provide insights into the molecular mechanisms underlying the production of these bioactive compounds in pepper. The findings of this study hold valuable implications for selecting pepper varieties with desirable traits and developing breeding programs aimed at enhancing the nutritional and medicinal properties of pepper.

14.
Biosensors (Basel) ; 13(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37754097

ABSTRACT

Capsaicinoids, mostly from chili peppers, are widely used in daily life. Capsaicinoids are considered to be markers for the identification of illegal cooking oil (ICO), which is a serious threat to public health. The identification of capsaicinoids can help reveal food-related fraud, thereby safeguarding consumers' health. Here, a novel and ultrasensitive method was established with a signal amplification strategy for the detection of capsaicinoids. AuNPs@Fe3O4 nanocomposites were functionalized with 4-aminothiophenol (4-atp). After diazotization, 4-atp on AuNPs@Fe3O4 reacted with capsaicinoids and formed capsaicinoids-azo-atp-AuNPs@Fe3O4. Ultimately, capsaicinoids-azo-atp-AuNPs@Fe3O4 was dropped onto the surface of a screen-printed carbon electrode (SPCE) and detected via the differential pulse voltammetry (DPV) method. AuNPs@Fe3O4 nanocomposites increased the specific surface area of the electrode. Moreover, the diazotization-coupling reaction enriched the analytes on the electrode surface. Liquid-liquid extraction was used for sample pretreatment. Under a pH value of 9.0 and concentration of 0.20 mol/L for the supporting electrolyte, the linearity of capsaicinoids in ICO is from 0.10 to 10.00 ng/mL, and the limit of detection (S/N = 3) is 0.05 ng/mL. This method is ultra-sensitive, reliable, and cost-effective for the detection of capsaicinoids. Herein, this method provides a promising tool for the identification of ICO.


Subject(s)
Gold , Metal Nanoparticles , Carbon , Electrodes , Cooking , Adenosine Triphosphate , Electrochemical Techniques/methods
15.
J Agric Food Chem ; 71(24): 9213-9242, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37289974

ABSTRACT

Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.


Subject(s)
Capsicum , Capsicum/genetics , Capsicum/metabolism , Capsaicin , Cues , Gene Expression Regulation , Fruit/chemistry , Carotenoids/metabolism
16.
Plant Sci ; 334: 111764, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37301327

ABSTRACT

Water shortage for crop irrigation is reducing agricultural production worldwide and the use of sewage treatment plant (STP) water to irrigate horticultural fields is a solution to avoid the use of drinkable water in agriculture. In this study, two different genotypes of pepper (Red Cherry Small and Italian green) were irrigated with STP water, as an alternative to potable water. Moreover, the foliar application of a molecule with biostimulant properties (24-epibrassinolide; EBR) was tested as a strategy to ameliorate the production and quality of fruits. Both genotypes differed on their tolerance to the suffered oxidative stress due to their different salinity tolerance, but fruit commercial weight was reduced by 49% on the salt sensitive and by 37% on the salt tolerant. Moreover, ascorbic acid was also decreased by 37% after STP water irrigation in the Red Cherry Small peppers. However, EBR applications alleviated STP watering stress effects improving pepper plants fruit production and quality parameters, such as ascorbic acid and capsaicinoids. These results have important economic and environmental relevance to overcome present and future water deficiencies in the agricultural sector derived from climate change, guaranteeing the maintenance of production in peppers irrigated with STP water for a more sustainable agriculture following relevant circular economy actions.


Subject(s)
Capsicum , Water , Ascorbic Acid , Antioxidants , Fruit/chemistry , Capsicum/genetics
17.
Food Chem ; 426: 136650, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37354575

ABSTRACT

Rapid quantification of the content of capsaicinoids helps in classifying the degree of spiciness, standardized production, and quality control of leisure meat products. To rapidly quantify the content of capsaicinoids in soy sauce and pot-roast meat products, we developed an electrochemical sensor based on reduced graphene oxide (rGO)/polyethylene imine (PEI) - carbon nanotubes (CNTs)/ß-cyclodextrin (ß-CD) to detect the content of capsaicinoids in leisure meat products. Our findings showed that the electrochemical sensor presented highly sensitive performance toward capsaicinoids with a relatively wide linear range (0.01-100 µmol/L), a lower limit of detection (0.01 µmol/L), and an acceptable recovery rate (94.80-112.20%). The sensor performed well and was effective mainly because of the three-dimensional stacking structure and synergistic catalysis of rGO with cCNTs and also due to the improved dispersion of the composite material by ß-CD. The sensor detected trace contents of capsaicinoids in leisure meat products, and thus, it might be considered for practical applications.


Subject(s)
Graphite , Nanotubes, Carbon , beta-Cyclodextrins , Nanotubes, Carbon/chemistry , Electrochemical Techniques/methods , Polyethyleneimine , beta-Cyclodextrins/chemistry , Graphite/chemistry , Catalysis
18.
J Int Soc Sports Nutr ; 20(1): 2204083, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37086038

ABSTRACT

BACKGROUND: The aim of this study was to explore the effects of a low dose (LD) of 0.625 mg and a high dose (HD) of 2.5 mg of phenylcapsaicin (PC) on full squat (SQ) performance, active muscle (RPE-AM) and overall body (RPE-OB) ratings of perceived exertion, muscle damage, protein breakdown, metabolic response, and 24-h recovery in comparison to placebo (PLA). METHOD: Twenty-five resistance-trained males (age = 21.00 ± 2.15 years, SQ 1-repetition maximum [1RM] normalized = 1.66 ± 0.22 kg) were enrolled in this randomized, triple-blinded, placebo-controlled, crossover trial. Participants completed 2 weekly sessions per condition (LD, HD, and PLA). The first session consisted of pre-blood testing of lactate, urea, and aspartate aminotransferases (AST) and 2 SQ repetitions with 60% 1RM followed by the resistance exercise protocol, which consisted of SQ sets of 3 × 8 × 70% 1RM monitoring lifting velocity. RPE-OB and RPE-AM were assessed after each set. After the first session, 2 SQ repetitions with 60% 1RM were performed, and blood lactate and urea posttests were collected. After 24 h, AST posttest and 1 × 2 × 60% 1RM were determined as biochemical and mechanical fatigue outcomes. RESULTS: HD reported significant differences for RPE-AM, AST, and SQ performance compared to LD and PLA. Post-hoc analyses revealed that HD attained faster velocities in SQ than LD (p = 0.008). HD induced a lower RPE-AM when compared with LD (p = 0.02) and PLA (p = 0.004). PLA resulted in higher AST concentrations at 24-h post than HD (p = 0.02). No significant differences were observed for the rest of the comparisons. CONCLUSIONS: This study suggests that PC may favorably influence SQ performance, RPE-AM, and muscle damage compared to PLA. However, HD exhibited most of the biochemical and mechanical anti-fatigue effects instead of LD.


Subject(s)
Muscle, Skeletal , Resistance Training , Male , Humans , Adolescent , Young Adult , Adult , Resistance Training/methods , Physical Exertion/physiology , Cross-Over Studies , Lactic Acid , Polyesters/pharmacology , Muscle Strength
19.
Food Res Int ; 165: 112476, 2023 03.
Article in English | MEDLINE | ID: mdl-36869489

ABSTRACT

Sichuan hotpot oil is a distinctive traditional Chinese cuisine, and chili pepper is an essential material for its flavor formation. In this study, the effect of chili pepper cultivars on capsaicinoids as well as Sichuan hotpot oil volatile compounds were examined. Gas chromatography-mass spectrometry (GC-MS) and chemometrics were employed to ascertain the differences between volatile components and flavor. The results showed that the EJT hotpot oil had the highest color intensity of 34.8, and the SSL hotpot oil had the highest capsaicinoids content of 1.536 g/kg. The results of QDA showed distinct differences among hotpot oils in terms of all sensory properties. A total of 74 volatile components were detected. Aldehydes, ketones, esters, and acids were the dominant volatile compounds formed in 18 hotpot oil samples and showed a significant difference, suggesting that they played a key role in flavor contribution and distinguishing the flavor differences between different hotpot oils. The PCA results well distinguished 18 kinds of hotpot oil.


Subject(s)
Capsicum , Aldehydes , Camphor , Esters , Menthol , Oils
20.
Food Chem ; 417: 135882, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36934708

ABSTRACT

Electrochemical methods have been extensively applied for the detection of chemical information from food or other analytes. However, existing electrochemical methods are limited to focusing solely on the absorption peaks and disregard much of the hidden chemical fingerprint information. Consequently, electrochemical sensors are constrained by their ability to detect samples containing multiple source-material mixtures with overlapping constituents. We hypothesized that the target substances can be effectively identified and detected using differential sensor data combined with artificial intelligence (AI). In this study, we developed a novel signal array composed of five metal electrodes and used a convolutional neural network (CNN) model for feature extraction to detect capsaicinoids in stews. Our results indicate that the proposed method achieved satisfactory predictions with a root mean square error (RMSE) of 5.407 in independent brine samples. This provides a promising strategy and practical approach for the nondestructive analysis of multidimensional electrochemical data of mixed analytes.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Electrochemistry , Electrochemical Techniques , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...