Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.401
Filter
1.
Angew Chem Int Ed Engl ; : e202411188, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975980

ABSTRACT

Electrocatalytic carbon dioxide reduction reaction (CO2RR) is an effective way of converting CO2 into value-added products using renewable energy, whose activity and selectivity can be in principle maneuvered by tuning the microenvironment near catalytic sites. Here, we demonstrate a strategy for tuning the microenvironment of CO2RR by learning from the natural chlorophyll and heme. Specifically, the conductive covalent organic frameworks (COFs) linked by piperazine serve as versatile supports for single-atom catalysts (SACs), and the pendant groups modified on the COFs can be readily tailored to offer different push-pull electronic effects for tunable microenvironment. As a result, while all the COFs exhibit high chemical structure stability under harsh conditions and good conductivity, the addition of -CH2NH2 can greatly enhance the activity and selectivity of CO2RR. As proven by experimental characterization and theoretical simulation, the electron-donating group (-CH2NH2) not only reduces the surface work function of COF, but also improves the adsorption energy of the key intermediate *COOH, compared with the COFs with electron-withdrawing groups (-CN, -COOH) near the active sites. This work provides insights into the microenvironment modulation of CO2RR electrocatalysts at the molecular level.

2.
Angew Chem Int Ed Engl ; : e202410625, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982877

ABSTRACT

Electrosynthesis of urea from CO2 and NO3- is a sustainable alternative to energy-intensive industrial processes. The challenge hindering the progress is the development of advanced electrocatalysts that yield urea with both high Faradaic efficiency (FE) and current density. In this work, we designed a new two-dimensional MOF, namely PcNi-Fe-O, constructed by nickel-phthalocyanine (NiPc) ligands and square-planar FeO4 nodes. PcNi-Fe-O exhibits remarkable performance to yield urea at a high current density of 10.1 mA cm-2 with a high FE(urea) of 54.1% in a neutral aqueous solution, surpassing those of most reported electrocatalysts. No obvious performance degradation was observed over 20 hours of continuous operation at the current density of 10.1 mA cm-2. By expanding the electrode area to 25 cm2 and operating for 8 hours, we obtained 0.164 g of high-purity urea, underscoring its potential for industrial applications. Mechanism study unveiled the enhanced performance might be ascribed to the synergistic interaction between NiPc and FeO4 sites. Specifically, NH3 produced at the FeO4 site can efficiently migrate and couple with the *NHCOOH intermediate adsorbed on the urea-producing site (NiPc). This synergistic effect results in a lower energy barrier for C-N bond formation than those of the reported catalysts with single active sites.

3.
Nat Prod Res ; : 1-9, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972058

ABSTRACT

This study's main objectives are to evaluate and confirm the effects of the extraction process, operating conditions, solvent type and solvent polarity on the yield and quality of the extracts. Supercritical carbon dioxide (scCO2) and Soxhlet were specially used in this study to extract bioactive chemicals from the seeds of a natural plant known as Plantago ovata. No studies have been published so far regarding the extraction from the seeds of this plant using scCO2.The effects of three operating parameters (pressure, temperature and particle size) on the extraction yield, total phenolic content, total flavonoid content (TFC), total tannin content (TTC) and antioxidant activity were assessed in this study using the Box-Behnken statistical experimental design (BBD). The chemical components in the extracts were separated and identified using gas chromatography mass spectrometry. According to the antioxidant activity results, scCO2 failed to produce bioactive compounds with interesting properties when operated within operating range conditions.

4.
Bioresour Technol ; : 131068, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972429

ABSTRACT

Cupriavidus necator is a facultative chemolithoautotrophic bacterium able to convert carbon dioxide into poly-3-hydroxybutyrate. This is highly promising as the conversion process allows the production of sustainable and biodegradable plastics. Poly-3-hydroxybutyrate accumulation is known to be induced by nutrient starvation, but information regarding the optimal stress conditions controlling the process is still heterogeneous and fragmentary. This study presents a comprehensive comparison of the effects of nutrient stress conditions, namely nitrogen, hydrogen, phosphorus, oxygen, and magnesium deprivation, on poly-3-hydroxybutyrate accumulation in C. necator DSM545. Nitrogen starvation exhibited the highest poly-3-hydroxybutyrate accumulation, achieving 54% of total cell dry weight after four days of nutrient stress, and a carbon conversion efficiency of 85%. The gas consumption patterns indicated flexible physiological mechanisms underlying polymer accumulation and depolymerization. These findings provide insights into strategies for efficient carbon conversion into bioplastics, and highlight the key role of C. necator for future industrial-scale applications.

5.
Sci Rep ; 14(1): 15608, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971874

ABSTRACT

Urea used in fertilization and feed supplement, as well as a starting material for the manufacture of plastics and drugs. Urea is most commonly produced by reacting carbon dioxide with ammonia at high temperature. Photocatalysis has gained attention as a sustainable pathway for performing urea. This work focus on designing very active photocatalysts based on cerium organic framework (Ce-BTC) doped with metal oxide nanoparticles (molybdenum permanganate, Mo(MnO4)5) for production of urea from coupling of ammonia with carbon dioxide. The prepared materials were characterized using different spectral analysis and the morphology was analysed using microscopic data. The effect of catalyst loading on the production rate of urea was investigated and the obtained results showed speed rate of urea production with high production yield at low temperature. The recyclability tests confirmed the sustainability of the prepared photocatlysts (Mo(MnO4)5@Ce-BTC) which supported the beneficial of the photocatalysis process in urea production.

6.
JPRAS Open ; 41: 88-97, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38979443

ABSTRACT

Introduction: In severe extremity trauma involving large tissue defects, early closure (e.g., free-flap surgery) of the defects is an essential step for good functional reconstruction; however, in some cases, early closure may be difficult. Highly concentrated carbon dioxide bathing, used to improve blood flow in ischemic limbs and skin ulcers, can also be applied in wound bed preparation for severe limb trauma. Patients and Methods: The three cases in this study required an average of 13 weeks of highly concentrated carbonated bathing, which led to significantly better wound bed preparation, even in the exposed bone and tendon regions. Results: We successfully achieved good functional limb reconstruction in patients with deep burns and severe open fractures by reducing wound infection and facilitating good wound bed preparation. Conclusions: Highly concentrated carbon dioxide bathing was sufficient to prevent frequent wound infections, even in severe extremity trauma involving large soft-tissue defects such as deep crush burns and Gustilo Anderson classification ≥3b open fractures of the extremities. To our knowledge, such interventions have not been reported in the past and are valuable as new procedures for wound bed preparation in severe extremity trauma from both cost and wound infection control perspectives.

7.
Article in English | MEDLINE | ID: mdl-38955970

ABSTRACT

Globally, the release of greenhouse gases primarily carbon dioxide (CO2) emissions to our Earth's surface has climbed by  about 45% to its present atmospheric concentration rate of 420 parts per million (ppm) during the industrial era. An unprecedented rise in atmospheric CO2 concentration has been claimed to lead to significant factors such as global warming potential (GWP) and climate change effects.  An increase in atmospheric CO2 concentrations is  a  serious threat to the environment. Recent research efforts have focused on mitigating emissions from anthropogenic point sources. Adsorption-based post-combustion CO2 capture using solid adsorbents is the most effective and efficient method for mitigating gas adsorption in the exhaust system. In the current study, activated carbons are obtained from three potential biomass, namely, (i) coconut shell, (ii) rice husk, and (iii) eucalyptus wood, through a - single-stage activation method. The prepared activated carbon materials are analyzed using proximate and ultimate analyses. Further investigations are performed using different characterization techniques to ensure their adsorption efficiency. Adsorbents are packed one after the other in an in-house fabricated double adsorption chamber and coupled to the exhaust unit of a generator. Test experiments are conducted to examine adsorbents' capture efficiency in emissions mitigation. Adsorbents' adsorption parameters are evaluated in experimental investigations. At 2.5 bar and 50 °C, a maximum loading capacity of samples is achieved by 4.85 mmol/g, 4.58 mmol/g, and 5.96 mmol/g for coconut shell, rice husk, and eucalyptus wood adsorbents, respectively. With a post-combustion carbon adsorption chamber, CO2 and NO are captured about 40-64% and 38-58%, respectively, for all three adsorbents. The thermodynamic parameter of isosteric heat of adsorption value is below 40 kJ/mol, ensuring physisorption for all adsorbents.

8.
Acta Physiol (Oxf) ; : e14197, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958262

ABSTRACT

AIM: How the cerebral metabolic rates of oxygen and glucose utilization (CMRO2 and CMRGlc, respectively) are affected by alterations in arterial PCO2 (PaCO2) is equivocal and therefore was the primary question of this study. METHODS: This retrospective analysis involved pooled data from four separate studies, involving 41 healthy adults (35 males/6 females). Participants completed stepwise steady-state alterations in PaCO2 ranging between 30 and 60 mmHg. The CMRO2 and CMRGlc were assessed via the Fick approach (CBF × arterial-internal jugular venous difference of oxygen or glucose content, respectively) utilizing duplex ultrasound of the internal carotid artery and vertebral artery to calculate cerebral blood flow (CBF). RESULTS: The CMRO2 was altered by 0.5 mL × min-1 (95% CI: -0.6 to -0.3) per mmHg change in PaCO2 (p < 0.001) which corresponded to a 9.8% (95% CI: -13.2 to -6.5) change in CMRO2 with a 9 mmHg change in PaCO2 (inclusive of hypo- and hypercapnia). The CMRGlc was reduced by 7.7% (95% CI: -15.4 to -0.08, p = 0.045; i.e., reduction in net glucose uptake) and the oxidative glucose index (ratio of oxygen to glucose uptake) was reduced by 5.6% (95% CI: -11.2 to 0.06, p = 0.049) with a + 9 mmHg increase in PaCO2. CONCLUSION: Collectively, the CMRO2 is altered by approximately 1% per mmHg change in PaCO2. Further, glucose is incompletely oxidized during hypercapnia, indicating reductions in CMRO2 are either met by compensatory increases in nonoxidative glucose metabolism or explained by a reduction in total energy production.

9.
Alzheimers Dement ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951718

ABSTRACT

INTRODUCTION: Vascular contributions to cognitive impairment and dementia (VCID) represent a major factor in cognitive decline in older adults. The present study examined the relationship between cerebrovascular reactivity (CVR) measured by magnetic resonance imaging (MRI) and cognitive function in a multi-site study, using a predefined hypothesis. METHODS: We conducted the study in a total of three analysis sites and 263 subjects. Each site performed an identical CVR MRI procedure using 5% carbon dioxide inhalation. A global cognitive measure of Montreal Cognitive Assessment (MoCA) and an executive function measure of item response theory (IRT) score were used as outcomes. RESULTS: CVR and MoCA were positively associated, and this relationship was reproduced at all analysis sites. CVR was found to be positively associated with executive function. DISCUSSION: The predefined hypothesis on the association between CVR and a global cognitive score was validated in three independent analysis sites, providing support for CVR as a biomarker in VCID. HIGHLIGHTS: This study measured a novel functional index of small arteries referred to as cerebrovascular reactivity (CVR). CVR was positively associated with global cognition in older adults. This finding was observed in three independent cohorts at three sites. Our statistical analysis plan was predefined before beginning data collection.

10.
Am J Infect Control ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969068

ABSTRACT

We report a large outbreak of SARS-CoV-2 in a residential living facility. Measurements of carbon dioxide levels, aerosol particle clearance, and airflow were used to identify and remediate areas with suboptimal ventilation. A simple intervention involving continuous operation of bathroom fans was effective in significantly improving ventilation in resident rooms.

11.
Article in English | MEDLINE | ID: mdl-38963922

ABSTRACT

Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating C═O bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C-Cx) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C-C0.5 catalyst achieves CO2 reduction reaction rates of 12000-15000 µmol·g-1·h-1 to CO and 1000-3200 µmol·g-1·h-1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction.

12.
Chemistry ; : e202402148, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962899

ABSTRACT

The high risk of CO poisoning justifies the need for indoor air quality control and warning systems based on the detection of low concentrations (ppm-ppb) of CO. Cobalt corrole complexes selectively bind CO vs. O2, CO2, N2, opening new fields of applications. By combining the CO chemisorption properties of cobalt corroles with the known sorption capacity of MOFs, we hope to obtain high performance sensing materials for CO detection. In addition, the exposed metal sites of MOFs lead to CO2 physisorption, allowing the co-detection of CO and CO2. In this work, PCN-222 a stable Zr-based MOF made from Ni(TCPP) with natural vacancies has been used as a porous matrix for the grafting of electron-poor metallocorroles. The materials were characterized by powder XRD, SEM and optical microscopy, BET analyses and gas adsorption measurements at 298 K. No degradation of the crystalline structure of PCN-222 was observed. At 1 atm, the adsorbed CO(g) volumes measured for the best materials were 12.15 cm3 g-1 and 14.01 cm3 g-1 for CoCorr2@PCN-222 and CoCorr3@PCN-222 respectively, and both materials exhibited high CO chemisorption and selectivity against O2, N2, and CO2 at low pressure due to the highest energy of the chemisorption process vs physisorption. (198 Words).

13.
Chempluschem ; : e202400189, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963082

ABSTRACT

The rapid pace of industrialization has led to a multitude of detrimental environmental consequences, including water pollution and global warming. Consequently, there is an urgent need to devise appropriate materials to address these challenges. Ionic porous organic polymers (iPOPs) have emerged as promising materials for oxoanion sequestration and non-redox CO2 fixation. Notably, iPOPs offer hydrothermal stability, structural tunability, a charged framework, and readily available nucleophilic counteranions. This review explores the significance of pores and charged functionalities alongside design strategies outlined in existing literature, mainly focusing on the incorporation of pyridinium and imidazolium units into nitrogen-rich iPOPs for oxoanion sequestration and non-redox CO2 fixation. The present review also addresses the current challenges and future prospects, delineating the design and development of innovative iPOPs for water treatment and heterogeneous catalysis.

14.
Sci Rep ; 14(1): 15386, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965298

ABSTRACT

In this study, we explore the mechanical treatment of two metal-organic frameworks (MOFs), HKUST-1 and MOF-76, applying various milling methods to assess their impact on stability, porosity, and CO2 adsorption capacity. The effects of different mechanical grinding techniques, such as high-energy ball milling and hand grinding, on these MOFs were compared. The impact of milling time, milling speed and ball size during high-energy ball milling was assessed via the Design of Experiments methodology, namely using a 33 Taguchi orthogonal array. The results highlight a marked improvement in CO2 adsorption capacity for HKUST-1 through hand milling, increasing from an initial 25.70 wt.% (5.84 mmol g-1) to 41.37 wt.% (9.40 mmol g-1), marking a significant 38% increase. In contrast, high-energy ball milling seems to worsen this property, diminishing the CO2 adsorption abilities of the materials. Notably, MOF-76 shows resistance to hand grinding, closely resembling the original sample's performance. Hand grinding also proved to be well reproducible. These findings clarify the complex effects of mechanical milling on MOF materials, emphasising the necessity of choosing the proper processing techniques to enhance their stability, texture, and performance in CO2 capture and storage applications.

15.
Chem ; 10(6): 1655-1667, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38966253

ABSTRACT

The reduction of CO2 with low overpotential and high selectivity is a crucial challenge in catalysis. Fortunately, natural systems have evolved enzymes that achieve this catalytic reaction very efficiently at a complex nickel-iron-sulfur cluster within carbon monoxide dehydrogenase (CODH). Extensive biochemical, crystallographic, and spectroscopic work has been done to understand the structures and mechanism involved in the catalytic cycle, which are summarized here from the perspective of mechanistic organometallic chemistry. We highlight the ambiguities in the data and suggest experiments that could lead to clearer understanding of the mechanism and structures of intermediates at the active-site cluster. These include parallel crystallography and spectroscopy, as well as the preparation of synthetic analogues that help to interpret structural and spectroscopic signatures.

16.
Glob Chang Biol ; 30(7): e17388, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967139

ABSTRACT

Permafrost thaw in northern peatlands causes collapse of permafrost peat plateaus and thermokarst bog development, with potential impacts on atmospheric greenhouse gas exchange. Here, we measured methane and carbon dioxide fluxes over 3 years (including winters) using static chambers along two permafrost thaw transects in northwestern Canada, spanning young (~30 years since thaw), intermediate and mature thermokarst bogs (~200 years since thaw). Young bogs were wetter, warmer and had more hydrophilic vegetation than mature bogs. Methane emissions increased with wetness and soil temperature (40 cm depth) and modelled annual estimates were greatest in the young bog during the warmest year and lowest in the mature bog during the coolest year (21 and 7 g C-CH4 m-2 year-1, respectively). The dominant control on net ecosystem exchange (NEE) in the mature bog (between +20 and -54 g C-CO2 m-2 year-1) was soil temperature (5 cm), causing net CO2 loss due to higher ecosystem respiration (ER) in warmer years. In contrast, wetness controlled NEE in the young and intermediate bogs (between +55 and -95 g C-CO2 m-2 year-1), where years with periodic inundation at the beginning of the growing season caused greater reduction in gross primary productivity than in ER leading to CO2 loss. Winter fluxes (November-April) represented 16% of annual ER and 38% of annual CH4 emissions. Our study found NEE of thermokarst bogs to be close to neutral and rules out large CO2 losses under current conditions. However, high CH4 emissions after thaw caused a positive net radiative forcing effect. While wet conditions favouring high CH4 emissions only persist for the initial young bog period, we showed that continued climate warming with increased ER, and thus, CO2 losses from the mature bog can cause net positive radiative forcing which would last for centuries after permafrost thaw.


Subject(s)
Carbon Dioxide , Climate Change , Greenhouse Gases , Methane , Permafrost , Wetlands , Methane/analysis , Methane/metabolism , Carbon Dioxide/analysis , Greenhouse Gases/analysis , Temperature , Soil/chemistry , Canada , Seasons
17.
Sci Total Environ ; 946: 174326, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950631

ABSTRACT

A significant reduction in carbon dioxide (CO2) emissions caused by transportation is essential for attaining sustainable urban development. Carbon concentrations from road traffic in urban areas exhibit complex spatial patterns due to the impact of street configurations, mobile sources, and human activities. However, a comprehensive understanding of these patterns, which involve complex interactions, is still lacking due to the human perspective of road interface characteristics has not been taken into account. In this study, a mobile travel platform was constructed to collect both on-road navigation Street View Panoramas (OSVPs) and the corresponding CO2 concentrations. >100 thousand sample pairs that matched "street view-CO2 concentration" were obtained, covering 675.8 km of roads in Shenzhen, China. In addition, four ensemble learning (EL) models were utilized to establish nonlinear connections between the semantic and object features of streetscapes and CO2 concentrations. After performing EL fusion modeling, the predictive R2 in the test set exceeded 90 %, and the mean absolute error (MAE) was <3.2 ppm. The model was applied to Baidu Street View Panoramas (BSVPs) in Shenzhen to generate a map of average on-road CO2 with a 100 m resolution, and the Local Indicator of Spatial Association (LISA) was then used to identify high CO2 intensity spatial clusters. Additionally, the Light Gradient Boost-SHapley Additive exPlanation (LGB-SHAP) analysis revealed that vertically planted trees can reduce CO2 emissions from on-road sources. Moreover, the factors that affect on-road CO2 exhibit interaction and threshold effects. Street View Panoramas (SVPs) and Artificial Intelligence (AI) were adopted here to enhance the spatial measurement of on-road CO2 concentrations and the understanding of driving factors. Our approach facilitates the assessment and design of low-emission transportation in urban areas, which is critical for promoting sustainable traffic development.

18.
Curr Allergy Asthma Rep ; 24(7): 373-379, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861135

ABSTRACT

PURPOSE OF REVIEW: Delineation of the impact of elevated carbon dioxide and concomitant global warming on airborne allergens is performed. RECENT FINDINGS: European tree pollen trends in general showed earlier start and end dates and increased total pollen release, with some differences both in locale and among species. Earlier flowering was also seen with grasses and weeds. In the case of some boreal trees, flowering was delayed due to a pre-seasonal requirement for necessary accumulated chilling temperature to achieve bud-set. Anthropogenic climate change induced rise in temperature and CO2 levels has resulted in demonstrable increases in aeroallergens. This has been most dramatic in tree pollen annual load, but also seen with grasses and weeds. Collected data is greatest for the Northern Hemisphere, especially the European continent, with supporting data from North America and Australia.


Subject(s)
Allergens , Climate Change , Pollen , Allergens/immunology , Humans , Pollen/immunology , Carbon Dioxide/analysis , Trees/immunology , Air Pollutants/immunology , Air Pollutants/adverse effects
19.
Sci Rep ; 14(1): 13449, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862549

ABSTRACT

Clean fire extinguishing systems applicable to the pottery jar liquor warehouse are in demand. In this study, taking 53vol% liquor as the research subject, fire models of various clean fire extinguishing systems comprising water mist, liquid carbon dioxide (LCO2) and liquid nitrogen (LN2) were established using a fire dynamic simulator to determine their fire extinguishing effect. A feasibility assessment of systems was performed under different fire source types, fire source sizes, and ventilation conditions. The fire extinguishing efficiency was analyzed in terms of the fire extinguishing time, oxygen concentration, and space temperature. The results showed that the success rate of the LCO2 and LN2 fire extinguishing systems was 100%, whereas the success rate of the water mist fire extinguishing system was 95%. In terms of reducing the oxygen concentration at the bottom of the space and the temperature in the space, the LCO2 system exhibited the best performance, followed by the LN2 system, and lastly the water mist. Under different ventilation conditions and fire source types, the LCO2 fire extinguishing system was least affected, whereas the effectiveness of the water mist fire extinguishing system reduced under natural ventilation conditions, and the extinguishing efficiency of the LN2 fire extinguishing system was affected by the fire source type. Overall, the LCO2 system presented more advantages in extinguishing fires in pottery jar liquor warehouses and can provide a new idea for the development and application of clean and efficient fire extinguishing systems.

20.
J Colloid Interface Sci ; 673: 60-69, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38875798

ABSTRACT

Developing an efficient electrocatalyst that enables the efficient electrochemical conversion from CO2 to CH4 across a wide potential range remains a formidable challenge. Herein, we introduce a precatalyst strategy that realizes the in situ electrochemical reconstruction of ultrafine Cu2O nanodomains, intricately coupled on the CeO2 surface (Cu2O/CeO2), originating from the heterointerface comprised of ultrafine CuO nanodomains on the CeO2 surface (CuO/CeO2). When served as the electrocatalyst for the electrochemical CO2 reduction reaction, Cu2O/CeO2 delivers a selectivity higher than 49 % towards CH4 over a broad potential range from -1.2 V to -1.7 V vs. RHE, maintaining negligible activity decay for 20 h. Notably, the highest selectivity for CH4 reaches an impressive 70 % at -1.5 V vs. RHE. Through the combination of comprehensive analysis including synchrotron X-ray absorption spectroscopy, spherical aberration-corrected high-angle annular dark field scanning transmission electron microscope as well as the density functional theoretical calculation, the efficient production of CH4 is attributed to the coherent interface between Cu2O and CeO2, which could converted from the original CuO and CeO2 interface, ensuring abundant active sites and enhanced intrinsic activity and selectivity towards CH4.

SELECTION OF CITATIONS
SEARCH DETAIL
...