Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Oecologia ; 203(3-4): 323-333, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37875736

ABSTRACT

Functional traits are morphological and physiological characteristics that determine growth, reproduction, and survival strategies. The leaf economics spectrum proposes two opposing life history strategies: species with an "acquisitive" strategy grow fast and exploit high-resource environments, while species with a "conservative" strategy emphasize survival and slow growth under low resource conditions. We analyzed intra and interspecific variation in nine functional traits related to biomass allocation and tissue quality in seven Neotropical palm species from understory and canopy strata. We expected that the level of resources of a stratum that a species typically exploits would determine the dominance of either the exploitative or conservative strategy, as well as degree of divergence in functional traits between species. If this is correct, then canopy species will show an acquisitive strategy emphasizing traits targeting a larger size, whereas understory species will show a conservative strategy with traits promoting efficient biomass allocation and survival in the shade. Two principal components (57.22% of the variation) separated palm species into: (a) canopy species whose traits were congruent with the acquisitive strategy and emphasized large size (i.e., diameter, height, carbon content, and leaf area), and (b) understory species whose traits were associated with efficient biomass allocation (i.e., dry mass fraction -DMF- and tissue density). As we unravel the variation in functional traits in palms, which make up a substantial proportion of the tropical flora, we gain a deeper understanding of how plants adapt to environmental gradients.


Subject(s)
Arecaceae , Forests , Biomass , Carbon , Adaptation, Physiological , Arecaceae/physiology , Plant Leaves/physiology
2.
Glob Chang Biol ; 29(11): 3098-3113, 2023 06.
Article in English | MEDLINE | ID: mdl-36883779

ABSTRACT

Fragmented tropical forest landscapes preserve much of the remaining biodiversity and carbon stocks. Climate change is expected to intensify droughts and increase fire hazard and fire intensities, thereby causing habitat deterioration, and losses of biodiversity and carbon stock losses. Understanding the trajectories that these landscapes may follow under increased climate pressure is imperative for establishing strategies for conservation of biodiversity and ecosystem services. Here, we used a quantitative predictive modelling approach to project the spatial distribution of the aboveground biomass density (AGB) by the end of the 21st century across the Brazilian Atlantic Forest (AF) domain. To develop the models, we used the maximum entropy method with projected climate data to 2100, based on the Intergovernmental Panel on Climate Change Representative Concentration Pathway (RCP) 4.5 from the fifth Assessment Report. Our AGB models had a satisfactory performance (area under the curve > 0.75 and p value < .05). The models projected a significant increase of 8.5% in the total carbon stock. Overall, the projections indicated that 76.9% of the AF domain would have suitable climatic conditions for increasing biomass by 2100 considering the RCP 4.5 scenario, in the absence of deforestation. Of the existing forest fragments, 34.7% are projected to increase their AGB, while 2.6% are projected to have their AGB reduced by 2100. The regions likely to lose most AGB-up to 40% compared to the baseline-are found between latitudes 13° and 20° south. Overall, although climate change effects on AGB vary latitudinally for the 2071-2100 period under the RCP 4.5 scenario, our model indicates that AGB stocks can potentially increase across a large fraction of the AF. The patterns found here are recommended to be taken into consideration during the planning of restoration efforts, as part of climate change mitigation strategies in the AF and elsewhere in Brazil.


Subject(s)
Ecosystem , Trees , Biomass , Brazil , Climate Change , Forests , Carbon , Tropical Climate
3.
Environ Monit Assess ; 195(4): 492, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36943528

ABSTRACT

Deforestation accounts for the majority of greenhouse gas emissions in developing countries. In Brazil, deforestation represents ~ 70% of the nation's greenhouse gas emissions. Among the main deforested vegetation, Cerrado (Brazilian savanna) occupies a prominent position as it is the second biggest biome in Brazil. Despite its importance, there are still few estimates of above and belowground biomass of Cerrado vegetation encompassing its structural and spatial complexity. Also, Cerrado holds a specific biodiversity that is normally undervalued and which is being lost in the fires of agricultural fronts. In this context, this study aimed to verify the relationship of the existing flora biodiversity in a cerrado stricto sensu with its aboveground biomass and carbon stocks. The possibility of a relationship between fine root mass and soil organic carbon content was also verified. The study area presented a total of 67 species and 798 trees (average: 1596 trees ha-1). The mean total aboveground biomass and carbon stocks were 77.08 Mg ha-1 and 38.54 Mg ha-1 respectively. Soil organic carbon stock (0-30 cm) was 8.51 Mg ha-1 whereas fine roots were 1.637 Mg ha-1. Total aboveground biomass presented a highly significant asymptotic relationship with biodiversity demonstrating its importance in reaching high biomass accumulation. A significant relationship between soil organic carbon content and fine root biomass was found making easier belowground biomass estimates.


Subject(s)
Forests , Greenhouse Gases , Biomass , Brazil , Soil/chemistry , Carbon/analysis , Environmental Monitoring , Biodiversity , Trees
4.
Biology (Basel) ; 12(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36829599

ABSTRACT

Every year more than 150,000 tons of resin used in a myriad of industrial applications are produced by Brazilian plantations of Pinus elliottii Engelm. (slash pine), which are also used for timber. A pine tree can be tapped for resin over a period of several years. Resin is a complex mixture of terpenes, which are carbon-rich molecules, presumably influencing pine plantation carbon budgets. A total of 270 trees (overall mean DBH of 22.93 ± 0.11 cm) of 14-, 24-, and 26-year-old stands had their C content measured. Three different treatments (intact, wounded panels, and wounded + chemically stimulated panels, 30 trees each) were applied per site. Above- and belowground biomass, as well as resin yield, were quantified for two consecutive years. Data were statistically evaluated using normality distribution tests, analyses of variance, and mean comparison tests (p ≤ 0.05). The highest resin production per tree was recorded in the chemically stimulated 14-year-old stand. Tree dry wood biomass, a major stock of carbon retained in cell wall polysaccharides, ranged from 245.69 ± 11.73 to 349.99 ± 16.73 kg among the plantations. Variations in carbon concentration ranged from 43% to 50% with the lowest percentages in underground biomass. There was no significant difference in lignin concentrations. Soils were acidic (pH 4.3 ± 0.10-5.83 ± 0.06) with low C (from 0.05% to 1.4%). Significantly higher C stock values were recorded in pine biomass compared to those reported for temperate zones. Resin-tapping biomass yielded considerable annual increments in C stocks and should be included as a relevant component in C sequestration assessments of planted pine forests.

5.
Sci Total Environ ; 854: 158508, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36063938

ABSTRACT

Soil microbial communities regulate a myriad of critical biogeochemical functions in forest ecosystems. Anthropogenic disturbances in natural forests could drive major shifts in plant and microbial communities resulting in substantial biogeochemical alterations. We evaluated the effect of anthropogenic disturbances in the soils of Andean temperate forests with different levels of degradation: i) mature forest (MF), ii) secondary forest (SF), iii) degraded forest (DF), and iv) deforested site converted into a prairie (DP). We quantified total soil carbon, nitrogen and phosphorous (TC, TN, and TP), and available nutrient stocks. The soil microbial community structure (i.e., composition, diversity, and abundance) was assessed under each condition from amplicon sequence variants (ASVs) obtained via NGS-Illumina sequencing and subsequent microbiome analysis. There were no significant differences in TC, TN, and TP across the forested states (MF, SF, DF). The deforested site condition presented significantly higher soil TC, TN, and TP and the lowest C:N, C:P, and N:P ratios. The DP soil microbiome was significantly more diverse in bacteria (D' = 0.47 ± 0.04); and fungi (H' = 5.11 ± 0.33). The bacterial microbiome was dominated by Proteobacteria (45.35 ± 0.89 %), Acidobacteria (20.73 ± 1.48 %), Actinobacteria (12.59 ± 0.34 %), and Bacteroidetes (7.32 ± 0.36 %) phyla in all sites. The soil fungal community was dominated by the phyla Ascomycota (42.11 ± 0.95 %), Mortierellomycota (28.74 ± 2.25 %), Basidiomycota (24.61 ± 0.52), and Mucoromycota (2.06 ± 0.43 %). Yet, there were significant differences at the genus level across conditions. Forest to prairie conversion facilitated the introduction of exotic bacterial and fungal taxa associated with agricultural activities and livestock grazing (∼50 % of DP core microbiome composed of unique ASVs). For example, the ammonia-oxidizing bacteria community emerged as a dominant group in the DP soils, along with a reduction in the ectomycorrhizal fungi community. The surface soil microbial community was surprisingly resistant to forest degradation and did not show a clear succession along the degradation gradient, but it was strongly altered after deforestation.


Subject(s)
Ascomycota , Microbiota , Soil/chemistry , Forests , Bacteria , Soil Microbiology
6.
BMC Res Notes ; 14(1): 153, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33883007

ABSTRACT

OBJECTIVES: Tree legume species play an important role in forest restoration in the tropics. Understanding how different species adjust carbohydrate allocation and growth under distinct nutrient availability will enhance the success of restoring degraded areas. DATA DESCRIPTION: A 2-year tropical forest plantation of the Forest Restoration Program of the Balbina Hydropower Dam was evaluated. Three non-N-fixing (Cenostigma tocantinum, Dipteryx odorata and Senna reticulata) and three N-fixing (Clitoria fairchildiana, Inga edulis and Acacia spp.) tree legume species were either fertilized or not fertilized. Growth rates and biomass allocation were calculated, and carbon (C) fractions and nitrogen (N), phosphorus (P) and nonstructural carbohydrate (NSC) concentrations were determined. Multiple nutrient additions increased the growth rates and aboveground biomass production of fertilized plants. According to the results presented, different species and N- fixers respond differently to fertilization regimes. The authors encourage the use of the presented data in meta-analysis studies that consider the fertilization or nutrient deficiency effects on growth, carbohydrate and nutrient responses. N-fixing species with high biomass growth and foliar N are important for restoring N and C cycles in nutrient-limited soils. Fertilization treatments are fundamental during the early stages of forest plantation development.


Subject(s)
Fabaceae , Nitrogen , Biomass , Carbohydrates , Fertilization , Forests , Nutrients , Phosphorus , Soil , Tropical Climate
7.
New Phytol ; 229(6): 3065-3087, 2021 03.
Article in English | MEDLINE | ID: mdl-33207007

ABSTRACT

Tropical forests vary widely in biomass carbon (C) stocks and fluxes even after controlling for forest age. A mechanistic understanding of this variation is critical to accurately predicting responses to global change. We review empirical studies of spatial variation in tropical forest biomass, productivity and woody residence time, focusing on mature forests. Woody productivity and biomass decrease from wet to dry forests and with elevation. Within lowland forests, productivity and biomass increase with temperature in wet forests, but decrease with temperature where water becomes limiting. Woody productivity increases with soil fertility, whereas residence time decreases, and biomass responses are variable, consistent with an overall unimodal relationship. Areas with higher disturbance rates and intensities have lower woody residence time and biomass. These environmental gradients all involve both direct effects of changing environments on forest C fluxes and shifts in functional composition - including changing abundances of lianas - that substantially mitigate or exacerbate direct effects. Biogeographic realms differ significantly and importantly in productivity and biomass, even after controlling for climate and biogeochemistry, further demonstrating the importance of plant species composition. Capturing these patterns in global vegetation models requires better mechanistic representation of water and nutrient limitation, plant compositional shifts and tree mortality.


Subject(s)
Forests , Tropical Climate , Biomass , Trees , Wood
8.
J Environ Manage ; 276: 111344, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32932070

ABSTRACT

Mine reclamation has long relied on reusing topsoil to mitigate mining impacts but recently constructed soils (i.e., Technosols) have emerged as novel technologies for restoring post mining landscapes. However, their success depends on their ability to sustain soil functions. To assess the efficiency of a limestone mine reclamation, we measured the soil quality (SQ) of a three- (SC3) and seven-year-old (SC7) Technosol under sugarcane, and one 20-year-old (P20) Technosol under pasture, constructed with limestone spoil in southeastern Brazil. Soil chemical, physical, and biological attributes were evaluated and compared with those of an adjacent natural soil (NS; Rhodic Lixisol). We also tested the Soil Management Assessment Framework (SMAF) for assessing the SQ of the studied soils. SMAF was suitable to detect SQ changes over the years of reclamation. After three and seven years under sugarcane cultivation, the Technosols showed similar SQ indexes (= 0.70 and 0.67) to that of the native soil (SQ = 0.69), whereas after 20 years under pasture the SQ (= 0.88) of P20 was superior to that of NS. Overall, the Technosols recovered most of the ecosystem services expected for healthy soils, especially in P20, where carbon stocks were 2.7 times higher than in NS (82.1 vs 30.35 Mg C ha-1). We highlight the importance of using soil quality assessment tools, such as SMAF, in mine reclamation. In summary, Technosols from limestone wastes could restore basic soil functions under tropical environmental conditions within only 20 years.


Subject(s)
Soil Pollutants , Waste Management , Brazil , Ecosystem , Mining , Soil , Soil Pollutants/analysis
9.
Ecology ; 101(10): e03131, 2020 10.
Article in English | MEDLINE | ID: mdl-32629538

ABSTRACT

The biogeographic origin of species may help to explain differences in average tree height and aboveground biomass (AGB) of tropical mountain forests. After the Andean uplift, small-statured trees should have been among the initial colonizers of the highlands (new cold environment) from the lowland tropics, since these species are pre-adapted to cold conditions with narrow vessels that are relatively resistant to freezing. If the descendants of these small-statured clades continue to dominate tropical highland forests, there will be a high co-occurrence of close relatives at high elevations. In other words, this scenario predicts a systematic decline in tree size, AGB, and phylogenetic diversity with elevation. In contrast, the colonization of Andean forests by some large-statured clades that originated in temperate regions may modify this expectation and promote a mixing of tropical and temperate clades, thereby increasing the phylogenetic diversity in tropical highland forests. This latter scenario predicts an increase or no change of tree size, AGB, and phylogenetic diversity with elevation. We assessed how the historical immigration of large-statured temperate-affiliated tree lineages adapted to cold conditions may have influenced the composition and structure of Andean forests. Specifically, we used 92 0.25-ha forest inventory plots distributed in the tropical Andes Mountains of Colombia to assess the relationship between the phylogenetic diversity and AGB along elevational gradients. We classified tree species as being either "tropical affiliated" or "temperate affiliated" and estimated their independent contribution to forest AGB. We used structural equation modeling to separate the direct and indirect effect of elevation on AGB. We found a hump-shaped relationship of phylogenetic diversity, AGB, and tree size with elevation. The high phylogenetic diversity found between 1,800-2,200 m above sea level (asl) was due to the mixing of highland floras containing many temperate-affiliated species, and lowland floras containing mostly tropical-affiliated species. The high AGB in highland forests, which contrasted with the expected decline of AGB with elevation, was likely due to the significant contribution of temperate-affiliated species. Our findings highlight the lasting importance of biogeographic history on the composition and structure of Andean mountain forests.


Subject(s)
Forests , Tropical Climate , Biomass , Colombia , Phylogeny
10.
Sci Total Environ ; 729: 138767, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32387769

ABSTRACT

Non-legume bioenergy crops can be fertilized with animal manures instead of mineral fertilizers, but the simultaneous application of carbon (C) and nitrogen (N) with manures can increase nitrous oxide (N2O) emissions. On the other hand, manure could increase soil organic C stocks and partly offset greenhouse gas (GHG) emissions and global warming potential (GWP) of crop systems. We performed a two-year study in a biofuel cropping system with sunflower and canola to examine the effects of manure fertilization on grain yields and N use efficiency of crops, and on GWP and GHG intensity (GHGI) in no-till soils under subtropical conditions. The GWP and GHGI were calculated from measured methane (CH4) and N2O emissions and soil organic C stock change, and from estimated carbon dioxide emissions associated with agricultural inputs and farm operations. The following treatments were tested: (i) mineral fertilizer (MF); (ii) poultry manure (PM); (iii) pig deep-litter (PDL); and (iv) no-N control. The application rate of each treatment was adjusted to provide 60 kg available N ha-1 to crops. Grain yield and N accumulated by sunflower and canola were greater in fertilized treatments than in the control, and did not differ among N sources. However, crop N use efficiency was on average 50% lower with manures than MF. CH4 emissions were not affected by N sources, but N2O emissions increased as follows: control (1.37) < MF (2.04) < PDL (4.12) < PM (4.95 kg N ha-1). On the other hand, soil organic C stocks increased more rapidly with manures than MF, resulting in significantly lower GWP and GHGI with manures than MF after two years. These results indicate that animal manures can replace MF as the main source of N to non-legume oil crops and reduce net GHG emissions in biofuel cropping systems under subtropical conditions.


Subject(s)
Global Warming , Agriculture , Animals , Biofuels , Fertilizers , Greenhouse Gases , Methane , Minerals , Nitrogen , Nitrous Oxide , Soil , Swine
11.
PeerJ ; 8: e8790, 2020.
Article in English | MEDLINE | ID: mdl-32292646

ABSTRACT

Mexico has more than 750,000 ha of mangroves and more than 400,000 ha of seagrasses. However, approximately 200,000 ha of mangroves and an unknown area of seagrass have been lost due to coastal development associated with urban, industrial and tourist purposes. In 2018, the approved reforms to the General Law on Climate Change (LGCC) aligned the Mexican law with the international objectives established in the 2nd Article of the Paris Agreement. This action proves Mexico's commitment to contributing to the global target of stabilizing the greenhouse gas emissions concentration in the planet. Thus, restoring and conserving mangrove and seagrass habitats could contribute to fulfilling this commitment. Therefore, as a first step in establishing a mitigation and adaptation plan against climate change with respect to conservation and restoration actions of these ecosystems, we evaluated Mexican blue carbon ecosystems through a systematic review of the carbon stock using the standardized method of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We used the data from 126 eligible studies for both ecosystems (n = 1220). The results indicated that information is missing at the regional level. However, the average above and below ground organic carbon stocks from mangroves in Mexico is 113.6 ± 5.5 (95% CI [99.3-118.4]) Mg Corg ha-1 and 385.1 ± 22 (95% CI [344.5-431.9]) Mg Corg ha-1, respectively. The variability in the Corg stocks for both blue carbon ecosystems in Mexico is related to variations in climate, hydrology and geomorphology observed along the country's coasts in addition to the size and number of plots evaluated with respect to the spatial cover. The highest values for mangroves were related to humid climate conditions, although in the case of seagrasses, they were related to low levels of hydrodynamic stress. Based on the official extent of mangrove and seagrass area in Mexico, we estimate a total carbon stock of 237.7 Tg Corg from mangroves and 48.1 Tg Corg from seagrasses. However, mangroves and seagrasses are still being lost due to land use change despite Mexican laws meant to incorporate environmental compensation. Such losses are largely due to loopholes in the legal framework that dilute the laws' effectiveness and thus ability to protect the ecosystem. The estimated emissions from land use change under a conservative approach in mangroves of Mexico were approximately 24 Tg CO2e in the last 20 years. Therefore, the incorporation of blue carbon into the carbon market as a viable source of supplemental finance for mangrove and seagrass protection is an attractive win-win opportunity.

12.
Rev. med. vet. zoot ; 67(1): 72-87, ene.-abr. 2020. tab, graf
Article in English | LILACS, COLNAL | ID: biblio-1127014

ABSTRACT

ABSTRACT Soil carbon sequestration refers to the process of transferring carbon dioxide (CO2) from the atmosphere into the soil. The objective of this research was to do a simulation of how soil management factors in pastures can contribute to mitigate climate change by reducing soil CO2-eq emissions due to increases of soil organic carbon.In livestock systems of Cumaral (Meta), Colombia, IPCC Tier 2 methodology was used to compare changes in soils C stocks under (a) two pasture types: Brachiaria decumbens grass pastures (B1) and Brachiaria decumbens grass pastures associated with Pueraria phaseloides legume (B2); (b) four increasing doses of CaCO?: 0, 1.1, 2.2, 3.3 tons ha-1; (c) three sources of N, P, K fertilizers: 100 kg ha-1 Urea, 200 kg ha-1 Triple Superphosphate and 100 kg ha-1 Potassium Chloride. The statistical design was a randomized complete block in factorial arrangement 2 x 4 x 3. Tukey test indicated that the inclusion of kudzú in B. decumbens pasture (B2), 2.2 and 3.3 tons CaCO3 ha-1 in both pastures, and the fertilization of B1 with Urea and B2 with Triple Superphosphate presented a greater benefit in soil C accumulation and CO2-eq emissions neutralization. Adittional cluster analysis showed that B2 liming with higher lime doses regardless of the type of fertilizer used presented major soil C stored grouped in Cluster 1. We concluded that these soil management factors should be feasible to implement in pastures, that can help offset the negative effects of global climate change on livestock systems at tropical zones.


RESUMEN El secuestro de carbono en el suelo se refiere al proceso de transferencia de dióxido de carbono (CO2) de la atmósfera al suelo. El objetivo de esta investigación fue hacer una simulación de cómo los factores de manejo del suelo en pasturas, pueden contribuir a mitigar el cambio climático al reducir las emisiones de CO2-eq del suelo debido a los aumentos de acumulación de carbono orgánico en el suelo. En sistemas ganaderos de Cumaral (Meta), Colombia, se utilizó la metodología Tier 2 del Panel Intergubernamental sobre Cambio Climático (IPCC) para comparar los cambios en las existencias de C del suelo en (a) dos tipos de pasturas: pasturas de pasto Brachiaria decumbens (Bl) y pasturas del pasto Brachiaria decumbens asociadas con leguminosa de Pueraria phaseloi-des (B2); cuatro dosis crecientes de CaCO?: 0, l.l, 2.2, 3.3 tons ha1; y (c) tres fuentes de fertiliantes N, P, K: 100 kg ha-1 Urea, 200 kg ha-1 Superfosfato triple y 100 kg ha-1 Cloruro de potasio. El diseño estadístico fue un bloques completos al azar en arreglo factorial 2 x 4 x 3. El test de Tukey indicó que la inclusión de la leguminosa en la pastura (B2), la aplicación de 2.2 y 3.3 tons CaCO3 ha-1 en ambas pasturas y la fertilización de B1 con Urea y de B2 con Superfosfato triple presentaron un mayor beneficio en la acumulación de C del suelo y la neutralización de las emisiones de CO2-eq. El análisis de cluster adicional mostró que B2 encalada con más altas dosis de cal indistintamente del tipo de fertilizante usado presentaron mayor almacenamiento de C del suelo agrupados en el Cluster 1. Nosotros concluimos que estos factores de manejo de suelos deberían ser factibles de implementar en pasturas, lo que puede ayudar a compensar los efectos negativos del cambio climático global en los sistemas ganaderos de zonas tropicales.


Subject(s)
Humans , Animals , Soil , Climate Change , Carbon , Carbon Dioxide , Brachiaria , Fertilizers , Carbon Sequestration , Potassium Chloride , Research , Urea , Pasture , Simulation Exercise , Dosage
13.
Curr Biol ; 28(15): 2500-2505.e4, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30057311

ABSTRACT

The loss of carbon stocks through agricultural land-use change is a key driver of greenhouse gas emissions [1-4], and the methods used to manage agricultural land will have major impacts on the global climate in the 21st century [4-9]. It remains unresolved whether carbon losses would be minimized by increasing farm yields and limiting the conversion of natural habitats ("land sparing"), or maximizing on-farm carbon stocks, even at the cost of reduced yields and therefore greater habitat clearance ("land sharing"). In this paper, we use field surveys of over 11,000 trees, in-depth interviews with farmers, and existing agricultural data, to evaluate the potential impacts of these contrasting approaches, and plausible intermediate strategies, on above-ground carbon stocks across a diverse range of agricultural and natural systems. Our analyses include agroforestry and oil palm plantations in the humid tropics of Ghana; cattle ranching in dry tropical forest in Mexico; and arable cropping in temperate wetlands and forests in Poland. Strikingly, despite the range of systems investigated, land sparing consistently had a higher potential to sustain regional above-ground carbon stocks than any other strategy. This was the case in all three regions and at all plausible levels of food production, including falls in demand. However, if agricultural production increases to meet likely future demand levels, we project large decreases in above-ground carbon stocks, regardless of land-use strategy. Our results strongly suggest that maintaining above-ground carbon stocks will depend on both limiting future food demand and minimizing agricultural expansion through linking high-yield farming with conserving or restoring natural habitats.


Subject(s)
Agriculture/methods , Carbon Sequestration , Conservation of Natural Resources , Ghana , Mexico , Poland
14.
Glob Chang Biol ; 23(12): 5260-5272, 2017 12.
Article in English | MEDLINE | ID: mdl-28614629

ABSTRACT

Balancing the production of food, particularly meat, with preserving biodiversity and maintaining ecosystem services is a major societal challenge. Research into the contrasting strategies of land sparing and land sharing has suggested that land sparing-combining high-yield agriculture with the protection or restoration of natural habitats on nonfarmed land-will have lower environmental impacts than other strategies. Ecosystems with long histories of habitat disturbance, however, could be resilient to low-yield agriculture and thus fare better under land sharing. Using a wider suite of species (birds, dung beetles and trees) and a wider range of livestock-production systems than previous studies, we investigated the probable impacts of different land-use strategies on biodiversity and aboveground carbon stocks in the Yucatán Peninsula, Mexico-a region with a long history of habitat disturbance. By modelling the production of multiple products from interdependent land uses, we found that land sparing would allow larger estimated populations of most species and larger carbon stocks to persist than would land sharing or any intermediate strategy. This result held across all agricultural production targets despite the history of disturbance and despite species richness in low- and medium-yielding agriculture being not much lower than that in natural habitats. This highlights the importance, in evaluating the biodiversity impacts of land use, of measuring population densities of individual species, rather than simple species richness. The benefits of land sparing for both biodiversity and carbon storage suggest that safeguarding natural habitats for biodiversity protection and carbon storage alongside promoting areas of high-yield cattle production would be desirable. However, delivering such landscapes will probably require the explicit linkage of livestock yield increases with habitat protection or restoration, as well as a deeper understanding of the long-term sustainability of yields, and research into how other societal outcomes vary across land-use strategies.


Subject(s)
Agriculture/methods , Biodiversity , Carbon Cycle , Conservation of Natural Resources/methods , Livestock/growth & development , Animals , Cattle , Ecosystem , Food Supply , Mexico , Population Density
15.
Rev. biol. trop ; Rev. biol. trop;64(1): 399-412, ene.-mar. 2016. tab, ilus
Article in Spanish | LILACS | ID: biblio-843286

ABSTRACT

ResumenLas estimaciones de carbono en bosques tropicales, es muy importante para entender el papel de estos ecosistemas en el ciclo de este elemento. Este conocimiento permite apoyar y soportar las decisiones y la formulación de estrategias de mitigación y adaptación para reducir las emisiones de gases de efecto invernadero (GEI). Sin embargo, cuantificaciones detalladas de las existencias totales de carbono en los bosques montanos tropicales son limitadas, a pesar de su importancia científica y para el manejo de los ecosistemas (e.g. REDD+). Cuarenta y cuatro parcelas se establecieron en un paisaje heterogéneo compuesto por bosques maduros ubicados en el sur de los Andes colombianos. El objetivo fue identificar el papel de estos ecosistemas en el almacenamiento de carbono, evaluar la contribución de los reservorios analizados (biomasa aérea, biomasa subterránea y necromasa), y realizar contribuciones al enfoque de REDD+ en la escala de proyecto. En cada parcela se midieron todos los árboles, palmas y helechos con diámetro (D) ≥ 15 cm. En el caso de las palmas, se midió la altura de 40 % de los individuos, siguiendo el Protocolo Nacional de Colombia para estimar la biomasa y el carbono en los bosques naturales. Ecuaciones alométricas nacionales fueron utilizadas para estimar la biomasa aérea, y una ecuación general propuesta por el IPCC, fue utilizada para la estimación de la biomasa subterránea. La biomasa aérea de las palmas se estimó mediante un modelo local desarrollado para bosques montanos y premontanos. La necromasa se estimó para los árboles muertos en pie y los detritos gruesos. En este último caso, se midió la longitud y los diámetros de los extremos de las piezas. Las muestras para las estimaciones de densidad de madera, se recogieron en el campo y se analizaron en el laboratorio. El carbono promedio total se estimó en 545.9 ± 84.1 Mg/ ha (± SE). La biomasa aérea contribuyó con 72.5 %, la biomasa subterránea con 13.6 %, y la necromasa con 13.9 %. La principal conclusión de este estudio, es que los bosques montanos tropicales almacenan grandes cantidades de carbono, similares a las almacenadas por los bosques tropicales de tierras bajas. Además, se observó que la inclusión de otros compartimientos podría contribuir en más del 20 % de total del almacenamiento de carbono, lo que indica que las estimaciones que sólo incluyen la biomasa aérea, subestiman en gran medida las reservas de carbono en los ecosistemas forestales. Por tal razón, se sugiere incluir otros compartimientos en las estimaciones de carbono para iniciativas o proyectos REDD+.


AbstractCarbon estimations in tropical forests are very important to understand the role of these ecosystems in the carbon cycle, and to support decisions and the formulation of mitigation and adaptive strategies to reduce the greenhouse emission gases (GHG). Nevertheless, detailed ground-based quantifications of total carbon stocks in tropical montane forests are limited, despite their high value in science and ecosystem management (e.g. REDD+). The objective was to identify the role of these ecosystems as carbon stocks, to evaluate the contribution of the pools analyzed (aboveground biomass, belowground biomass and necromass), and to make contributions to the REDD+ approach from the project scale. For this study, we established 44 plots in a heterogeneous landscape composed by old-grown forests located in the Southern Colombian Andes. In each plot, all trees, palms and ferns with diameter (D) ≥ 15 cm were measured. In the case of palms, the height was measured for 40 % of the individuals, following the Colombia National Protocol to estimate biomass and carbon in natural forests. National allometric equations were used to estimate aboveground biomass, and a global equation proposed by IPCC was used for belowground biomass estimation; besides, palms' aboveground biomass was estimated using a local model. The necromass was estimated for dead standing trees and the gross debris. In the latter case, the length and diameters of the extremes in the pieces were measured. Samples for wood density estimations were collected in the field and analyzed in the laboratory. The mean total carbon stock was estimated as 545.9 ± 84.1 Mg/ha (± S.E.). The aboveground biomass contributed with 72.5 %, the belowground biomass with 13.6 %, and the necromass with 13.9 %. The main conclusion is that montane tropical forests store a huge amount of carbon, similar to low land tropical forests. In addition, the study found that the inclusion of other pools could contribute with more than 20 % to total carbon storage, indicating that estimates that only include the aboveground biomass, largely underestimate carbon stocks in tropical forest ecosystems. These results support the importance of including other carbon pools in REDD+ initiatives' estimations. Rev. Biol. Trop. 64 (1): 399-412. Epub 2016 March 01.


Subject(s)
Carbon/analysis , Forests , Biomass , Tropical Climate , Colombia
16.
Rev. biol. trop ; Rev. biol. trop;63(1): 69-82, Jan.-Mar. 2015. ilus, tab
Article in Spanish | LILACS | ID: lil-753777

ABSTRACT

The tropical montane forests in the Colombian Andean region are located above 1 500m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25ha plots were randomly distributed in the forests and all trees with D≥10cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (≈1 700-1 800m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical montane forests are vulnerable to deforestation, especially black Oak forests due to their commercial value. Given their high carbon storage potential, the presence of endemic species and the strategic functions of these ecosystems, we recommend that they should be considered relevant during REDD+, PES or any other conservation assessment. Rev. Biol. Trop. 63 (1): 69-82. Epub 2015 March 01.


Los bosques tropicales de montaña (BTM) en la región Andina de Colombia se encuentran por encima de 1 500m, y han sido fuertemente deforestados. A pesar de la presunción general de que la productividad y las reservas de carbono en estos ecosistemas son bajas, los estudios al respecto son escasos. Este estudio tuvo por objetivo i) estimar la biomasa aérea (BA) de los bosques localizados en el sur de la región Andina colombiana, ii) identificar el potencial de almacenamiento de carbono en bosques dominados por el roble negro Colombobalanus excelsa e identificar la relación entre la BA y la altitud, y iii) analizar su papel en mecanismos de conservación, como el Pago por Servicios Ambientales (PSA) y la Reducción de Emisiones por deforestación y Degradación (REDD+). Veintiséis parcelas de 0.25ha fueron distribuidas al azar, y se midieron todos los árboles con D≥10cm. Los resultados obtenidos de BA y carbono almacenado fueron similares a los reportados para bosques tropicales de tierras bajas. Esto se puede explicar por la abundancia y dominancia de C. excelsa, que contribuye con más del 81% de la BA/carbono; el error asociado a las estimaciones fue de 10.58%. Se encontró una relación negativa y significativa entre la BA y la altitud, pero los valores más altos de BA estuvieron en las altitudes medias (≈1 700-1 800m), donde las condiciones ambientales podrían ser favorables para su crecimiento. El potencial de almacenamiento de carbono de estos bosques fue alto. Los resultados permiten tener elementos importantes para entender el papel de los BTM como sumideros de carbono. Sin embargo, si la tasa histórica de deforestación en el área de estudio continúa, las emisiones brutas de CO2e a la atmósfera podrían convertirlos en una fuente de emisiones importante. Actualmente, los BTM son vulnerables a la deforestación, especialmente los bosques de roble negro debido a su valor comercial. Teniendo en cuenta el alto potencial de almacenamiento de carbono, la presencia de especies endémicas, y las funciones estratégicas que pueden desempeñar estos ecosistemas, se recomienda que sean considerados relevantes para REDD+, PSA u otra estrategia de conservación.


Subject(s)
Biomass , Carbon/metabolism , Forests , Colombia , Tropical Climate
17.
Conserv Biol ; 29(2): 493-502, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25199996

ABSTRACT

Selection of areas for restoration should be based on cost-effectiveness analysis to attain the maximum benefit with a limited budget and overcome the traditional ad hoc allocation of funds for restoration projects. Restoration projects need to be planned on the basis of ecological knowledge and economic and social constraints. We devised a novel approach for selecting cost-effective areas for restoration on the basis of biodiversity and potential provision of 3 ecosystem services: carbon storage, water depuration, and coastal protection. We used Marxan, a spatial prioritization tool, to balance the provision of ecosystem services against the cost of restoration. We tested this approach in a mangrove ecosystem in the Caribbean. Our approach efficiently selected restoration areas that at low cost were compatible with biodiversity targets and that maximized the provision of one or more ecosystem services. Choosing areas for restoration of mangroves on the basis carbon storage potential, largely guaranteed the restoration of biodiversity and other ecosystem services.


Subject(s)
Conservation of Natural Resources/methods , Cost-Benefit Analysis , Ecosystem , Wetlands , Conservation of Natural Resources/economics , Ecology , Mexico
18.
Ecol Evol ; 1(3): 421-34, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22393511

ABSTRACT

We estimated carbon and nitrogen stocks in aboveground biomass (AGB) and belowground biomass (BGB) along an elevation range in forest sites located on the steep slopes of the Serra do Mar on the north coast of the State of São Paulo, southeast Brazil. In elevations of 100 m (lowland), 400 m (submontane), and 1000 m (montane) four 1-ha plots were established, and above- (live and dead) and belowground (live and dead) biomass were determined. Carbon and nitrogen concentrations in each compartment were determined and used to convert biomass into carbon and nitrogen stocks. The carbon aboveground stock (C(AGB)) varied along the elevation range from approximately 110 to 150 Mg·ha(-1), and nitrogen aboveground stock (N(AGB)), varied from approximately 1.0 to 1.9 Mg·ha(-1). The carbon belowground stock (C(BGB)) and the nitrogen belowground stock (N(BGB)) were significantly higher than the AGB and varied along the elevation range from approximately 200-300 Mg·ha(-1), and from 14 to 20 Mg·ha(-1), respectively. Finally, the total carbon stock (C(TOTAL)) varied from approximately 320 to 460 Mg·ha(-1), and the nitrogen total stock (N(TOTAL)) from approximately 15 to 22 Mg·ha(-1). Most of the carbon and nitrogen stocks were found belowground and not aboveground as normally found in lowland tropical forests. The above- and belowground stocks, and consequently, the total stocks of carbon and nitrogen increased significantly with elevation. As the soil and air temperature also decreased significantly with elevation, we found a significantly inverse relationship between carbon and nitrogen stocks and temperature. Using this inverse relationship, we made a first approach estimate that an increase of 1°C in soil temperature would decrease the carbon and nitrogen stocks in approximately 17 Mg·ha(-1) and 1 Mg·ha(-1) of carbon and nitrogen, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL