Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Front Pharmacol ; 15: 1415659, 2024.
Article in English | MEDLINE | ID: mdl-38910894

ABSTRACT

Introduction: Lung cancer is the most commonly diagnosed and the main cause of cancer death, usually related to cigarette smoking. Furthermore, the microbiota of people exposed to cigarette smoke can be modified, making it difficult to eliminate opportunistic microorganisms. The leaves of Eugenia pyriformis are a by-product of fruit production and, to date, there have been no studies addressing the antiproliferative, anti-inflammatory, and antimicrobial activities. Objective: Investigate the antimicrobial, Nitric Oxide (NO)-production inhibition, and antiproliferative activities of the essential oil from E. pyriformis leaves and its possible effect on the treatment and prevention of damage caused by tobacco. Methods: The essential oil (EO) was obtained by hydrodistillation (3 h). Its chemical composition was investigated by GC-MS. It was proposed to investigate antiproliferative activity against human tumor cell lines, namely, breast adenocarcinoma (MCF-7), lung (NCI-H460), cervical (HeLa), and hepatocellular (HepG2) carcinomas. A non-tumor primary culture from pig liver (PLP2) was also tested. The EO capacity to inhibit nitric oxide (NO) production was evaluated by a lipopolysaccharide stimulated murine macrophage cell line. Antibacterial and antifungal activities against opportunistic pathogens were investigated against seven strains of bacteria and eight fungi. Results: The results indicated the presence of 23 compounds in the essential oil, the majority were spathulenol (45.63%) and ß-caryophyllene oxide (12.72%). Leaf EO provided 50% inhibition of nitric oxide production at a concentration of 92.04 µg mL-1. The EO also demonstrated antiproliferative activity against all human tumor cell lines studied, with GI50 values comprised between 270.86 and 337.25 µg mL-1. The essential oil showed antimicrobial potential against the bacteria Listeria monocytogenes (Murray et al.) Pirie (NCTC 7973) and Salmonella Typhimurium ATCC 13311 (MIC 1870 µg mL-1) and fungi Aspergillus versicolor ATCC 11730, Aspergillus ochraceus ATCC 12066, Penicillium ochrochloron ATCC 90288, Penicillium verrucosum var. cyclopium (Westling) Samson, Stolk & Hadlok (food isolate) (MIC 1870 µg mL-1) and Trichoderma viride Pers. IAM 5061 (1,400 µg mL-1). Conclusion: The demonstrated anti-inflammatory, antiproliferative, and antimicrobial activities in the leaves of E. pyriformis can add value to the production chain of this plant, being a possible option for preventing and combating cancer, including lung cancer.

2.
Nat Prod Res ; 38(11): 1918-1923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739564

ABSTRACT

Blumea eriantha D.C is a weed from Asteraceae family and is reported to have anticancer activity. The essential oil from the aerial parts was extracted by steam distillation method with the yield of 0.36%. Through GC-MS analysis of the oil, seventeen compounds could be identified by comparing with linear retention indices with the library. Out of the seventeen compounds ß-Caryophylline oxide was isolated by column chromatography with gradient elution and the structure was determined through FT-IR, MS, 1HNMR, 13 C NMR and DEPT. The oil was evaluated for its effect on angiogenesis using Chorioallantoic Membrane Assay (CAM Assay). The concentration dependent antiangiogenic effect was observed with IC 50 value of 19.28 ppm.


Subject(s)
Angiogenesis Inhibitors , Asteraceae , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Asteraceae/chemistry , Animals , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply , Plant Components, Aerial/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Polycyclic Sesquiterpenes
3.
Biomedicines ; 12(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38790999

ABSTRACT

Pain is the most frequent symptom of disease. In treating pain, a lower incidence of adverse effects is found for paracetamol versus other non-steroidal anti-inflammatory drugs. Nevertheless, paracetamol can trigger side effects when taken regularly. Combined therapy is a common way of lowering the dose of a drug and thus of reducing adverse reactions. Since ß-caryophyllene oxide (a natural bicyclic sesquiterpene) is known to produce an analgesic effect, this study aimed to determine the anti-nociceptive and gastroprotective activity of administering the combination of paracetamol plus ß-caryophyllene oxide to CD1 mice. Anti-nociception was evaluated with the formalin model and gastroprotection with the model of ethanol-induced gastric lesions. According to the isobolographic analysis, the anti-nociceptive interaction of paracetamol and ß-caryophyllene oxide was synergistic. Various pain-related pathways were explored for their possible participation in the mechanism of action of the anti-nociceptive effect of ß-caryophyllene oxide, finding that NO, opioid receptors, serotonin receptors, and K+ATP channels are not involved. The combined treatment showed gastroprotective activity against ethanol-induced gastric damage. Hence, the synergistic anti-nociceptive effect of combining paracetamol with ß-caryophyllene oxide could be advantageous for the management of inflammatory pain, and the gastroprotective activity should help to protect against the adverse effects of chronic use.

4.
Chem Biol Interact ; 393: 110945, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38460934

ABSTRACT

This study aimed to evaluate the antibacterial and inhibitory action of NorA, Tet(K), MsrA and MepA efflux pumps in S. aureus strains using the sesquiterpenes named trans-caryophyllene and caryophyllene oxide, both isolated and encapsulated in liposomes. The antibacterial and inhibitory action of these efflux pumps was evaluated through the serial microdilution test in 96-well microplates. Each sesquiterpene and liposome/sesquiterpene was combined with antibiotics and ethidium bromide (EtBr). The antibiotics named norfloxacin, tetracycline and erythromycin were used. The 1199 B, IS-58, RN4220 and K2068 S. aureus strains carrying NorA, Tet(K), MsrA and MepA, respectively, were tested. In the fluorescence measurement test, K2068 S. aureus was incubated with the sesquiterpenes and EtBr, and the fluorescence emission by EtBr was measured. The tested substances did not show direct antibacterial activity, with MIC >1024 µg/mL. Nonetheless, the isolated trans-caryophyllene and caryophyllene oxide reduced the MIC of antibiotics and EtBr, indicating inhibition of NorA, Tet(K) and MsrA. In the fluorescence test, these same sesquiterpenes increased fluorescence emission, indicating inhibition of MepA. Therefore, the sesquiterpenes named trans-caryophyllene and caryophyllene oxide did not show direct antibacterial action; however, in their isolated form, they showed possible inhibitory action on NorA, Tet(K), MsrA and MepA efflux pumps. They may also act in antibiotic potentiation. Further studies are needed to identify the mechanisms involved in antibiotic potentiation and efflux pump inhibitory action.


Subject(s)
Liposomes , Staphylococcus aureus , Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Polycyclic Sesquiterpenes , Ethidium , Bacterial Proteins/metabolism , Multidrug Resistance-Associated Proteins
5.
Nat Prod Res ; : 1-5, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38269596

ABSTRACT

In the present study, the chemical composition of the essential oil from aerial parts of a very rare Centaurea species, not previously investigated, Centaurea erycina Raimondo and Bancheva, collected in Sicily, was evaluated by GC-MS. The new species, classified just twenty years ago, belongs to Centaurea cineraria group (sect. Pannophyllum Hayek, Asteraceae) and grows in an extremely limited area in the NW part of Sicily. The oil was shown to be rich of aldehydes (41.4%) and sesquiterpenes (33.4%). The main components of the essential oil were ß-caryophyllene (13.4%), caryophyllene oxide (12.6%), hexanal (11.9%), and trans-2-hexenal (10.0%). Furthermore, a complete literature review on the composition of the essential oils of all the other taxa of Centaurea, belonging to sections Pannophyllum, studied so far, was carried out.

6.
Curr Res Toxicol ; 6: 100144, 2024.
Article in English | MEDLINE | ID: mdl-38193034

ABSTRACT

Phytochemicals are often promoted generally as antioxidants and demonstrate variable levels of reactive oxygen species (ROS) sequestration in vitro, which attributes to their neuroprotective bioactivity. Sesquiterpenes from cannabis and essential oils may demonstrate bifunctional properties towards cellular oxidative stress, possessing pro-oxidant activities by generating ROS or scavenging ROS directly. Sesquiterpenes can also oxidize forming sesquiterpene oxides, however the relative contribution they make to the bioactivity or cytotoxicity of complex botanical extracts more generally is unclear, while selected cannabis-prevalent terpenes such as ß-caryophyllene may also activate cannabinoid receptors as part of their biological activity. In the present study, we investigated selected sesquiterpenes ß-caryophyllene and humulene and their oxidized forms (ß-caryophyllene oxide and zerumbone, respectively) against established antioxidants (ascorbic acid, α-tocopherol, and glutathione) and in the presence of cannabinoid receptor 1 and cannabinoid receptor 2 antagonists, to gain a better understanding of the molecular and cellular mechanisms of neuroprotection versus neurotoxicity in semi-differentiated rat neuronal phaeochromocytoma (PC12) cells. Our results demonstrate that the sesquiterpenes ß-caryophyllene, humulene and zerumbone possess concentration-dependent neurotoxic effects in PC12 cells. Both ß-caryophyllene- and humulene-evoked toxicity was unaffected by CB1 or CB2 receptor antagonism, demonstrating this occurred independently of cannabinoid receptors. Both glutathione and α-tocopherol were variably able to alleviate the concentration-dependent loss of PC12 cell viability from exposure to ß-caryophyllene, humulene and zerumbone. During 4-hour exposure to sesquiterpenes only modest increases in ROS levels were noted in PC12 cells, with glutathione co-incubation significantly inhibiting intracellular ROS production. However, significant increases in ROS levels in PC12 cells were demonstrated during 24-hour incubation with either antioxidants or sesquiterpenes individually, and with additive toxicity exhibited in combination. Overall, the results highlight a concentration-dependent profile of sesquiterpene neurotoxicity independent of cannabinoid receptors and dissociated from the formation of reactive oxygen species as a marker or correlate to the loss of cell viability.

7.
Life (Basel) ; 13(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38137900

ABSTRACT

BACKGROUND: Eryptosis stimulated by anticancer drugs can lead to anemia in patients. ß-caryophyllene oxide (CPO) is an anticancer sesquiterpene present in various plants; however, its effect on the structure and function of human red blood cells (RBCs) remains unexplored. The aim of this study was to investigate the hemolytic and eryptotic activities and underlying molecular mechanisms of CPO in human RBCs. METHODS: Cells were treated with 10-100 µM of CPO for 24 h at 37 °C, and hemolysis, LDH, AST, and AChE activities were photometrically assayed. Flow cytometry was employed to determine changes in cell volume from FSC, phosphatidylserine (PS) externalization by annexin-V-FITC, intracellular calcium by Fluo4/AM, and oxidative stress by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Cells were also cotreated with CPO and specific signaling inhibitors and antihemolytic agents. Furthermore, whole blood was exposed to CPO to assess its toxicity to other peripheral blood cells. RESULTS: CPO induced concentration-responsive hemolysis with LDH and AST leakage, in addition to PS exposure, cell shrinkage, Ca2+ accumulation, oxidative stress, and reduced AChE activity. The toxicity of CPO was ameliorated by D4476, staurosporin, and necrosulfonamide. ATP and PEG 8000 protected the cells from hemolysis, while urea and isotonic sucrose had opposite effects. CONCLUSIONS: CPO stimulates hemolysis and eryptosis through energy depletion, Ca2+ buildup, oxidative stress, and the signaling mediators casein kinase 1α, protein kinase C, and mixed lineage kinase domain-like pseudokinase. Development of CPO as an anticancer therapeutic must be approached with prudence to mitigate adverse effects on RBCs using eryptosis inhibitors, Ca2+ channel blockers, and antioxidants.

8.
Insects ; 14(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37754741

ABSTRACT

Repellents play a major role in reducing the risk of mosquito-borne diseases by preventing mosquito bites. The present study evaluated the mosquito-repellent activity of ß-caryophyllene oxide 1% (BCO), vetiver oil 2.5% (VO), and their binary mixtures (BCO + VO (1:1), BCO + VO (2:1), BCO + VO (1:2)) against four laboratory-colonized mosquito species, Aedes aegypti (L.), Aedes albopictus (Skuse), Anopheles minimus Theobald, and Culex quinquefasciatus Say, using an excito-repellency assay system. In general, the compound mixtures produced a much stronger response in the mosquitoes than single compounds, regardless of the test conditions or species. The greatest synergetic effect was achieved with the combination of BCO + VO (1:2) in both contact and noncontact trials with An. minimus (74.07-78.18%) and Cx. quinquefasciatus (55.36-83.64%). Knockdown responses to the binary mixture of BCO + VO were observed for Ae. albopictus, An. minimus, and Cx. quinquefasciatus, in the range of 18.18-33.33%. The synergistic repellent activity of BCO and VO used in this study may support increased opportunities to develop safer alternatives to synthetic repellents for personal protection against mosquitoes.

9.
Asian Pac J Cancer Prev ; 24(8): 2601-2614, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37642045

ABSTRACT

OBJECTIVE: Alpinia elegans (Zingiberaceae) is a Philippine endemic plant reported to have various folkloric uses. The seed oil of A. elegans has been shown to contain a majority of the following bioactive compounds: D-limonene, α-pinene, and caryophyllene oxide. The study sought to determine if the bioactive compounds found in A. elegans seed oil would be a good natural, inexpensive, and less-detrimental alternative for cancer treatment. METHODS: The study utilized in silico (Way2Drug predictive services, SwissADME, AutoDock 4) experiment to examine the aforementioned compounds as viable therapeutic candidates against human cancer cell lines. RESULT: Results determined that the compounds D-limonene, α-pinene, and caryophyllene oxide were most potent against thyroid gland carcinoma (8505C) cells, brain glaucoma (Hs 683) cells, and promyeloblast leukemia (HL-60) cells, respectively. Additionally, D-limonene was the only compound to show arrhythmia as an adverse effect. Predictions showed that the compounds could inhibit cellular growth factors and serine/threonine-protein kinase activity. The compounds generated a bioavailability score of 0.55 and exhibited blood-brain barrier (BBB) penetration. D-limonene, α-pinene, and caryophyllene oxide had binding energy of -4.59, -5.43, and -6.92, respectively. CONCLUSION: The binding energy indicated that the ligands could securely dock to the receptors, thus suggesting that interaction between the ligands and receptors was stable. Results have shown that the compounds are promising candidates against human cancer cell lines by inhibiting cell proliferation and inducing apoptosis.


Subject(s)
Alpinia , Neoplasms , Humans , Ligands , Limonene/pharmacology , HL-60 Cells , Plant Oils , Neoplasms/drug therapy
10.
Chem Biodivers ; 20(10): e202300862, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37647349

ABSTRACT

Several Baccharis species are popularly known in traditional medicine as "carquejas", "vassouras", "ervas-santas" and "mio-mios", and are used as anti-inflammatories, digestives, and diuretics. This study aimed to investigate the chemical compositions and cytotoxic activities of essential oils (EOs) of six Baccharis species belonging to subgenus Coridifoliae, namely B. albilanosa, B. coridifolia, B. erigeroides, B. napaea, B. ochracea, and B. pluricapitulata. GC/MS analyses of the EOs showed that the oxygenated sesquiterpenes spathulenol (7.32-38.22 %) and caryophyllene oxide (10.83-16.75 %) were the major components for all the species. The EOs of almost all species were cytotoxic against cancer (BT-549, KB, SK-MEL and SK-OV-3) and normal kidney (VERO and LLC-PK1) cell lines, whereas B. erigeroides EO showed cytotoxicity only against LLC-PK1. This article augments the current knowledge about the chemical-biological properties of Baccharis subgenus Coridifoliae and discusses the therapeutic potentials of these economically unexploited plants.

11.
Med Oncol ; 40(7): 189, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37233859

ABSTRACT

One of the most common cancers that result in death is lung cancer. There is new hope in the fight against lung cancer thanks to the chemopreventive properties of natural dietary substances like ß-caryophyllene oxide (CPO), and research is currently being done to test this theory. CPO, a sesquiterpene isolated from medicinal plant essential oils, inhibits carcinogenesis and has been effective in treating many cancers. This study examined how CPO affected proliferation of human lung cancer A549 cells. CPO was found to have an inhibitory concentration (IC50) of 124.1 g/ml. The proliferative markers Ki67 and PCNA were significantly inhibited after cells were treated with CPO at a concentration of 50 g/ml compared to controls. CPO-treated cells expressed more P21, P53, and DNA strand breaks than controls. This was accompanied by a significant cell cycle arrest in the S and G2/M phases. In treated A549 cells, this was also associated with a significant induction of apoptosis, as shown by the upregulation of the expression of caspases 3, 7, and 9, as well as Bax, and the downregulation of Bcl-2. Furthermore, the redox status of treated A549 cells revealed a marked rise in GSH and GPx activity levels and a decline in 4-HNE levels, indicating low oxidative stress following CPO treatment of A549 cells. In conclusion, cell cycle arrest and apoptosis, which are unrelated to oxidative stress, were the mechanisms by which CPO reduced cancer lung cell growth. This finding might be a potential therapeutic target for the treatment of lung cancer. Hypothetical scheme of CPO anticancer effects (mechanism of signaling) in A549 cells; in vitro. CPO treatment increases expression of p21, p53 and DNA fragmentation. These events cause arrest of cell cycle which was associated with significant induction in apoptosis via increase expression of caspases (-3,-7,-9), and Bax and downregulation of Bcl-2.


Subject(s)
Lung Neoplasms , Tumor Suppressor Protein p53 , Humans , A549 Cells , bcl-2-Associated X Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Division , Caspases/metabolism , Caspases/pharmacology , Caspases/therapeutic use , Cell Proliferation
12.
Front Plant Sci ; 14: 1121582, 2023.
Article in English | MEDLINE | ID: mdl-36866384

ABSTRACT

Introduction: Catnip (Nepeta cataria L.) produces volatile iridoid terpenes, mainly nepetalactones, with strong repellent activity against species of arthropods with commercial and medical importance. Recently, new catnip cultivars CR3 and CR9 have been developed, both characterized by producing copious amounts of nepetalactones. Due to its perennial nature, multiple harvests can be obtained from this specialty crop and the effects of such practice on the phytochemical profile of the plants are not extensively studied. Methods: In this study we assessed the productivity of biomass, chemical composition of the essential oil and polyphenol accumulation of new catnip cultivars CR3 and CR9 and their hybrid, CR9×CR3, across four successive harvests. The essential oil was obtained by hydrodistillation and the chemical composition was obtained via gas chromatography-mass spectrometry (GC-MS). Individual polyphenols were quantified by Ultra-High-Performance Liquid Chromatography- diode-array detection (UHPLC-DAD). Results: Although the effects on biomass accumulation were independent of genotypes, the aromatic profile and the accumulation of polyphenols had a genotype-dependent response to successive harvests. While cultivar CR3 had its essential oil dominated by E,Z-nepetalactone in all four harvests, cultivar CR9 showed Z,E-nepetalactone as the main component of its aromatic profile during the 1st, 3rd and 4th harvests. At the second harvest, the essential oil of CR9 was mainly composed of caryophyllene oxide and (E)-ß-caryophyllene. The same sesquiterpenes represented the majority of the essential oil of the hybrid CR9×CR3 at the 1st and 2nd successive harvests, while Z,E-nepetalactone was the main component at the 3rd and 4th harvests. For CR9 and CR9×CR3, rosmarinic acid and luteolin diglucuronide were at the highest contents at the 1st and 2nd harvest, while for CR3 the peak occurred at the 3rd successive harvest. Discussion: The results emphasize that agronomic practices can significantly affect the accumulation of specialized metabolites in N. cataria and the genotype-specific interactions may indicate differential ecological adaptations of each cultivar. This is the first report on the effects of successive harvest on these novel catnip genotypes and highlights their potential for the supply of natural products for the pest control and other industries.

13.
Molecules ; 28(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36985605

ABSTRACT

The essential oils (EOs) of Guatteria schomburgkiana (Gsch) and Xylopia frutescens (Xfru) (Annonaceae) were obtained by hydrodistillation, and their chemical composition was evaluated by gas chromatography-mass spectrometry (GC/MS). Herbicide activity was measured by analyzing the seed germination percentage and root and hypocotyl elongation of two invasive species: Mimosa pudica and Senna obtusifolia. The highest yield was obtained for the EO of Xfru (1.06%). The chemical composition of Gsch was characterized by the presence of the oxygenated sesquiterpenes spathulenol (22.40%) and caryophyllene oxide (14.70%). Regarding the EO of Xfru, the hydrocarbon monoterpenes α-pinene (35.73%) and ß-pinene (18.90%) were the components identified with the highest concentrations. The germination of seeds of S. obtusifolia (13.33 ± 5.77%) showed higher resistance than that of seeds of M. pudica (86.67 ± 5.77%). S. obtusifolia was also more sensitive to the EO of Xfru in terms of radicle (55.22 ± 2.72%) and hypocotyl (71.12 ± 3.80%) elongation, while M. pudica showed greater sensitivity to the EO of Gsch. To screen the herbicidal activity, the molecular docking study of the major and potent compounds was performed against 4-hydroxyphenylpyruvate dioxygenase (HPPD) protein. Results showed good binding affinities and attributed the strongest inhibitory activity to δ-cadinene for the target protein. This work contributes to the study of the herbicidal properties of the EOs of species of Annonaceae from the Amazon region.


Subject(s)
Annonaceae , Guatteria , Oils, Volatile , Xylopia , Annonaceae/chemistry , Xylopia/chemistry , Guatteria/chemistry , Oils, Volatile/chemistry , Brazil , Molecular Docking Simulation , Plant Leaves/chemistry
14.
Molecules ; 28(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985656

ABSTRACT

Essential oils are volatile oil-like liquids with a characteristic strong smell and taste. They are formed in plants and are then extracted. Essential oils have extremely strong physiological and pharmacological properties, which are used in the medicine, cosmetics, and food industries. In this study, the molecules caryophyllene oxide, ß-pinene, 1,8-cineol, α-cubebene, and ß-caryophyllene, which are the molecules with the highest contents in the essential oil of the plant mentioned in the title, were selected and theoretical calculations describing their interactions with water were performed. Because oil-water mixtures are very important in biology and industry and are ubiquitous in nature, quantum chemical calculations for binary mixtures of water with caryophyllene oxide, ß-pinene, 1,8-cineol, α-cubebene, and ß-caryophyllene were performed using the density functional theory (DFT)/B3LYP method with a basis of 6-31 G (d, p). Molecular structures, HOMO-LUMO energies, electronic properties, reactivity (ELF, LOL, and Fukui), and NCI-RDG and molecular electrostatic potential (MEP) on surfaces of the main components of Phlomis bruguieri Desf. essential oil were calculated and described.

15.
Molecules ; 28(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903452

ABSTRACT

Glycosmis cyanocarpa (Blume) Spreng is a plant in the Rutaceae family and a species in the Glycosmis genus that has received little attention. Therefore, this research aimed to report the chemical and biological analysis of Glycosmis cyanocarpa (Blume) Spreng. The chemical analysis involved the isolation and characterization of secondary metabolites through an extensive chromatographic study, and the structures of these metabolites were elucidated on the basis of a detailed analysis of NMR and HRESIMS spectroscopic data and by comparison with those of related compounds reported in the literature. Different partitions of the crude ethyl acetate (EtOAc) extract were evaluated for antioxidant, cytotoxic, and thrombolytic potentials. In chemical analysis, one new phenyl acetate derivative, namely 3,7,11,15-tetramethylhexadec-2-en-1-yl 2-phenylacetate (1), along with four known compounds N-methyl-3-(methylthio)-N-(2-phenylacetyl) acrylamide (2), penangin (3), ß-Caryophyllene oxide (4), and acyclic diterpene-phytol (5) were isolated for the first time from the stem and leaf of the plant. The ethyl acetate fraction showed significant free radical scavenging activity with an IC50 value of 11.536 µg/mL compared to standard ascorbic acid (4.816 µg/mL). In the thrombolytic assay, the dichloromethane fraction showed the maximum thrombolytic activity of 16.42% but was still insignificant compared to the standard streptokinase (65.98%). Finally, in a brine shrimp lethality bioassay, the LC50 values of dichloromethane, ethyl acetate, and aqueous fractions were found to be 0.687 µg/mL, 0.805 µg/mL, and 0.982 µg/mL which are significant compared to the standard vincristine sulfate of 0.272 µg/mL.


Subject(s)
Plant Extracts , Rutaceae , Plant Extracts/chemistry , Rutaceae/chemistry , Methylene Chloride , Antioxidants/chemistry , Fibrinolytic Agents/chemistry
16.
Nat Prod Res ; 37(21): 3588-3594, 2023.
Article in English | MEDLINE | ID: mdl-35787220

ABSTRACT

Cyanus Mill. genus, belonging to the Asteraceae family, includes more than 50 taxa, mainly growing in Central and Southern Europe, North Africa, Asia Minor, and the Caucasus. Previous investigations on Cyanus taxa have shown that they are rich source of flavonoids and phenolic compounds but, differently from species of genus Centaurea, almost devoid of sesquiterpene lactones. In the present study, the chemical composition of the essential oils from aerial parts of Cyanus adscendens (CA) and C. orbelicus (CO), collected in Bulgaria, and not previously investigated, was evaluated by GC-MS. The main components of CA were α-bergamotene (31.3%), (Z,Z,Z)-9,12,15-octadecatrien-1-ol (14.5%) and calarenepoxide (11.0%). Caryophyllene oxide (12.0%), together with α-cadinol (10.9%) and spathulenol (8.8%), were recognized as the main constituent of C. orbelicus EO. Furthermore, a complete review on the composition of all essential oils of the Cyanus taxa studied so far has been inserted and cluster analysis (PCA) was carried out.

17.
Foods ; 12(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38231686

ABSTRACT

In recent years, essential oils (EOs) have received interest due to their antibacterial properties. Accordingly, the present study aimed to investigate the effectiveness of the EOs obtained from seven species of Salvia on three strains of Listeria monocytogenes (two serotyped wild strains and one ATCC strain), a bacterium able to contaminate food products and cause foodborne disease in humans. The Salvia species analysed in the present study were cultivated at the Botanic Garden and Museum of the University of Pisa, and their air-dried aerial parts were subjected to hydrodistillation using a Clevenger apparatus. The obtained EOs were analysed via gas chromatography coupled with mass spectrometry for the evaluation of their chemical composition, and they were tested for their inhibitory and bactericidal activities by means of MIC and MBC. The tested Eos showed promising results, and the best outcomes were reached by S. chamaedryoides EO, showing an MIC of 1:256 and an MBC of 1:64. The predominant compounds of this EO were the sesquiterpenes caryophyllene oxide and ß-caryophyllene, together with the monoterpenes bornyl acetate and borneol. These results suggest that these EOs may possibly be used in the food industry as preservatives of natural origins.

18.
J Food Biochem ; 46(12): e14468, 2022 12.
Article in English | MEDLINE | ID: mdl-36190169

ABSTRACT

When cancer cells transform into malignant tumors, they gain the ability to ignore growth-inhibiting signals, have endless reproduction potential, resist apoptosis, and induce angiogenesis and invade other tissues. Matrix metalloproteinases (MMPs) allow tumor cells to move into surrounding tissues in many malignancies, but metastasis is blocked by MMPs inhibitors. Therefore, the effect of ß-caryophyllene oxide (CPO) contained in Piper nigrum on Mitogen-activated protein kinase (MAPKs) related to MMPs signaling pathways in human fibrosarcoma was examined in HT1080 cells. The effect of CPO on cell viability was performed using the MTT assay. Cytotoxicity was observed in the presence of CPO above 16 µM. Next, gelatin zymography was performed in the cells activated with phorbol-12-myristate-13-acetate (PMA). It was found that CPO at 32 µM reduced MMP-9 activity by 28% and MMP-2 activity by 60%. To confirm the effect of CPO on MMPs, Western blot analyses for MMP-2, MAPKs were carried out in this study. The expression level of MMP-2 was reduced by 45% in the presence of CPO at 32 µM, but those of p-p38 and p-ERK were reduced by 50% and 40%, respectively. CPO decreased the expression levels of MMP-2 and MMP-9 in the immunofluorescence staining assay. Finally, an invasion assay was performed in PMA-treated human fibrosarcoma cells. It was demonstrated that CPO reduced cell invasion of HT1080 cells in a dose-dependent manner starting at a concentration of 2 µM. The above results suggest that CPO could be used as a potential candidate for the treatment of metastasis by inhibiting MMP-2, p-p38 and p-ERK. PRACTICAL APPLICATIONS: Cancer makes it easier for cells to spread to other tissue via blood and lymph systems. Tumor cells deplete nutrients and induce angiogenesis, which penetrates and spreads to other parts of the body. As a result, the effect of CPO against cell invasion was evaluated in this study. CPO reduced cancer cell invasion by inactivating p-ERK and p-p38, according to the findings. MMP-2 and MMP-9 activation and protein expression were also decreased by CPO. As a result, CPO might be used as an alternate treatment agent for preventing metastasis.


Subject(s)
Fibrosarcoma , Matrix Metalloproteinase 9 , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Cell Movement , Mitogen-Activated Protein Kinases , Tetradecanoylphorbol Acetate/pharmacology , Fibrosarcoma/drug therapy , Fibrosarcoma/metabolism , Fibrosarcoma/pathology
19.
Biomolecules ; 12(8)2022 08 10.
Article in English | MEDLINE | ID: mdl-36008995

ABSTRACT

Sesquiterpene compounds are applied as permeation promoters in topical formulations. However, studies exploring their impact on nanostructured systems, changes in permeation profile, and consequently, its biological activity are restricted. This study aimed to investigate the correlation between the skin permeation of the major sesquiterpenes, beta-caryophyllene, and caryophyllene oxide from the oleoresin of Copaifera multijuga, after delivery into topical nanoemulgels, and the in vivo antiedematogenic activity. First, ten nanoemulgels were prepared and characterized, and their in vitro permeation profile and in vivo anti-inflammatory activity were evaluated. In equivalent concentrations, ß-caryophyllene permeation was greater from oleoresin nanoemulgels, resulting in greater in vivo antiedematogenic activity. However, an inverse relationship was observed for caryophyllene oxide, which showed its favored permeation and better in vivo anti-inflammatory effect carried as an isolated compound in the nanoemulgels. These results suggest that the presence of similar compounds may interfere with the permeation profile when comparing the profiles of the compounds alone or when presented in oleoresin. Furthermore, the correlation results between the permeation profile and in vivo antiedematogenic activity corroborate the establishment of beta-caryophyllene as an essential compound for this pharmacological activity of C. multijuga oleoresin.


Subject(s)
Sesquiterpenes , Anti-Inflammatory Agents/pharmacology , Polycyclic Sesquiterpenes , Sesquiterpenes/pharmacology
20.
Chem Biodivers ; 19(9): e202200272, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35938449

ABSTRACT

This study aimed to investigate the chemical composition of essential oils isolated from Acca sellowiana (feijoa) leaves and stems and elaborate on their relevance as natural anti-aging, coupled with molecular-docking studies. The isolated oils were analysed using gas chromatography-mass spectrometry analysis and investigated for inhibitory effects against acetylcholinesterase, ß-secretase, collagenase, elastase and tyrosinase. Molecular-modelling study was performed using MOE-Dock program to evaluate binding interactions of major components with the above-mentioned targets. The leaf oil revealed the predominance of caryophyllene oxide (24.3 %), linalool (7.9 %), and spathulenol (6.6 %), while the stem oil was presented by caryophyllene oxide (38.1 %), α-zingiberene (10.1 %) and humulene oxide II (6.0 %). The stem oil expressed superior inhibitory activities against acetylcholinesterase (IC50 =0.15±0.01 µg/mL), ß-secretase (IC50 =3.99±0.23 µg/mL), collagenase (IC50 =408.10±20.80 µg/mL), elastase (IC50 =0.17±0.01 µg/mL) and tyrosinase (IC50 =8.45±0.40 µg/mL). The valuable binding interactions and docking scores were observed for caryophyllene oxide and α-zingiberene with acetylcholinesterase. Besides, α-zingibirene followed by linalool and τ-cadinol revealed tight fitting with collagenase and elastase. Additionally, linalool, spathulenol and τ-cadinol showed the best binding energy to tyrosinase. This study provides valuable scientific data on A. sellowiana as potential candidates for the development of natural antiaging formulations. The current study provided scientific evidence for the potential use of feijoa essential oils in antiaging formulations and as an adjuvant for the prophylaxis against Alzheimer disease.


Subject(s)
Feijoa , Oils, Volatile , Acetylcholinesterase , Acyclic Monoterpenes , Amyloid Precursor Protein Secretases , Feijoa/chemistry , Molecular Docking Simulation , Monocyclic Sesquiterpenes , Monophenol Monooxygenase/analysis , Oils, Volatile/chemistry , Oxides , Pancreatic Elastase/analysis , Plant Leaves/chemistry , Polycyclic Sesquiterpenes , Sesquiterpenes , Terpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...