Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Plant Biotechnol J ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768314

ABSTRACT

Cassava bacterial blight significantly affects cassava yield worldwide, while major cassava cultivars are susceptible to this disease. Therefore, it is crucial to identify cassava disease resistance gene networks and defence molecules for the genetic improvement of cassava cultivars. In this study, we found that MeHB16 transcription factor as a differentially expressed gene in cassava cultivars with contrasting disease resistance, positively modulated disease resistance by modulating defence molecule lignin accumulation. Further investigation showed that MeHB16 physically interacted with itself via the leucine-Zippe domain (L-Zip), which was necessary for the transcriptional activation of downstream lignin biosynthesis genes. In addition, protein kinase MeKIN10 directly interacted with MeHB16 to promote its phosphorylation at Ser6, which in turn enhanced MeHB16 self-association and downstream lignin biosynthesis. In summary, this study revealed the molecular network of MeKIN10-mediated MeHB16 protein phosphorylation improved cassava bacterial blight resistance by fine-tuning lignin biosynthesis and provides candidate genes and the defence molecule for improving cassava disease resistance.

2.
Plant Physiol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701041

ABSTRACT

Bacteria from the genus Xanthomonas are prolific phytopathogens that elicit disease in over 400 plant species. Xanthomonads carry a repertoire of specialized proteins called transcription activator-like (TAL) effectors that promote disease and pathogen virulence by inducing expression of host susceptibility (S) genes. Xanthomonas phaseoli pv. manihotis (Xpm) causes bacterial blight on the staple food crop cassava (Manihot esculenta Crantz). The Xpm effector TAL20 induces ectopic expression of the S gene Manihot esculenta Sugars Will Eventually be Exported Transporter 10a (MeSWEET10a), which encodes a sugar transporter that contributes to cassava bacterial blight susceptibility. We used CRISPR/Cas9 to generate multiple cassava lines with edits to the MeSWEET10a TAL20 effector binding site and/or coding sequence. In several of the regenerated lines, MeSWEET10a expression was no longer induced by Xpm, and in these cases, we observed reduced cassava bacterial blight (CBB) disease symptoms post Xpm infection. Because MeSWEET10a is expressed in cassava flowers, we further characterized the reproductive capability of the MeSWEET10a promoter and coding sequence mutants. Lines were crossed to themselves and to wild-type plants. The results indicated that expression of MeSWEET10a in female, but not male, flowers, is critical to produce viable F1 seed. In the case of promoter mutations that left the coding sequence intact, viable F1 progeny were recovered. Taken together, these results demonstrate that blocking MeSWEET10a induction is a viable strategy for decreasing cassava susceptibility to CBB and that ideal lines will contain promoter mutations that block TAL effector binding while leaving endogenous expression of MeSWEET10a unaltered.

3.
Curr Issues Mol Biol ; 45(7): 5389-5402, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37504258

ABSTRACT

Cassava (Manihot esculenta Crantz) is an important tropical tuber crop around the world. Cassava bacterial blight, caused by Xanthomonas phaseoli pv. manihotis, is a key disease that influences cassava production worldwide. Between 2008 and 2020, 50 X. phaseoli pv. manihotis strains were isolated from diseased plant samples or acquired from China, Uganda, Cambodia, Colombia, Malaysia, and Micronesia. Using multilocus sequence analysis, the genetic diversity of X. phaseoli pv. manihotis strains was evaluated. A neighbor-joining phylogenetic dendrogram was constructed based on partial sequences of five housekeeping genes (atpD-dnaK-gyrB-efp-rpoD). The strains clustered into three groups whose clusters were consistent with atpD and RpoD gene sequences. Group I contained 46 strains from China, Uganda, Cambodia, and Micronesia, and the other two groups were comprised of strains from Colombia and Malaysia, respectively. The resistance of all these strains to copper ion (Cu2+) was determined, the minimal inhibitory concentration was between 1.3 and 1.7 mM, and there was no significant difference between strains from different geographic region. During genome annotation of the X. phaseoli pv. manihotis strain CHN01, homologous gene clusters of copLAB and xmeRSA were identified. The predicted amino acid sequences of two gene clusters were highly homologous with the copper-resistant protein from Xanthomonas strains. CopLAB and xmeRSA were amplified from all these strains, suggesting that the regulation of copper resistance is associated with two distinct metabolic pathways. CopLAB and xmeRSA were highly conserved among strains from different geographic regions, possibly associated with other conserved function.

4.
Plant Physiol Biochem ; 201: 107814, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37321041

ABSTRACT

Malate dehydrogenase (MDH) as an essential metabolic enzyme is widely involved in plant developmental processes. However, the direct relationship between its structural basis and in vivo roles especially in plant immunity remains elusive. In this study, we found that cytoplasmic cassava (Manihot esculenta, Me) MDH1 was essential for plant disease resistance against cassava bacterial blight (CBB). Further investigation revealed that MeMDH1 positively modulated cassava disease resistance, accompanying the regulation of salicylic acid (SA) accumulation and pathogensis-related protein 1 (MePR1) expression. Notably, the metabolic product of MeMDH1 (malate) also improved disease resistance in cassava, and its application rescued the disease susceptibility and decreased immune responses of MeMDH1-silenced plants, indicating that malate was responsible for MeMDH1-mediated disease resistance. Interestingly, MeMDH1 relied on Cys330 residues to form homodimer, which was directly related with MeMDH1 enzyme activity and the corresponding malate biosynthesis. The crucial role of Cys330 residue in MeMDH1 was further confirmed by in vivo functional comparison between overexpression of MeMDH1 and MeMDH1C330A in cassava disease resistance. Taken together, this study highlights that MeMDH1 confers improved plant disease resistance through protein self-association to promote malate biosynthesis, extending the knowledge of the relationship between its structure and cassava disease resistance.


Subject(s)
Manihot , Manihot/metabolism , Disease Resistance/physiology , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Malates/metabolism , Plant Diseases/microbiology , Vegetables
5.
Genomics ; 115(3): 110626, 2023 05.
Article in English | MEDLINE | ID: mdl-37062363

ABSTRACT

Receptor-like cytoplasmic kinases (RLCKs) play important roles in various developmental processes and stress responses in plants. Whereas, the detailed information of this family in cassava has not clear yet. In this study, A total of 322 MeRLCK genes were identified in the cassava genome, and they could be divided into twelve clades (Clades I-XII) according to their phylogenetic relationships. Most RLCK members in the same clade have similar characteristics and motif compositions. Over half of the RLCKs possess cis-elements in their promoters that respond to ABA, MeJA, defense reactions, and stress. Under Xpm11 infection, the expression levels of four genes show significant changes, suggesting their involvement in Xpm11 resistance. Two RLCK (MeRLCK11 and MeRLCK84) genes potentially involved in resistance to cassava bacterial blight were identified through VIGS experiments. This work laid the foundation for studying the function of the cassava RLCK genes, especially the genes related to pathogen resistance.


Subject(s)
Manihot , Manihot/genetics , Manihot/metabolism , Manihot/microbiology , Disease Resistance , Phylogeny , Plant Proteins/genetics , Gene Expression Regulation, Plant
6.
New Phytol ; 238(4): 1593-1604, 2023 05.
Article in English | MEDLINE | ID: mdl-36764921

ABSTRACT

Functional analysis of large gene families in plant pathogens can be cumbersome using classical insertional mutagenesis. Additionally, Cas9 toxicity has limited the application of CRISPR-Cas9 for directed mutagenesis in bacteria. Here, we successfully applied a CRISPR interference strategy to investigate the cryptic role of the transcription activator-like effector (tale) multigene family in several plant-pathogenic Xanthomonas bacterial species, owing to their contribution to pathogen virulence. Single guide RNAs (sgRNAs) designed against Xanthomonas phaseoli pv manihotis tale conserved gene sequences efficiently silenced expression of all tales, with concomitant decrease in virulence and TALE-induced host gene expression. The system is readily translatable to other Xanthomonas species infecting rice, citrus, Brassica, and cassava, silencing up to 16 tales in a given strain using a single sgRNA. Complementation with plasmid-borne designer tales lacking the sgRNA-targeted sequence restored molecular and virulence phenotypes in all pathosystems. Our results evidenced that X. campestris pv campestris CN08 tales are relevant for symptom development in cauliflower. They also show that the MeSWEET10a sugar transporter is surprisingly targeted by the nonvascular cassava pathogen X. cassavae, highlighting a new example of TALE functional convergence between phylogenetically distant Xanthomonas. Overall, this novel technology provides a platform for discovery and rapid functional understanding of highly conserved gene families.


Subject(s)
Oryza , Xanthomonas , Transcription Activator-Like Effectors/genetics , Xanthomonas/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence/genetics , Biological Transport , Plant Diseases/microbiology , Oryza/genetics
7.
Plant Methods ; 18(1): 86, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729628

ABSTRACT

BACKGROUND: Methods to accurately quantify disease severity are fundamental to plant pathogen interaction studies. Commonly used methods include visual scoring of disease symptoms, tracking pathogen growth in planta over time, and various assays that detect plant defense responses. Several image-based methods for phenotyping of plant disease symptoms have also been developed. Each of these methods has different advantages and limitations which should be carefully considered when choosing an approach and interpreting the results. RESULTS: In this paper, we developed two image analysis methods and tested their ability to quantify different aspects of disease lesions in the cassava-Xanthomonas pathosystem. The first method uses ImageJ, an open-source platform widely used in the biological sciences. The second method is a few-shot support vector machine learning tool that uses a classifier file trained with five representative infected leaf images for lesion recognition. Cassava leaves were syringe infiltrated with wildtype Xanthomonas, a Xanthomonas mutant with decreased virulence, and mock treatments. Digital images of infected leaves were captured overtime using a Raspberry Pi camera. The image analysis methods were analyzed and compared for the ability to segment the lesion from the background and accurately capture and measure differences between the treatment types. CONCLUSIONS: Both image analysis methods presented in this paper allow for accurate segmentation of disease lesions from the non-infected plant. Specifically, at 4-, 6-, and 9-days post inoculation (DPI), both methods provided quantitative differences in disease symptoms between different treatment types. Thus, either method could be applied to extract information about disease severity. Strengths and weaknesses of each approach are discussed.

8.
Front Plant Sci ; 13: 890555, 2022.
Article in English | MEDLINE | ID: mdl-35720572

ABSTRACT

Cassava (Manihot esculenta Crantz) is an important tropical crop for food, fodder, and energy. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) occurs in all cassava growing regions and threatens global cassava production. WRKY transcription factor family plays the essential roles during plant growth, development, and abiotic or biotic stress. Particularly, previous studies have revealed the important role of the group IIa WRKY genes in plant disease resistance. However, a comprehensive analysis of group IIa subfamily in cassava is still missing. Here, we identified 102 WRKY members, which were classified into three groups, I, II, and III. Transient expression showed that six MeWRKY IIas were localized in the nucleus. MeWRKY IIas transcripts accumulated significantly in response to SA, JA, and Xam. Overexpression of MeWRKY27 and MeWRKY33 in Arabidopsis enhanced its resistance to Pst DC3000. In contrast, silencing of MeWRKY27 and MeWRKY33 in cassava enhanced its susceptibility to Xam. Co-expression network analysis showed that different downstream genes are regulated by different MeWRKY IIa members. The functional analysis of downstream genes will provide clues for clarifying molecular mechanism of cassava disease resistance. Collectively, our results suggest that MeWRKY IIas are regulated by SA, JA signaling, and coordinate response to Xam infection.

10.
Front Plant Sci ; 13: 790140, 2022.
Article in English | MEDLINE | ID: mdl-35178059

ABSTRACT

Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) seriously affects cassava yield. Genes encoding nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains are among the most important disease resistance genes in plants that are specifically involved in the response to diverse pathogens. However, the in vivo roles of NBS-LRR remain unclear in cassava (Manihot esculenta). In this study, we isolated four MeLRR genes and assessed their expression under salicylic acid (SA) treatment and Xam inoculation. Four MeLRR genes positively regulate cassava disease general resistance against Xam via virus-induced gene silencing (VIGS) and transient overexpression. During cassava-Xam interaction, MeLRRs positively regulated endogenous SA and reactive oxygen species (ROS) accumulation and pathogenesis-related gene 1 (PR1) transcripts. Additionally, we revealed that MeLRRs positively regulated disease resistance in Arabidopsis. These pathogenic microorganisms include Pseudomonas syringae pv. tomato, Alternaria brassicicola, and Botrytis cinerea. Our findings shed light on the molecular mechanism underlying the regulation of cassava resistance against Xam inoculation.

11.
Plant Mol Biol ; 109(3): 313-324, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34757519

ABSTRACT

KEY MESSAGE: The overexpression of RXam2, a cassava NLR (nucleotide-binding leucine-rich repeat) gene, by stable transformation and gene expression induction mediated by dTALEs, reduce cassava bacterial blight symptoms. Cassava (Manihot esculenta) is a tropical root crop affected by different pathogens including Xanthomonas phaseoli pv. manihotis (Xpm), the causal agent of cassava bacterial blight (CBB). Previous studies have reported resistance to CBB as a quantitative and polygenic character. This study sought to validate the functional role of a NLR (nucleotide-binding leucine-rich repeat) associated with a QTL to Xpm strain CIO151 called RXam2. Transgenic cassava plants overexpressing RXam2 were generated and analyzed. Plants overexpressing RXam2 showed a reduction in bacterial growth to Xpm strains CIO151, 232 and 226. In addition, designer TALEs (dTALEs) were developed to specifically bind to the RXam2 promoter region. The Xpm strain transformed with dTALEs allowed the induction of the RXam2 gene expression after inoculation in cassava plants and was associated with a diminution in CBB symptoms. These findings suggest that RXam2 contributes to the understanding of the molecular basis of quantitative disease resistance.


Subject(s)
Manihot , Xanthomonas , Leucine , Manihot/genetics , Nucleotides , Plant Diseases/microbiology
12.
J Pineal Res ; 72(2): e12784, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34936113

ABSTRACT

Melatonin is widely involved in plant disease resistance through modulation of immune responses. Pathogenesis-related (PR) proteins play important roles in plant immune responses. However, the direct association between melatonin biosynthetic enzyme and PR protein remains elusive in plants. In this study, we found that N-acetylserotonin O-methyltransferase 2 (MeASMT2) physically interacted with MePR1 in vitro and in vivo, thereby promoting the anti-bacterial activity of MePR1 against Xanthomonas axonopodis pv. manihotis (Xam). Consistently, MeASMT2 improved the effect of MePR1 on positively regulating cassava disease resistance. In addition, we found that type 2C protein phosphatase 1 (MePP2C1) interacted with MeASMT2 to interfere with MePR1-MeASMT2 interaction, so as to inhibiting the effect of MeASMT2 and MePR1 on positively regulating cassava disease resistance. In contrast to the increased transcripts of MeASMT2 and MePR1 in response to Xam infection, the transcript of MePP2C1 was decreased upon Xam infection. Therefore, disease activated MeASMT2 was released from disease inhibited MePP2C1, so as to improving the anti-bacterial activity of MePR1, resulting in improved immune response. In summary, this study illustrates the dynamic modulation of the MePP2C1-MeASMT2-MePR1 module on cassava defense response against cassava bacterial blight (CBB), extending the understanding of the correlation between melatonin biosynthetic enzyme and PR in plants.


Subject(s)
Manihot , Melatonin , Disease Resistance , Humans , Melatonin/metabolism , Plant Diseases/microbiology
13.
Mol Plant Pathol ; 22(12): 1520-1537, 2021 12.
Article in English | MEDLINE | ID: mdl-34227737

ABSTRACT

Xanthomonas phaseoli pv. manihotis (Xpm) and X. cassavae (Xc) are two bacterial pathogens attacking cassava. Cassava bacterial blight (CBB) is a systemic disease caused by Xpm, which might have dramatic effects on plant growth and crop production. Cassava bacterial necrosis is a nonvascular disease caused by Xc with foliar symptoms similar to CBB, but its impacts on the plant vigour and the crop are limited. In this review, we describe the epidemiology and ecology of the two pathogens, the impacts and management of the diseases, and the main research achievements for each pathosystem. Because Xc data are sparse, our main focus is on Xpm and CBB.


Subject(s)
Manihot , Xanthomonas , Plant Diseases
14.
Plant J ; 107(3): 925-937, 2021 08.
Article in English | MEDLINE | ID: mdl-34037995

ABSTRACT

Heat shock protein 90 (HSP90) is involved in plant growth and various stress responses via regulating protein homeostasis. Autophagy keeps cellular homeostasis by recycling the components of cellular cytoplasmic constituents. Although they have similar effects on cellular protein homeostasis, the direct association between HSP90 and autophagy signaling remains unclear in plants, especially in tropical crops. In this study, the correlation between HSP90 and autophagy signaling was systematically analyzed by protein-protein interaction in cassava, one of the most important economy fruit in tropic. In addition, their effects on plant disease response and underlying mechanisms in cassava were investigated by functional genomics and genetic phenotype assay. The potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex interacts with MeATGs and subsequently triggers autophagy signaling, conferring improved disease resistance to cassava bacterial blight (CBB). On the contrary, HSP90 inhibitor and autophagy inhibitor decreased disease resistance against CBB in cassava, and autophagy may be involved in the potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex-mediated multiple immune responses. This study highlights the precise modulation of autophagy signaling by potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex in autophagy-mediated disease resistance to CBB.


Subject(s)
Autophagy/genetics , HSP90 Heat-Shock Proteins/metabolism , Manihot/microbiology , Plant Diseases/microbiology , Plant Proteins/metabolism , Gene Expression Regulation, Plant/immunology , HSP90 Heat-Shock Proteins/genetics , Manihot/metabolism , Molecular Chaperones , Plant Diseases/immunology , Plant Leaves/metabolism , Plant Proteins/genetics , Nicotiana/genetics , Nicotiana/metabolism , Two-Hybrid System Techniques , Xanthomonas axonopodis
15.
Microorganisms ; 9(2)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557009

ABSTRACT

Transcription activator-like effectors (TALEs) play a significant role for pathogenesis in several xanthomonad pathosystems. Xanthomonas phaseoli pv. manihotis (Xpm), the causal agent of Cassava Bacterial Blight (CBB), uses TALEs to manipulate host metabolism. Information about Xpm TALEs and their target genes in cassava is scarce, but has been growing in the last few years. We aimed to characterize the TALE diversity in Colombian strains of Xpm and to screen for TALE-targeted gene candidates. We selected eighteen Xpm strains based on neutral genetic diversity at a country scale to depict the TALE diversity among isolates from cassava productive regions. RFLP analysis showed that Xpm strains carry TALomes with a bimodal size distribution, and affinity-based clustering of the sequenced TALEs condensed this variability mainly into five clusters. We report on the identification of 13 novel variants of TALEs in Xpm, as well as a functional variant with 22 repeats that activates the susceptibility gene MeSWEET10a, a previously reported target of TAL20Xam668. Transcriptomics and EBE prediction analyses resulted in the selection of several TALE-targeted candidate genes and two potential cases of functional convergence. This study provides new bases for assessing novel potential TALE targets in the Xpm-cassava interaction, which could be important factors that define the fate of the infection.

16.
Front Genet ; 11: 837, 2020.
Article in English | MEDLINE | ID: mdl-32849823

ABSTRACT

Xanthomonas phaseoli pv. manihotis (Xpm) is the causal agent of cassava bacterial blight, the most important bacterial disease in this crop. There is a paucity of knowledge about the metabolism of Xanthomonas and its relevance in the pathogenic process, with the exception of the elucidation of the xanthan biosynthesis route. Here we report the reconstruction of the genome-scale model of Xpm metabolism and the insights it provides into plant-pathogen interactions. The model, iXpm1556, displayed 1,556 reactions, 1,527 compounds, and 890 genes. Metabolic maps of central amino acid and carbohydrate metabolism, as well as xanthan biosynthesis of Xpm, were reconstructed using Escher (https://escher.github.io/) to guide the curation process and for further analyses. The model was constrained using the RNA-seq data of a mutant of Xpm for quorum sensing (QS), and these data were used to construct context-specific models (CSMs) of the metabolism of the two strains (wild type and QS mutant). The CSMs and flux balance analysis were used to get insights into pathogenicity, xanthan biosynthesis, and QS mechanisms. Between the CSMs, 653 reactions were shared; unique reactions belong to purine, pyrimidine, and amino acid metabolism. Alternative objective functions were used to demonstrate a trade-off between xanthan biosynthesis and growth and the re-allocation of resources in the process of biosynthesis. Important features altered by QS included carbohydrate metabolism, NAD(P)+ balance, and fatty acid elongation. In this work, we modeled the xanthan biosynthesis and the QS process and their impact on the metabolism of the bacterium. This model will be useful for researchers studying host-pathogen interactions and will provide insights into the mechanisms of infection used by this and other Xanthomonas species.

17.
Tree Physiol ; 40(11): 1520-1533, 2020 10 29.
Article in English | MEDLINE | ID: mdl-32705122

ABSTRACT

As one of the important crops in the world, cassava production is seriously threatened by Xanthomonas axonopodis pv. manihotis (Xam) all year round. Calmodulin-binding transcription activators (CAMTAs) play key roles in biotic stress and abiotic stress in plants, however, their roles in cassava remain elusive. In this study, six MeCAMTAs were identified, and MeCAMTA3 with the highest induction upon Xam infection was confirmed as a transcription factor that binds to the vCGCGb motif. MeCAMTA3 negatively regulates plant disease resistance against Xam. On the one hand, MeCAMTA3 negatively regulated endogenous salicylic acid and reactive oxygen species accumulation, pathogenesis-related genes MePRs' transcripts and callose deposition during cassava-Xam interaction but not under control conditions. On the other hand, RNA sequencing showed extensive transcriptional reprogramming by MeCAMTA3, especially 18 genes with a vCGCGb motif in the promoter region in hormone signaling, antioxidant signaling and other disease resistance signaling. Notably, chromatin immunoprecipitation-polymerase chain reaction showed that eight of these genes might be directly regulated by MeCAMTA3 through transcriptional repression. In summary, MeCAMTA3 negatively regulates plant disease resistance against cassava bacterial blight through modulation of multiple immune responses during cassava-Xam interaction and extensive transcriptional reprogramming.


Subject(s)
Manihot , Xanthomonas axonopodis , Xanthomonas , Disease Resistance/genetics , Humans , Manihot/genetics , Plant Diseases/genetics
18.
Ann Bot ; 124(7): 1185-1198, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31282544

ABSTRACT

BACKGROUND AND AIMS: The nuclear factor Y (NF-Y) transcription factor complex is important in plant growth, development and stress response. Information regarding this transcription factor complex is limited in cassava (Manihot esculenta). In this study, 15 MeNF-YAs, 21 MeNF-YBs and 15 MeNF-YCs were comprehensively characterized during plant defence. METHODS: Gene expression in MeNF-Ys was examined during interaction with the bacterial pathogen Xanthomonas axonopodis pv. manihotis (Xam). The yeast two-hybrid system was employed to investigate protein-protein interactions in the heterotrimeric NF-Y transcription factor complex. The in vivo roles of MeNF-Ys were revealed by virus-induced gene silencing (VIGS) in cassava. KEY RESULTS: The regulation of MeNF-Ys in response to Xam indicated their possible roles in response to cassava bacterial blight. Protein-protein interaction assays identified the heterotrimeric NF-Y transcription factor complex (MeNF-YA1/3, MeNF-YB11/16 and MeNF-YC11/12). Moreover, the members of the heterotrimeric NF-Y transcription factor complex were located in the cell nucleus and conferred transcriptional activation activity to the CCAAT motif. Notably, the heterotrimeric NF-Y transcription factor complex positively regulated plant disease resistance to Xam, confirmed by a disease phenotype in overexpressing plants in Nicotiana benthamiana and VIGS in cassava. Consistently, the heterotrimeric NF-Y transcription factor complex positively regulated the expression of pathogenesis-related genes (MePRs). CONCLUSIONS: The NF-Y transcription factor complex (MeNF-YA1/3, MeNF-YB11/16 and MeNF-YC11/12) characterized here was shown to play a role in transcriptional activation of MePR promoters, contributing to the plant defence response in cassava.


Subject(s)
Manihot , Xanthomonas axonopodis , CCAAT-Binding Factor , Disease Resistance , Humans , Plant Proteins
19.
Acta biol. colomb ; 23(3): 242-252, sep.-dic. 2018. tab, graf
Article in Spanish | LILACS | ID: biblio-973441

ABSTRACT

RESUMEN Posterior al reconocimiento de agentes patógenos las plantas activan una serie de cascadas de señalización que culminan con la activación de factores de transcripción. Esto genera una concomitante reprogramación de la expresión génica que incluye la activación de la transcripción de los genes PR (relacionados con patogenicidad). Las proteínas PR son conocidas por poseer actividad antimicrobiana y evitan la posterior colonización del patógeno. En este estudio se empleó una aproximación bioinformática para identificar el repertorio de posibles proteínas PR en el genoma de yuca. Adicionalmente, se evaluó la expresión de nueve genes PR a lo largo del tiempo en variedades de yuca resistentes y susceptibles en respuesta a la inoculación con la bacteria Xanthomonas axonopodis pv. manihotis (Xam) mediante RT-PCR. Se encontró que varios genes PR fueron inducidos producto de la herida que se realiza durante el proceso de inoculación. Con el fin de evaluar cuantitativamente la contribución real de la infección bacteriana en la expresión de estos genes, se llevó a cabo una RT-PCR en tiempo real (QRT, Quantitative Real-Time PCR). Se encontró que en la variedad resistente el gen que codifica para MePR1 (Manes06G026900.1) presentó una inducción en su expresión a diferentes tiempos post-inoculación, lo cual no se observó en la variedad susceptible. De esta manera, este gen se constituye en un excelente marcador para evaluar la respuesta molecular de resistencia en plantas de yuca.


ABSTRACT Once pathogens are perceived by plants a signal transduction pathway is activated leading to the induction of transcription factors, which in turn reprogram the host gene expression including the transcription of PR (Pathogenesis-Related) genes. The PR proteins are well known for their antimicrobial activity and for contributing to arrest the invasion of pathogens. In this work, a bioinformatics approach was used to identify the repertoire of possible PR proteins in the cassava genome. Additionally, the expression of nine PR genes was evaluated over a time course in resistant and susceptible cassava varieties in response to inoculation with the bacterium Xanthomonas axonopodis pv. manihotis (Xam) by semiquantitative RT-PCR. It was found that several PR genes were induced as a result of the wound that is made during the inoculation process. In order to evaluate quantitatively the real contribution of the bacterial infection in the expression of the genes, a Real Time RT-PCR (qRT, quantitative Real-Time PCR) was carried out. In the resistant variety the gene coding for MePR1 (Manes06G026900) was induced at different post-inoculation times, which was not observed in the susceptible variety. Therefore, this gene constitutes an excellent marker to evaluate the molecular resistance response in cassava plants.

20.
J Appl Genet ; 59(4): 391-403, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30039242

ABSTRACT

Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (or XAM) is a serious disease of cassava (Manihot esculenta Crantz). In this study, quantitative trait loci (QTL) associated with CBB infection were identified in the F1 progenies of a cross between the "Huay Bong 60" and "Hanatee" cassava cultivars. The phenotype of disease severity was observed at 7, 10, and 12 days after inoculation (DAI). A total of 12 QTL were identified, of which 5, 6, and 1 were detected in 7, 10, and 12 DAI samples, respectively. Among all identified QTL, CBB14_10dai_1, CBB14_10dai_2, and CBB14_12dai showed the most significant (P < 0.0001) associations with CBB infection, and explained 21.3, 13.8, and 26.5% of phenotypic variation, respectively. Genes underlying the QTL were identified and their expression was investigated in resistant and susceptible cassava plants by real-time quantitative RT-PCR. The results identified candidate genes that showed significant differences in expression between resistant and susceptible lines, including brassinosteroid insensitive 1-associated receptor kinase 1-related (Manes.04G059100), cyclic nucleotide-gated ion channel 2 (Manes.02G051100), and autophagy-related protein 8a-related (Manes.17G026600) at 7 DAI, and regulator of nonsense transcripts 1 homolog (Manes.17G021900) at both 7 and 12 DAI. The expression pattern of all genes showed higher levels in resistant (B82, B32, B20, and B70) as compared to susceptible (HB60, B100, B95, and B47) plants. Overall, this study has identified QTL and markers linked to CBB infection trait, and identified candidate genes involved in CBB resistance. This information will be of use for better understanding defense mechanisms in cassava to bacterial blight disease.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Manihot/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Chromosome Mapping , Genetic Linkage , Genetic Markers , Manihot/microbiology , Microsatellite Repeats , Phenotype , Plant Diseases/microbiology , Real-Time Polymerase Chain Reaction , Xanthomonas/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...