Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.161
Filter
1.
Fish Physiol Biochem ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020065

ABSTRACT

This study aimed to evaluate the effects of Protium heptaphyllum fruit essential oil (PHEO) on the physiology of silver catfish (Rhamdia quelen) during anesthesia and recovery, through studying echocardiograms, oxidative status, and metabolic parameters. Three experiments were performed: (1) 50 silver catfish juveniles were submitted to anesthesia and recovery tests with 300, 400, 500, 600, and 700 mg L-1 of PHEO. (2) Echocardiogram analysis was performed in anesthetized and non-anesthetized fish. (3) Biochemical parameters were evaluated at 0, 30, 60, and 120 min of recovery after being anesthetized for 3 min with 600 mg L-1 PHEO. Times to sedation and deep anesthesia were reduced with PHEO increasing concentrations. The echocardiogram showed a higher cardiac rate in anesthetized fish. Plasma glucose levels increased in control fish through recovery time, but anesthetized fish showed lower levels than controls at 120 min of recovery. Metabolic parameters such as plasma and hepatic glucose did not show changes considering the recovery time of up to 120 min. Hepatic glycogen, lactate, and triglycerides reduced their levels over recovery times. Fish anesthetized enhanced superoxide dismutase activity and thiobarbituric acid reactive substances levels but decreased reduced glutathione (GSH) levels at 30 min compared to controls. After 60 min, GSH values were significantly higher in anesthetized fish than in controls. These results suggest that PHEO at 600 mg L-1 is an effective anesthetic for the rapid handling of silver catfish, providing stable metabolic parameters and enhanced antioxidant responses during recovery. Echocardiogram analysis confirms the anesthetic effect, supporting PHEO as a viable and efficient option for fish anesthesia in aquaculture. The use of PHEO in aquaculture can enhance fish welfare by reducing stress during handling and transportation, potentially leading to improved growth, health, and survival rates.

2.
Animals (Basel) ; 14(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998011

ABSTRACT

The confinement of transgenic fish is essential to prevent their escape and reproduction in natural ecosystems. Reversible transgenic sterilization is a promising approach to control the reproduction of transgenic fish. Therefore, the present study was conducted to develop a reversibly sterile channel catfish (Ictalurus punctatus) via the transgenic overexpression of the goldfish (Carassius auratus) glutamic acid decarboxylase (GAD) gene driven by the common carp (Cyprinus carpio) ß-actin promoter to disrupt normal gamma-aminobutyric acid (GABA) regulation. Three generations of GAD-transgenic fish were produced. All studied generations showed repressed reproductive performance; however, this was not always statistically significant. In F1, 5.4% of the transgenic fish showed a sexual maturity score ≥ 4 (maximum = 5) at five years of age, which was lower (p = 0.07) than that of the control group (16.8%). In the spawning experiments conducted on F1 transgenic fish at six and nine years of age, 45.5% and 20.0% of fish spawned naturally, representing lower values (p = 0.09 and 0.12, respectively) than the percentages in the sibling control fish of the same age (83.3% and 66.7%, respectively). Four of six pairs of the putative infertile six-year-old fish spawned successfully after luteinizing hormone-releasing hormone analog (LHRHa) therapy. Similar outcomes were noted in the three-year-old F2 fish, with a lower spawning percentage in transgenic fish (20.0%) than in the control (66.7%). In one-year-old F2-generation transgenic fish, the observed mean serum gonadotropin-releasing hormone (GnRH) levels were 9.23 ± 2.49 and 8.14 ± 2.21 ng/mL for the females and males, respectively. In the control fish, the mean levels of GnRH were 11.04 ± 4.06 and 9.03 ± 2.36 ng/mL for the females and males, respectively, which did not differ significantly from the control (p = 0.15 and 0.27 for females and males, respectively). There was no significant difference in the estradiol levels of the female transgenic and non-transgenic fish in the one- and four-year-old F2-generation fish. The four-year-old F2-generation male transgenic fish exhibited significantly (p < 0.05) lower levels of GnRH and testosterone than the control fish. In conclusion, while overexpressing GAD repressed the reproductive abilities of channel catfish, it did not completely sterilize transgenic fish. The sterilization rate might be improved through selection in future generations.

3.
Open Life Sci ; 19(1): 20220903, 2024.
Article in English | MEDLINE | ID: mdl-39027422

ABSTRACT

Catfish (Clarias magur) is a popular freshwater fish food worldwide. The processing of this fish generates a significant amount of waste, mainly in the form of viscera, which constitutes around 10-12% of the fish's total weight. This study was focused on extracting polyunsaturated fatty acid (PUFA)-rich oil from catfish viscera, aiming to enhance the extraction process and make the production of oil and handling of fish byproducts more cost-effective. The wet reduction method, a solvent-free approach, was used for extraction, with yield optimization done via the Box-Behnken design. The resulting oil was evaluated for its oxidative quality and chemical characteristics. The optimal conditions for the wet rendering process were as follows: viscera to water ratio, 1:0.5 (w/v); temperature, 90℃; and time, 20 min, yielding 12.40 g/100 g of oil. The oil extracted under optimal wet rendering conditions had quality and oxidative stability comparable to solvent extraction and fewer secondary oxidation compounds. This oil had a higher PUFA content, specifically a 4:1 ratio of omega 6 to omega 3. Such oil, derived from catfish viscera, is suitable for the food industry due to its solvent-free extraction method.

4.
J Water Health ; 22(6): 1033-1043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935454

ABSTRACT

The misuse of antibiotics and the emergence of antimicrobial resistance (AMR) is a concern in the aquaculture industry because it contributes to global health risks and impacts the environment. This study analyzed the AMR of sentinel bacteria associated with striped catfish (Pangasisanodon hypophthalmus) and giant snakehead (Channa micropeltes), the two main fish species reared in the pond culture in Cambodia. Phenotypic and genotypic characterization of the recovered isolates from fish, water, and sediment samples revealed the presence of bacteria, such as 22 species belonging to families Aeromonadaceae, Enterobacteriaceae, and Pseudomonadaceae. Among 48 isolates, Aeromonas caviae (n = 2), Aeromonas hydrophila (n = 2), Aeromonas ichthiosmia (n = 1), Aeromonas salmonicida (n = 4) were detected. A. salmonicida and A. hydrophilla are known as fish pathogens that occur worldwide in both fresh and marine water aquaculture. Antibiotic susceptibility testing revealed antibiotic resistance patterns of 24 (50 %) isolates among 48 isolates with higher multiple antibiotic resistance index (> 0.2). All the isolates of Enterobacteriaceae were susceptible to ciprofloxacin. Ciprofloxacin is a frontline antibiotic that is not recommended to use in aquaculture. Therefore, its use has to be strictly controlled. This study expands our knowledge of the AMR status in aquaculture farms which is very limited in Cambodia.


Subject(s)
Aquaculture , Drug Resistance, Bacterial , Water Microbiology , Cambodia , Catfishes/microbiology , Sentinel Species , Phenotype , Genotype , Aeromonadaceae/classification , Aeromonadaceae/isolation & purification , Aeromonadaceae/physiology , Enterobacteriaceae/classification , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/physiology , Pseudomonadaceae/classification , Pseudomonadaceae/isolation & purification , Pseudomonadaceae/physiology , Aeromonas caviae/isolation & purification , Aeromonas caviae/physiology , Aeromonas hydrophila/isolation & purification , Aeromonas hydrophila/physiology , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fish Diseases/drug therapy , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/veterinary , Environmental Monitoring
5.
Antioxidants (Basel) ; 13(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929161

ABSTRACT

Starch is a common source of carbohydrates in aqua feed. High-starch diet can cause hepatic injury and lipid accumulation in fish. Mangiferin (MGF) can regulate lipid metabolism and protect the liver, but there is limited research on its effects in fish. In the present study, we investigated whether MGF could ameliorate high-starch-induced hepatic damage and lipid accumulation in channel catfish. The channel catfish (Ictalurus punctatus) were fed one of four experimental diets for eight weeks: a control diet (NCD), a high-starch diet (HCD), an HCD supplemented with 100 mg/kg MGF (100 MGF), and an HCD supplemented with 500 mg/kg MGF (500 MGF). The results demonstrated that the weight gain rate (WGR) (p = 0.031), specific growth rate (SGR) (p = 0.039), and feed conversion efficiency (FCE) (p = 0.040) of the 500 MGF group were significantly higher than those of the NCD group. MGF supplementation alleviated liver damage and improved antioxidant capacity (T-AOC) compared to those of the HCD group (p = 0.000). In addition, dietary MGF significantly reduced plasma glucose (GLU) (p = 0.000), triglyceride (TG) (p= 0.001), and low-density lipoprotein cholesterol (LDL) (p = 0.000) levels. It is noteworthy that MGF significantly reduced the plasma total cholesterol (TC) levels (p = 0.000) and liver TC levels (p = 0.005) of channel catfish. Dietary MGF improves cholesterol homeostasis by decreasing the expression of genes that are involved in cholesterol synthesis and transport (hmgcr, sqle, srebf2, sp1, and ldlr) and increasing the expression of genes that are involved in cholesterol catabolism (cyp7a1). Among them, the largest fold decrease in squalene epoxidase (sqle) expression levels was observed in the 100 MGF or 500 MGF groups compared with the HCD group, with a significant decrease of 3.64-fold or 2.20-fold (p = 0.008). And the 100 MGF or 500 MGF group had significantly decreased (by 1.67-fold or 1.94-fold) Sqle protein levels compared to those of the HCD group (p = 0.000). In primary channel catfish hepatocytes, MGF significantly down-regulated the expression of sqle (p = 0.030) and reduced cholesterol levels (p = 0.000). In NCTC 1469 cells, MGF significantly down-regulated the expression of sqle (p = 0.000) and reduced cholesterol levels (p = 0.024). In conclusion, MGF effectively inhibits sqle expression and reduces cholesterol accumulation. The current study shows how MGF supplementation regulates the metabolism and accumulation of cholesterol in channel catfish, providing a theoretical basis for the use of MGF as a dietary supplement in aquaculture.

6.
Microorganisms ; 12(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930563

ABSTRACT

Edwardsiella ictaluri is responsible for causing bacillary necrosis (BNP) in striped catfish (Pangasianodon hypophthalmus) in Vietnam. This study offers a comprehensive genomic characterization of E. ictaluri to enhance understanding of the molecular epidemiology, virulence, and antimicrobial resistance. E. ictaluri isolates were collected from diseased striped catfish in the Mekong Delta. The species was confirmed through PCR. Antimicrobial susceptibility testing was conducted using minimum inhibitory concentrations for commonly used antimicrobials. Thirty representative isolates were selected for whole genome sequencing to delineate their genomic profiles and phylogeny. All strains belonged to ST-26 and exhibited genetic relatedness, differing by a maximum of 90 single nucleotide polymorphisms. Most isolates carried multiple antimicrobial resistance genes, with the tet(A) gene present in 63% and floR in 77% of the genomes. The ESBL gene, blaCTX-M-15, was identified in 30% of the genomes. Three plasmid replicon types were identified: IncA, p0111, and IncQ1. The genomes clustered into two clades based on their virulence gene profile, one group with the T3SS genes and one without. The genetic similarity among Vietnamese isolates suggests that disease spread occurs within the Mekong region, underscoring the importance of source tracking, reservoir identification, and implementation of necessary biosecurity measures to mitigate spread of BNP.

7.
Environ Monit Assess ; 196(7): 626, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884864

ABSTRACT

This study aimed to isolate and identify pathogenic bacteria in the intestinal tract, skin, and muscles of Sciades herzbergii; detect histopathological changes in the gill and liver; and use these biomarkers for the assessment of potential risks to human health. Fish were sampled during the rainy and dry seasons at two points in São Marcos Bay, Maranhão, Brazil: Ilha dos Caranguejos (IC) and Porto Grande (PG). Isolation and quantification were carried out using COLItest®. Colonies were subjected to identification and phenotypic investigation of antimicrobial resistance using Vitek®. Gill and liver samples were subjected to routine histological examination. The results indicated the presence of Klebsiella pneumoniae and Escherichia coli, the latter of which showed phenotypic resistance to norfloxacin and gentamicin. Fish caught at PG exhibited more extensive gill and liver damage than fish caught at IC. The findings suggest that histological changes in target organs of S. herzbergii may be influenced by infection with pathogenic bacteria.


Subject(s)
Environmental Monitoring , Estuaries , Gills , Animals , Brazil , Gills/microbiology , Gills/pathology , Humans , Biomarkers , Liver/pathology , Fishes/microbiology , Escherichia coli/isolation & purification , Klebsiella pneumoniae/isolation & purification
8.
Vet Pathol ; : 3009858241259181, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864294

ABSTRACT

Proliferative gill disease (PGD), caused by the myxozoan Henneguya ictaluri, has been the most notorious parasitic gill disease in the US catfish aquaculture industry. In 2019, an unusual gill disease caused by massive burdens of another myxozoan, Henneguya exilis, was described in channel (Ictalurus punctatus) × blue (Ictalurus furcatus) hybrid catfish. Targeted metagenomic sequencing and in situ hybridization (ISH) were used to differentiate these conditions by comparing myxozoan communities involved in lesion development and disease pathogenesis between massive H. exilis infections and PGD cases. Thirty ethanol-fixed gill holobranchs from 7 cases of massive H. exilis infection in hybrid catfish were subjected to targeted amplicon sequencing of the 18S rRNA gene and compared to a targeted metagenomic data set previously generated from clinical PGD case submissions. Furthermore, serial sections of 14 formalin-fixed gill holobranchs (2 per case) were analyzed by RNAscope duplex chromogenic ISH assays targeting 8 different myxozoan species. Targeted metagenomic and ISH data were concordant, indicating myxozoan community compositions significantly differ between PGD and massive branchial henneguyosis. Although PGD cases often consist of mixed species infections, massive branchial henneguyosis consisted of nearly pure H. exilis infections. Still, H. ictaluri was identified by ISH in association with infrequent PGD lesions, suggesting coinfections occur, and some cases of massive branchial henneguyosis may contain concurrent PGD lesions contributing to morbidity. These findings establish a case definition for a putative emerging, myxozoan-induced gill disease of farm-raised catfish with a proposed condition name of massive branchial henneguyosis of catfish (MBHC).

9.
BMC Zool ; 9(1): 11, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902830

ABSTRACT

Propranolol (PRO) is a beta-blocker drug used for the treatment of anxiety, chest pain, migraine and tremors. The present study investigated whether sublethal concentrations of PRO have effects on the body condition, biochemistry, and hematology of Clarias gariepinus juveniles. The 96-h median lethal concentration (LC50) of the drug, which was established through an acute toxicity study, was 9.48 mg/L. Based on these values, the fish were exposed for 21 days to the control and sublethal concentrations of 1.90, 0.95, and 0.63 mg/L, which are equivalent to the 1/5th, 1/10th, and 1/20th of the LC50 of PRO, respectively. After 21 days of exposure, the fish were removed from the toxicant and kept in toxicant-free water for 7 days to recover. The standard length and body weight of each fish were measured after each exposure period. The condition factor (CF) and hepatosomatic index (HSI) were not significantly affected by the drug. The red blood cell (RBC) count, hemoglobin (Hb) count and packed cell volume (PCV) decreased from day 7 to 21 at the tested concentrations, while the white blood cell (WBC) count significantly increased. There were alterations in the mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin (MCH) in the exposed groups compared to those in the control group. When neutrophil counts increased, the lymphocyte counts decreased, but the monocyte, basophil cell and eosinophil cell counts were not affected. Among the liver enzymes, only aspartate aminotransferase was significantly stimulated in the groups that were exposed to the drug. The protein and glucose levels of fish exposed to the drug decreased. Most of the studied parameters returned to their original values after the 7-day recovery period. The information provided in the current study will be helpful in the monitoring of PRO contamination in aquatic environments.

10.
Environ Pollut ; 356: 124310, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838810

ABSTRACT

To elucidate the mechanism behind channel catfish feminization induced by high temperature, gonad samples were collected from XY pseudo-females and wild-type females and subjected to high-throughput sequencing for Whole-Genome-Bisulfite-Seq (WGBS) and transcriptome sequencing (RNA-Seq). The analysis revealed 50 differentially methylated genes between wild-type females and XY pseudo-females, identified through the analysis of KEGG pathways and GO enrichment in the promoter of the genome and differentially methylated regions (DMRs). Among these genes, multiple differential methylation sites observed within the srd5a2 gene. Repeatability tests confirmed 7 differential methylation sites in the srd5a2 gene in XY pseudo-females compared to normal males, with 1 specific differential methylation site (16608174) distinguishing XY pseudo-females from normal females. Interestingly, the expression of these genes in the transcriptome showed no difference between wild-type females and XY pseudo-females. Our study concluded that methylation of the srd5a2 gene sequence leads to decreased expression, which inhibits testosterone synthesis while promoting the synthesis of 17ß-estradiol from testosterone. This underscores the significance of the srd5a2 gene in the sexual differentiation of channel catfish, as indicated by the ipu00140 KEGG pathway analysis.

11.
Animals (Basel) ; 14(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38891632

ABSTRACT

The hybrid yellow catfish exhibits advantages over pure yellow catfish in terms of fast growth, fast development, a high feeding rate, and strong immunity; additionally, it is almost sterile, thus ensuring the conservation of the genetic stock of fish populations. To investigate the sterility mechanism in hybrid yellow catfish (P. fulvidraco (♀) × P. vachelli (♂)), the mRNA and miRNA of the gonads of P. fulvidraco, P. vachelli, and a hybrid yellow catfish were analyzed to characterize the differentially expressed genes; this was carried out to help establish gene expression datasets to assist in the further determination of the mechanisms of genetic sterility in hybrid yellow catfish. In total, 1709 DEGs were identified between the hybrid and two pure yellow catfishes. A KEGG pathway analysis indicated that several genes related to reproductive functions were upregulated, including those involved in the cell cycle, progesterone-mediated oocyte maturation, and oocyte meiosis, and genes associated with ECM-receptor interaction were downregulated. The spermatogenesis-related GO genes CFAP70, RSPH6A, and TSGA10 were identified as being downregulated DEGs in the hybrid yellow catfish. Sixty-three DEmiRNAs were identified between the hybrid and the two pure yellow catfish species. The upregulated DEmiRNAs ipu-miR-194a and ipu-miR-499 were found to target the spermatogenesis-related genes CFAP70 and RSPH6A, respectively, playing a negative regulatory role, which may underscore the miRNA-mRNA regulatory mechanism of sterility in hybrid yellow catfish. The differential expression of ipu-miR-196d, ipu-miR-125b, and ipu-miR-150 and their target genes spidr, cep85, and kcnn4, implicated in reproductive processes, was verified via qRT-PCR, consistent with the transcriptome sequencing expression trends. This study provides deep insights into the mechanism of hybrid sterility in vertebrate groups, thereby contributing to achieving a better understanding and management of fish conservation related to hybrid sterility.

12.
BMC Vet Res ; 20(1): 262, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890656

ABSTRACT

BACKGROUND: In recent years, anthropogenic activities have released heavy metals and polluted the aquatic environment. This study investigated the ability of the silica-stabilized magnetite (Si-M) nanocomposite materials to dispose of lead nitrate (Pb(NO3)2) toxicity in Nile tilapia and African catfish. RESULTS: Preliminary toxicity tests were conducted and determined the median lethal concentration (LC50) of lead nitrate (Pb(NO3)2) to Nile tilapia and African catfish to be 5 mg/l. The sublethal concentration, equivalent to 1/20 of the 96-hour LC50 Pb(NO3)2, was selected for our experiment. Fish of each species were divided into four duplicated groups. The first group served as the control negative group, while the second group (Pb group) was exposed to 0.25 mg/l Pb(NO3)2 (1/20 of the 96-hour LC50). The third group (Si-MNPs) was exposed to silica-stabilized magnetite nanoparticles at a concentration of 1 mg/l, and the fourth group (Pb + Si-MNPs) was exposed simultaneously to Pb(NO3)2 and Si-MNPs at the same concentrations as the second and third groups. Throughout the experimental period, no mortalities or abnormal clinical observations were recorded in any of the treated groups, except for melanosis and abnormal nervous behavior observed in some fish in the Pb group. After three weeks of sublethal exposure, we analyzed hepatorenal indices, oxidative stress parameters, and genotoxicity. Values of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), urea, and creatinine were significantly higher in the Pb-intoxicated groups compared to the control and Pb + Si-MNPs groups in both fish species. Oxidative stress parameters showed a significant decrease in reduced glutathione (GSH) concentration, along with a significant increase in malondialdehyde (MDA) and protein carbonyl content (PCC) concentrations, as well as DNA fragmentation percentage in the Pb group. However, these values were nearly restored to control levels in the Pb + Si-MNPs groups. High lead accumulation was observed in the liver and gills of the Pb group, with the least accumulation in the muscles of tilapia and catfish in the Pb + Si-MNPs group. Histopathological analysis of tissue samples from Pb-exposed groups of tilapia and catfish revealed brain vacuolation, gill fusion, hyperplasia, and marked hepatocellular and renal necrosis, contrasting with Pb + Si-MNP group, which appeared to have an apparently normal tissue structure. CONCLUSIONS: Our results demonstrate that Si-MNPs are safe and effective aqueous additives in reducing the toxic effects of Pb (NO3)2 on fish tissue through the lead-chelating ability of Si-MNPs in water before being absorbed by fish.


Subject(s)
Catfishes , Cichlids , Lead , Liver , Nitrates , Oxidative Stress , Silicon Dioxide , Water Pollutants, Chemical , Animals , Lead/toxicity , Oxidative Stress/drug effects , Silicon Dioxide/chemistry , Liver/drug effects , Liver/pathology , Liver/metabolism , Water Pollutants, Chemical/toxicity , Nanocomposites/chemistry , Nanocomposites/toxicity , Chelating Agents/pharmacology , Kidney/drug effects , Kidney/pathology , Bioaccumulation , Gills/drug effects , Gills/pathology , DNA Damage/drug effects
13.
Environ Toxicol Pharmacol ; 109: 104481, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857774

ABSTRACT

Pyrogallol, a botanical hydrolysable tannin, has diverse medical and industrial applications. Its impact on aquatic ecosystems and fish health has been previously studied, revealing histopathological, immunological, biochemical, and haematological alterations in African catfish (Clarias gariepinus). In this study, the neurotoxic potential of pyrogallol was assessed through a 15-day exposure of catfish to concentrations of 1, 5, or 10 mg/L. Enzyme activities such as acetylcholinesterase (AchE), monoamine oxidase (MAO), aldehyde oxidase (AO), and nitric oxide (NO) were measured in serum and brain, along with histopathological examinations in the brain and heart. Pyrogallol exposure led to decreased AchE activity in the brain and serum, increased serum MAO activity, elevated AO in both brain and serum, and suppressed NO levels. Morphological abnormalities and dose-dependent pathological alterations were observed in the brain and heart, including neuropile deformities, shrunken Purkinje cells, cardiomyocyte degeneration, and increased collagen fibers. This suggests that pyrogallol induces adverse effects in fish.


Subject(s)
Brain , Catfishes , Nitric Oxide , Pyrogallol , Water Pollutants, Chemical , Animals , Nitric Oxide/metabolism , Nitric Oxide/blood , Brain/drug effects , Brain/pathology , Pyrogallol/toxicity , Water Pollutants, Chemical/toxicity , Acetylcholinesterase/metabolism , Acetylcholinesterase/blood , Heart/drug effects , Myocardium/pathology , Myocardium/metabolism , Monoamine Oxidase/metabolism , Cardiotoxicity
14.
Fish Shellfish Immunol ; 151: 109707, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885802

ABSTRACT

Infection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.


Subject(s)
Catfishes , Fish Diseases , Vibrio Infections , Vibrio mimicus , Animals , Catfishes/immunology , Catfishes/genetics , Fish Diseases/immunology , Fish Diseases/microbiology , Vibrio Infections/veterinary , Vibrio Infections/immunology , Vibrio mimicus/immunology , Disease Susceptibility/veterinary , Disease Susceptibility/immunology , Epidermis/immunology , Epidermis/microbiology , Nutrients
15.
Heliyon ; 10(9): e30266, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38720710

ABSTRACT

Catfish bone powder (CBP), prepared from catfish head, was a good source of natural minerals, particularly calcium (Ca) and phosphorous (P). The Ca content were higher than P when analyzed by either chemical or SEM in EDS mode. These elements were found in the crystal form of hydroxyapatite (HA) complex with protein, as assessed by spectroscopic techniques, including XRD and FT-IR. Thus, low Ca solubility was thus observed at 0.03 ± 0.0038 % and digestion of complex HA is required for more liberation of Ca. Citric acid was therefore applied for Ca extraction using a microwave-assisted method. The conditions were optimized using response surface methodology with central composite design to evaluate the effect of extraction time, microwave power, citric acid concentration, and CBP weight. Based on a linear prediction model, the optimum condition to extract Ca from 0.4 g of CBP was at 0.1 M citric acid using microwave power of 275 W for 60 s. This condition provided a Ca content of 1.11 mg/mL in solution, which extract calcium about 27.75 % from original CBP weight. This Ca concentration was enough to induce alginate drops (1.0 %) to form hydro-beads, indicating its functional property in food system. These results provided the promising method to extract natural calcium from fishery by-products for further creating innovative food products.

16.
Front Genet ; 15: 1341555, 2024.
Article in English | MEDLINE | ID: mdl-38742167

ABSTRACT

Channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus) are two economically important freshwater aquaculture species in the United States, with channel catfish contributing to nearly half of the country's aquaculture production. While differences in economic traits such as growth rate and disease resistance have been noted, the extent of transcriptomic variance across various tissues between these species remains largely unexplored. The hybridization of female channel catfish with male blue catfish has led to the development of superior hybrid catfish breeds that exhibit enhanced growth rates and improved disease resistance, which dominate more than half of the total US catfish production. While hybrid catfish have significant growth advantages in earthen ponds, channel catfish were reported to grow faster in tank culture environments. In this study, we confirmed channel fish's superiority in growth over blue catfish in 60-L tanks at 10.8 months of age (30.3 g and 11.6 g in this study, respectively; p < 0.001). In addition, we conducted RNA sequencing experiments and established transcriptomic resources for the heart, liver, intestine, mucus, and muscle of both species. The number of expressed genes varied across tissues, ranging from 5,036 in the muscle to over 20,000 in the mucus. Gene Ontology analysis has revealed the functional specificity of differentially expressed genes within their respective tissues, with significant pathway enrichment in metabolic pathways, immune activity, and stress responses. Noteworthy tissue-specific marker genes, including lrrc10, fabp2, myog, pth1a, hspa9, cyp21a2, agt, and ngtb, have been identified. This transcriptome resource is poised to support future investigations into the molecular mechanisms underlying environment-dependent heterosis and advance genetic breeding efforts of hybrid catfish.

17.
Foods ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38790745

ABSTRACT

This study aimed to evaluate cinnamaldehyde (CN) and clove oil (CO) effectiveness in inhibiting growth and killing spoilage and total aerobic bacteria when overlaid with catfish fillet stored at 4 °C. A 1.00 mL concentration of CO inhibited growth by 2.90, 1.96, and 1.96 cm, respectively, for S. baltica, A. hydrophilia, and total bacteria. Similarly, treatment with 1.00 mL of CN resulted in ZIB of 2.17, 2.10, and 1.10 cm, respectively, for S. baltica, A. hydrophilia, and total bacteria from catfish exudates. Total bacteria from catfish exudates treated with 0.50 mL CN for 40 min, resulted in a 6.84 log decrease, and treatment with 1.00 mL resulted in a 5.66 log decrease at 40 min. Total bacteria exudates treated with 0.50 mL CO resulted in a 9.69 log reduction at 40 min. Total bacteria treated with 1.00 mL CO resulted in a 7.69 log decrease at 7 days, while untreated pads overlaid with catfish resulted in ≥9.00 CFU/mL. However, treated absorbent pads with catfish at 7 days, using 0.50 mL and 1.00 mL CN, had a bacterial recovery of 5.53 and 1.88 log CFU/mL, respectively. Furthermore, CO at 0.50 mL and 1.00 mL reduced the bacteria count to 5.21 and 1.53 log CFU/mL, respectively, at day 7.

18.
Biochim Biophys Acta Gene Regul Mech ; 1867(3): 195041, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740364

ABSTRACT

The study characterized the transcriptionally regulatory mechanism and functions of three zinc (Zn) transporters (znt4, znt5 and znt10) in Zn2+ metabolism in yellow catfish (Pelteobagrus fulvidraco), commonly freshwater fish in China and other countries. We cloned the sequences of znt4 promoter, spanning from -1217 bp to +80 bp relative to TSS (1297 bp); znt5, spanning from -1783 bp to +49 bp relative to TSS (1832 bp) and znt10, spanning from -1923 bp to +190 bp relative to TSS (2113 bp). In addition, after conducting the experiments of sequential deletion of promoter region and mutation of potential binding site, we found that the Nrf2 binding site (-607/-621 bp) and Klf4 binding site (-5/-14 bp) were required on znt4 promoter, the Mtf-1 binding site (-1674/-1687 bp) and Atf4 binding site (-444/-456 bp) were required on znt5 promoter and the Atf4 binding site (-905/-918 bp) was required on znt10 promoter. Then, according to EMSA and ChIP, we found that Zn2+ incubation increased DNA affinity of Atf4 to znt5 or znt10 promoter, but decreased DNA affinity of Nrf2 to znt4 promoter, Klf4 to znt4 promoter and Mtf-1 to znt5 promoter. Using fluorescent microscopy, it was revealed that Znt4 and Znt10 were located in the lysosome and Golgi, and Znt5 was located in the Golgi. Finally, we found that znt4 knockdown reduced the zinc content of lysosome and Golgi in the control and zinc-treated group; znt5 knockdown reduced the zinc content of Golgi in the control and zinc-treated group and znt10 knockdown reduced the zinc content of Golgi in the zinc-treated group. High dietary zinc supplement up-regulated Znt4 and Znt5 protein expression. Above all, for the first time, we revealed that Klf4 and Nrf2 transcriptionally regulated the activities of znt4 promoter; Mtf-1 and Atf4 transcriptionally regulated the activities of znt5 promoter and Atf4 transcriptionally regulated the activities of znt10 promoter, which provided innovative regulatory mechanism of zinc transporting in yellow catfish. Our study also elucidated their subcellular location, and regulatory role of zinc homeostasis in yellow catfish.

19.
BMC Biotechnol ; 24(1): 28, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702622

ABSTRACT

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive infections. Recently, Fish skin and its mucus are gaining interest among immunologists. Characterization was done on the obtained silver nanoparticles Ag combined with Clarias gariepinus catfish epidermal mucus proteins (EMP-Ag-NPs) through UV-vis, FTIR, XRD, TEM, and SEM. Ag-NPs ranged in size from 4 to 20 nm, spherical in form and the angles were 38.10°, 44.20°, 64.40°, and 77.20°, Where wavelength change after formation of EMP-Ag-NPs as indicate of dark brown, the broad band recorded at wavelength at 391 nm. Additionally, the antimicrobial, antibiofilm and anticancer activities of EMP-Ag-NPs was assessed. The present results demonstrate high activity against unicellular fungi C. albicans, followed by E. faecalis. Antibiofilm results showed strong activity against both S. aureus and P. aeruginosa pathogens in a dose-dependent manner, without affecting planktonic cell growth. Also, cytotoxicity effect was investigated against normal cells (Vero), breast cancer cells (Mcf7) and hepatic carcinoma (HepG2) cell lines at concentrations (200-6.25 µg/mL) and current results showed highly anticancer effect of Ag-NPs at concentrations 100, 5 and 25 µg/mL exhibited rounding, shrinkage, deformation and granulation of Mcf7 and HepG2 with IC50 19.34 and 31.16 µg/mL respectively while Vero cells appeared rounded at concentration 50 µg/mL and normal shape at concentration 25, 12.5 and 6.25 µg/ml with IC50 35.85 µg/mL. This study evidence the potential efficacy of biologically generated Ag-NPs as a substitute medicinal agent against harmful microorganisms. Furthermore, it highlights their inhibitory effect on cancer cell lines.


Subject(s)
Biofilms , Catfishes , Metal Nanoparticles , Silver , Metal Nanoparticles/chemistry , Biofilms/drug effects , Biofilms/growth & development , Silver/chemistry , Silver/pharmacology , Animals , Humans , Mucus/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Vero Cells , Fish Proteins/pharmacology , Fish Proteins/chemistry , Fish Proteins/metabolism , Chlorocebus aethiops , Cell Line, Tumor , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Candida albicans/drug effects , Epidermis/metabolism
20.
Article in English | MEDLINE | ID: mdl-38797004

ABSTRACT

Circular RNA (circRNA) represents a type of newly discovered non-coding RNA, distinguished by its closed loop structure formed through covalent bonds. Recent studies have revealed that circRNAs have crucial influences on host anti-pathogen responses. Yellow catfish (Pelteobagrus fulvidraco), an important aquaculture fish with great economic value, is susceptible to Aeromonas veronii, a common aquatic pathogen that can cause acute death. Here, we reported the first systematic investigation of circRNAs in yellow catfish, especially those associated with A. veronii infection at different time points. A total of 1205 circRNAs were identified, which were generated from 875 parental genes. After infection, 47 circRNAs exhibited differential expression patterns (named DEcirs). The parental genes of these DEcirs were functionally engaged in immune-related processes. Accordingly, seven DEcirs (novel_circ_000226, 278, 401, 522, 736, 843, and 975) and six corresponding parental genes (ADAMTS13, HAMP1, ANG3, APOA1, FGB, and RALGPS1) associated with immunity were obtained, and their expression was confirmed by RT-qPCR. Moreover, we found that these DEcir-gene pairs likely acted through pathways, such as platelet activation, antimicrobial humoral response, and regulation of Ral protein signal transduction, to influence host immune defenses. Additionally, integrated analysis showed that, of the 7 immune-related DEcirs, three targeted 16 miRNAs, which intertwined into circRNA-miRNA networks. These findings revealed that circRNAs, by targeting genes or miRNAs are highly involved in anti-bacterial responses in yellow catfish. Our study comprehensively illustrates the roles of circRNAs in yellow catfish immune defenses. The identified DEcirs and the circRNA-miRNA network will contribute to the further investigations on the molecular mechanisms underlying yellow catfish immune responses.


Subject(s)
Aeromonas veronii , Catfishes , Fish Diseases , Gram-Negative Bacterial Infections , RNA, Circular , RNA, Circular/genetics , Animals , Catfishes/genetics , Catfishes/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...