ABSTRACT
Gramicidin (Gr) nanoparticles (NPs) and poly (diallyl dimethyl ammonium) chloride (PDDA) water dispersions were characterized and evaluated against Gram-positive and Gram-negative bacteria and fungus. Dynamic light scattering for sizing, zeta potential analysis, polydispersity, and colloidal stability over time characterized Gr NPs/PDDA dispersions, and plating and colony-forming units counting determined their microbicidal activity. Cell viabilities of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans in the presence of the combinations were reduced by 6, 7, and 7 logs, respectively, at 10 µM Gr/10 µg·mL-1 PDDA, 0.5 µM Gr/0. 5µg·mL-1 PDDA, and 0.5 µM Gr/0.5 µg·mL-1 PDDA, respectively. In comparison to individual Gr doses, the combinations reduced doses by half (S. aureus) and a quarter (C. albicans); in comparison to individual PDDA doses, the combinations reduced doses by 6 times (P. aeruginosa) and 10 times (C. albicans). Gr in supported or free cationic lipid bilayers reduced Gr activity against S. aureus due to reduced Gr access to the pathogen. Facile Gr NPs/PDDA disassembly favored access of each agent to the pathogen: PDDA suctioned the pathogen cell wall facilitating Gr insertion in the pathogen cell membrane. Gr NPs/PDDA differential cytotoxicity suggested the possibility of novel systemic uses for the combination.
ABSTRACT
Spherical or discoidal lipid polymer nanostructures bearing cationic charges successfully adsorb a variety of oppositely charged antigens (Ag) such as proteins, peptides, nucleic acids, or oligonucleotides. This report provides instructions for the preparation and physical characterization of four different cationic nanostructures able to combine and deliver antigens to the immune system: (1) dioctadecyl dimethylammonium bromide (DODAB) bilayer fragments (DODAB BF); (2) polystyrene sulfate (PSS) nanoparticles (NPs) covered with one cationic dioctadecyl dimethylammonium bromide bilayer (DODAB) named (PSS/DODAB); (3) cationic NPs of biocompatible polymer poly(methyl methacrylate) (PMMA) prepared by emulsion polymerization of the methyl methacrylate (MMA) monomer in the presence of DODAB BF (PMMA/DODAB NPs); (4) antigen NPs (NPs) where the cationic polymer poly(diallyl dimethyl ammonium chloride) (PDDA) directly combined at nontoxic and low dose with the antigen (Ag); when the oppositely charged model antigen is ovalbumin (OVA), NPs are named PDDA/OVA. These nanostructures provide adequate microenvironments for carrying and delivering antigens to the antigen-presenting cells of the immune system.
Subject(s)
Nanoparticles , Vaccines , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Cations , Ovalbumin , Polymers , Polymethyl Methacrylate , Quaternary Ammonium CompoundsABSTRACT
Nanostructures have been of paramount importance for developing immunoadjuvants. They must be cationic and non-cytotoxic, easily assembling with usually oppositely charged antigens such as proteins, haptens or nucleic acids for use in vaccines. We obtained optimal hybrid nanoparticles (NPs) from the biocompatible polymer poly(methyl methacrylate) (PMMA) and the cationic lipid dioctadecyl dimethyl ammonium bromide (DODAB) by emulsion polymerization of methyl methacrylate (MMA) in the presence of DODAB. NPs adsorbed ovalbumin (OVA) as a model antigen and we determined their adjuvant properties. Interestingly, they elicited high double immune responses of the cellular and humoral types overcoming the poor biocompatibility of DODAB-based adjuvants of the bilayer type. The results suggested that the novel adjuvant would be possibly of use in a variety of vaccines.
ABSTRACT
Biocompatible lipid polymer nanoparticles (NPs) previously used as antimicrobial agents are explored here as immuno-adjuvants. Poly (methyl methacrylate) (PMMA)/dioctadecyldimethylammonium bromide (DODAB)/poly (diallyldimethylammonium chloride) (PDDA) nanoparticles (NPs) were prepared by emulsion polymerization of methyl methacrylate (MMA) in the presence of DODAB and PDDA, with azobisisobutyronitrile (AIBN) as the initiator. NPs characterization after dialysis by dynamic light-scattering yielded 225 ± 2 nm hydrodynamic diameter (Dz), 73 ± 1 mV zeta-potential (ζ), and 0.10 ± 0.01 polydispersity (P). Ovalbumin (OVA) adsorption reduced ζ to 45 ± 2 mV. Balb/c mice immunized with NPs/OVA produced enhanced OVA-specific IgG1 and IgG2a, exhibited moderate delayed type hypersensitivity reaction, and enhanced cytokines production (IL-4, IL-10, IL-2, IFN-γ) by cultured spleen cells. There was no cytotoxicity against cultured macrophages and fibroblasts. Advantages of the PMMA/DODAB/PDDA NPs were high biocompatibility, zeta-potential, colloidal stability, and antigen adsorption. Both humoral and cellular antigen-specific immune responses were obtained.
ABSTRACT
Nanostructures have been of paramount importance for developing immunoadjuvants. They must be cationic and non-cytotoxic, easily assembling with usually oppositely charged antigens such as proteins, haptens or nucleic acids for use in vaccines. We obtained optimal hybrid nanoparticles (NPs) from the biocompatible polymer poly(methyl methacrylate) (PMMA) and the cationic lipid dioctadecyl dimethyl ammonium bromide (DODAB) by emulsion polymerization of methyl methacrylate (MMA) in the presence of DODAB. NPs adsorbed ovalbumin (OVA) as a model antigen and we determined their adjuvant properties. Interestingly, they elicited high double immune responses of the cellular and humoral types overcoming the poor biocompatibility of DODAB-based adjuvants of the bilayer type. The results suggested that the novel adjuvant would be possibly of use in a variety of vaccines.
ABSTRACT
Biocompatible lipid polymer nanoparticles (NPs) previously used as antimicrobial agents are explored here as immuno-adjuvants. Poly (methyl methacrylate) (PMMA)/dioctadecyldimethylammonium bromide (DODAB)/poly (diallyldimethylammonium chloride) (PDDA) nanoparticles (NPs) were prepared by emulsion polymerization of methyl methacrylate (MMA) in the presence of DODAB and PDDA, with azobisisobutyronitrile (AIBN) as the initiator. NPs characterization after dialysis by dynamic light-scattering yielded 225 ± 2 nm hydrodynamic diameter (Dz), 73 ± 1 mV zeta-potential (ζ), and 0.10 ± 0.01 polydispersity (P). Ovalbumin (OVA) adsorption reduced ζ to 45 ± 2 mV. Balb/c mice immunized with NPs/OVA produced enhanced OVA-specific IgG1 and IgG2a, exhibited moderate delayed type hypersensitivity reaction, and enhanced cytokines production (IL-4, IL-10, IL-2, IFN-γ) by cultured spleen cells. There was no cytotoxicity against cultured macrophages and fibroblasts. Advantages of the PMMA/DODAB/PDDA NPs were high biocompatibility, zeta-potential, colloidal stability, and antigen adsorption. Both humoral and cellular antigen-specific immune responses were obtained.
ABSTRACT
Biomimetic nanoparticles are hybrid nanostructures in which the uppermost layer is similar to a cell membrane. In these nanoparticles, lipids and biopolymers can be organized to improve drug incorporation and delivery. This report provides instructions for the preparation and physical characterization of four different biomimetic nanoparticles: (1) polystyrene sulphate (PSS) nanoparticles covered with one cationic dioctadecyl dimethylammonium bromide bilayer (DODAB), which incorporates dimeric channels of the antimicrobial peptide Gramicidin D; (2) silica nanoparticles covered with one single bilayer of the antimicrobial cationic lipid DODAB; (3) hybrid lipid/polymer indomethacin (IND) nanoparticles from injection of IND/DODAB ethanolic solution in a water solution of carboxymethyl cellulose (CMC); (4) bactericidal and fungicidal nanoparticles from DODAB bilayer fragments (BF) covered consecutively by a CMC and a poly(diallyl dimethyl ammonium chloride) (PDDA) layer. These examples provide the basis for the preparation and characterization of novel biomimetic nanoparticles with lipids and/or biopolymers in their composition. The polymers and lipids in the hybrid nanoparticle composition may impart stability and/or bioactivity and/or provide adequate microenvironments for carrying bioactive drugs and biomolecules.
Subject(s)
Anti-Bacterial Agents/chemical synthesis , Lipids/chemistry , Polymers/chemistry , Adsorption , Anti-Bacterial Agents/chemistry , Biological Mimicry , Drug Delivery Systems , Lipid Bilayers/chemistry , NanoparticlesABSTRACT
MAIN CONCLUSION: DOTAP triggers Arabidopsis thaliana immunity and by priming the defense response is able to reduce bacterial pathogen attack. DOTAP is a cationic lipid widely used as a liposomal transfection reagent and it has recently been identified as a strong activator of the innate immune system in animal cells. Plants are sessile organisms and unlike mammals, that have innate and acquired immunity, plants possess only innate immunity. A key feature of plant immunity is the ability to sense potentially dangerous signals, as it is the case for microbe-associated, pathogen-associated or damage-associated molecular patterns and by doing so, trigger an active defense response to cope with the perturbing stimulus. Here, we evaluated the effect of DOTAP in plant basal innate immunity. An initial plant defense response was induced by the cationic lipid DOTAP in the model plant Arabidopsis thaliana, assessed by callose deposition, reactive oxygen species production, and plant cell death. In addition, a proteomic analysis revealed that these responses are mirrored by changes in the plant proteome, such as up-regulation of proteins related to defense responses, including proteins involved in photorespiration, cysteine and oxylipin synthesis, and oxidative stress response; and down-regulation of enzymes related to photosynthesis. Furthermore, DOTAP was able to prime the defense response for later pathogenic challenges as in the case of the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Disease outcome was diminished in DOTAP-pre-treated leaves and bacterial growth was reduced 100 times compared to mock leaves. Therefore, DOTAP may be considered a good candidate as an elicitor for the study of plant immunity.
Subject(s)
Arabidopsis/immunology , Fatty Acids, Monounsaturated/metabolism , Plant Immunity , Quaternary Ammonium Compounds/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Glucans/metabolism , Liposomes/metabolism , Photosynthesis , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/metabolism , Proteomics , Reactive Oxygen Species/metabolismABSTRACT
RNA interference is an invaluable tool in biology to specifically silence a given gene. Synthetic duplexes of RNA oligonucleotides are widely used to induce mRNA degradation in cultured cells or in whole organisms. They have to be vectorized to reach their target site. Here, we describe the preparation of highly efficient siRNA vectors based on cationic liposomes and polyanionic polymers and their application in cultured cells to silence reporter and/or endogenous genes.
Subject(s)
Lipids/chemistry , Polymers/chemistry , RNA, Small Interfering/genetics , Animals , Anions/chemistry , Cations/chemistry , Cell Line, Tumor , Gene Transfer Techniques , Liposomes , Mice , Particle Size , RNA, Small Interfering/chemistryABSTRACT
Mimicking nature is a powerful approach for developing novel lipid-based devices for drug and vaccine delivery. In this review, biomimetic assemblies based on natural or synthetic lipids by themselves or associated to silica, latex or drug particles will be discussed. In water, self-assembly of lipid molecules into supramolecular structures is fairly well understood. However, their self-assembly on a solid surface or at an interface remains poorly understood. In certain cases, hydrophobic drug granules can be dispersed in aqueous solution via lipid adsorption surrounding the drug particles as nanocapsules. In other instances, hydrophobic drug molecules attach as monomers to borders of lipid bilayer fragments providing drug formulations that are effective in vivo at low drug-to-lipid-molar ratio. Cationic biomimetic particles offer suitable interfacial environment for adsorption, presentation and targeting of biomolecules in vivo. Thereby antigens can effectively be presented by tailored biomimetic particles for development of vaccines over a range of defined and controllable particle sizes. Biomolecular recognition between receptor and ligand can be reconstituted by means of receptor immobilization into supported lipidic bilayers allowing isolation and characterization of signal transduction steps.