Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Microbiol Spectr ; 12(10): e0117324, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39190636

ABSTRACT

Klebsiella pneumoniae strains that produce Klebsiella pneumoniae Carbapenemase (KPC) variants displaying resistance to ceftazidime-avibactam (CZA) often remain susceptible to meropenem (MEM), suggesting a potential therapeutic use of this carbapenem antibiotic. However, in vitro studies indicate that these sorts of strains can mutate becoming MEM-resistant, raising concerns about the effectiveness of carbapenems as treatment option. We have studied mutation rates occurring from the reversion of MEM-susceptible KPC-114 to MEM-resistant KPC-2, in CZA-resistant K. pneumoniae belonging to ST11. Two-step fluctuation assays (FAs) were conducted. In brief, initial cultures of KPC-114-producing K. pneumoniae showing 1 µg/mL MEM MIC were spread on Mueller-Hinton agar plates containing 2-8 µg/mL MEM. A second step of FA, at 4-16 µg/mL MEM was performed from a mutant colony obtained at 2 µg/mL MEM. Mutation rates were calculated using maximum likelihood estimation. Parental and mutant strains were sequenced by Illumina NextSeq, and mutations were predicted by variant-calling analysis. At 8 µg/mL MEM, mutants derived from parental CZA-resistant (MIC ≥ 64 µg/mL)/MEM-susceptible (MIC = 1 µg/mL) KPC-114-positive K. pneumoniae exhibited an accumulative mutation rate of 3.05 × 10-19 mutations/cell/generation, whereas at 16 µg/mL MEM an accumulative mutation rate of 1.33 × 10-19 mutations/cell/generation resulted in the reversion of KPC-114 (S181_P182 deletion) to KPC-2. These findings highlight that the reversion of MEM-susceptible KPC-114 to MEM-resistant KPC-2, in CZA-resistant K. pneumoniae ST11 is related to low mutation rates suggesting a low risk of therapeutic failure. In vivo investigations are necessary to confirm the clinical potential of MEM against CZA-resistant KPC variants.IMPORTANCEThe emergence of ceftazidime-avibactam (CZA) resistance among carbapenem-resistant Klebsiella pneumoniae is a major concern due to the limited therapeutic options. Strikingly, KPC mutations mediating CZA resistance are generally associated with meropenem susceptibility, suggesting a potential therapeutic use of this carbapenem antibiotic. However, the reversion of meropenem-susceptible to meropenem-resistant could be expected. Therefore, knowing the mutation rate related to this genetic event is essential to estimate the potential use of meropenem against CZA-resistant KPC-producing K. pneumoniae. In this study, we demonstrate, in vitro, that under high concentrations of meropenem, reversion of KPC-114 to KPC-2 in CZA-resistant/meropenem-susceptible K. pneumoniae belonging to the global high-risk ST11 is related to low mutation rates.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Meropenem , Microbial Sensitivity Tests , Mutation Rate , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Meropenem/pharmacology , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Mutation
2.
Front Cell Infect Microbiol ; 14: 1410834, 2024.
Article in English | MEDLINE | ID: mdl-38903939

ABSTRACT

Introduction: Ceftazidime/avibactam (CZA) is indicated against multidrug-resistant Pseudomonas aeruginosa, particularly those that are carbapenem resistant. CZA resistance in P. aeruginosa producing PER, a class A extended-spectrum ß-lactamase, has been well documented in vitro. However, data regarding clinical isolates are scarce. Our aim was to analyze the contribution of PER to CZA resistance in non-carbapenemase-producing P. aeruginosa clinical isolates that were ceftazidime and/or carbapenem non-susceptible. Methods: Antimicrobial susceptibility was determined through agar dilution and broth microdilution, while bla PER gene was screened through PCR. All PER-positive isolates and five PER-negative isolates were analyzed through Whole Genome Sequencing. The mutational resistome associated to CZA resistance was determined through sequence analysis of genes coding for PBPs 1b, 3 and 4, MexAB-OprM regulators MexZ, MexR, NalC and NalD, AmpC regulators AmpD and AmpR, and OprD porin. Loss of bla PER-3 gene was induced in a PER-positive isolate by successive passages at 43°C without antibiotics. Results: Twenty-six of 287 isolates studied (9.1%) were CZA-resistant. Thirteen of 26 CZA-resistant isolates (50%) carried bla PER. One isolate carried bla PER but was CZA-susceptible. PER-producing isolates had significantly higher MICs for CZA, amikacin, gentamicin, ceftazidime, meropenem and ciprofloxacin than non-PER-producing isolates. All PER-producing isolates were ST309 and their bla PER-3 gene was associated to ISCR1, an insertion sequence known to mobilize adjacent DNA. PER-negative isolates were classified as ST41, ST235 (two isolates), ST395 and ST253. PER-negative isolates carried genes for narrow-spectrum ß-lactamases and the mutational resistome showed that all isolates had one major alteration in at least one of the genes analyzed. Loss of bla PER-3 gene restored susceptibility to CZA, ceftolozane/tazobactam and other ß-lactamsin the in vitro evolved isolate. Discussion: PER-3-producing ST309 P. aeruginosa is a successful multidrug-resistant clone with blaPER-3 gene implicated in resistance to CZA and other ß-lactams.


Subject(s)
Bacterial Proteins , Ceftazidime , Drug Resistance, Multiple, Bacterial , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Ceftazidime/pharmacology , Chile , Drug Combinations , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Mutation , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas Infections/microbiology , Whole Genome Sequencing
3.
Antimicrob Agents Chemother ; 66(11): e0064822, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36286541

ABSTRACT

A ceftazidime-avibactam-resistant KPC-producing Pseudomonas aeruginosa strain was isolated in Argentina from a tracheal aspirate. The patient was treated with ceftazidime-avibactam in combination with other agents for 130 days. Whole-genome sequencing of P. aeruginosa identified a D179Y substitution in the Ω loop of KPC-3, corresponding to KPC-31, integrated at the chromosome. The strain belonged to the sequence type 235/O11 (ST235/O11) high-risk clone. Evaluation of carbapenemase detection assays most used by clinical laboratories failed to identify the isolate as a KPC producer.


Subject(s)
Klebsiella pneumoniae , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , beta-Lactamases/genetics , Drug Combinations , Bacterial Proteins/genetics
4.
Front Cell Infect Microbiol ; 12: 981792, 2022.
Article in English | MEDLINE | ID: mdl-36118031

ABSTRACT

Ceftazidime/Avibactam (CAZ/AVI) is frequently used to treat KPC-producing Pseudomonas aeruginosa (KPC-PA) and Enterobacterales. CAZ/AVI resistance is driven by several mechanisms. In P. aeruginosa this mainly occurs through alteration of AmpC, porins, and/or efflux pump overexpression, whereas in Enterobacterales it frequently occurs through D179Y substitution in the active site of KPC enzyme. This aminoacid change abolishes AVI binding to the KPC active site, hence inhibition is impaired. However, this substitution also decreases KPC-mediated resistance to carbapenems ("see-saw" effect). The goal of this work was to characterize the in vivo acquisition of CAZ/AVI resistance through D179Y substitution in a KPC-PA isolated from a hospitalized patient after CAZ/AVI treatment. Two KPC-PA isolates were obtained. The first isolate, PA-1, was obtained before CAZ/AVI treatment and was susceptible to CAZ/AVI. The second isolate, PA-2, was obtained after CAZ/AVI treatment and exhibited high-level CAZ/AVI resistance. Characterization of isolates PA-1 and PA-2 was performed through short and long-read whole genome sequencing analysis. The hybrid assembly showed that PA-1 and PA-2A had a single plasmid of 54,030 bp, named pPA-1 and pPA-2 respectively. Each plasmid harbored two copies of the bla KPC-containing Tn4401b transposon. However, while pPA-1 carried two copies of bla KPC-2, pPA-2 had one copy of bla KPC-2 and one copy of bla KPC-33, the allele with the D179Y substitution. Interestingly, isolate PA-2 did not exhibit the "see-saw" effect. The bla KPC-33 allele was detected only through hybrid assembly using a long-read-first approach. The present work describes a KPC-PA isolate harboring a plasmid-borne CAZ/AVI resistance mechanism based on two copies of bla KPC-2-Tn4401b and D179Y mutation in one of them, that is not associated with loss of resistance to carbapenems. These findings highlight the usefulness of a fine-tuned combined analysis of short and long-read data to detect similar emerging resistance mechanisms.


Subject(s)
Ceftazidime , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds , Carbapenems/pharmacology , Ceftazidime/pharmacology , Drug Combinations , Humans , Microbial Sensitivity Tests , Mutation , Porins/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism
5.
J Chemother ; 33(2): 128-131, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32948107

ABSTRACT

A rapid colorimetric method, the Andrade screening antimicrobial test, was compared with the E-test method to detect ceftazidime/avibactam (CZA) resistance in carbapenem resistant Enterobacterales clinical isolates. A 106 non-duplicated isolates (86 susceptible and 20 resistant to CZA) were chosen for validation. The sensitivity and specificity were 100%. This method investigates CZA resistance regardless of the resistance mechanism involved. It represents an economical and easy technique that can be applied to routine microbiology laboratories. It allows the detection of CZA resistance at 3 hours of incubation and consequently, the early implementation of accurate therapeutic interventions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Carbapenems/pharmacology , Ceftazidime/pharmacology , Drug Resistance, Bacterial/drug effects , Enterobacteriaceae/drug effects , Colorimetry/methods , Drug Combinations , Humans , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL